E. Intergalaxy Trips
time limit per test:2 seconds
memory limit per test:256 megabytes
input:standard input
output:standard output

The scientists have recently discovered wormholes — objects in space that allow to travel very long distances between galaxies and star systems.

The scientists know that there are n galaxies within reach. You are in the galaxy number 1 and you need to get to the galaxy number n. To get from galaxy i to galaxy j, you need to fly onto a wormhole (i, j) and in exactly one galaxy day you will find yourself in galaxy j.

Unfortunately, the required wormhole is not always available. Every galaxy day they disappear and appear at random. However, the state of wormholes does not change within one galaxy day. A wormhole from galaxy i to galaxy j exists during each galaxy day taken separately with probability pij. You can always find out what wormholes exist at the given moment. At each moment you can either travel to another galaxy through one of wormholes that exist at this moment or you can simply wait for one galaxy day to see which wormholes will lead from your current position at the next day.

Your task is to find the expected value of time needed to travel from galaxy 1 to galaxy n, if you act in the optimal way. It is guaranteed that this expected value exists.

Input

The first line of the input contains a single integer n (1 ≤ n ≤ 1000) — the number of galaxies within reach.

Then follows a matrix of n rows and n columns. Each element pij represents the probability that there is a wormhole from galaxy i to galaxy j. All the probabilities are given in percents and are integers. It is guaranteed that all the elements on the main diagonal are equal to 100.

Output

Print a single real value — the expected value of the time needed to travel from galaxy 1 to galaxy n if one acts in an optimal way. Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.

Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct, if .

Examples
input
3
100 50 50
0 100 80
0 0 100
output
1.750000000000000
input
2
100 30
40 100
output
3.333333333333333
Note

In the second sample the wormhole from galaxy 1 to galaxy 2 appears every day with probability equal to 0.3. The expected value of days one needs to wait before this event occurs is .

题意:

给出一张$n$个点$n^{2}$条边的有向图,每条边每天的出现概率为$p[i][j]$,求从$1$到$n$的期望天数...

分析:

首先我们考虑两个点的情况,也就是第二个样例,从$1$到$2$的边的出现概率为$0.3$,所以我们此时求的期望天数就是期望第几天会出现这条边:$ans=\sum _{i=0}^{+∞}0.7^{i}$,收敛一下就是$\frac {1}{0.3}$...

然后我们再考虑多个点的情况,如果我们要从$i$走到$j$,必须满足的是走到$j$之后的结果要比$i$优,否则就不走...所以我们是每次选取一个最优的点去更新其他的点,这就是一个$dijkstra$的过程,更新的方式就是$f[i]=\frac {(p[i][j_{1}]*f[j_{1}]+(1-p[i][j_{1}])*p[i][j_{2}]*f[j_{2}]+……+1)}{1-(1-p[i][j_{1}])(1-p[i][j_{2}])……}$...

代码:

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
//by NeighThorn
using namespace std; const int maxn=1000+5; int n,vis[maxn]; double f[maxn],a[maxn],b[maxn],p[maxn][maxn]; struct M{ int x;
double y; friend bool operator < (M a,M b){
return a.y>b.y;
} M(int a=0,double b=0.0){
x=a;y=b;
} }; priority_queue<M> q; signed main(void){
scanf("%d",&n);
for(int i=1,x;i<=n;i++)
for(int j=1;j<=n;j++)
scanf("%d",&x),p[i][j]=x/100.0;
for(int i=1;i<=n;i++)
a[i]=b[i]=1.0,f[i]=1e30;
f[n]=0;q.push(M(n,0));
while(!q.empty()){
int top=q.top().x;q.pop();
if(vis[top])
continue;
vis[top]=1;
for(int i=1;i<=n;i++)
if(p[i][top]>0&&!vis[i]){
a[i]+=b[i]*p[i][top]*f[top];
b[i]*=1.0-p[i][top];
f[i]=a[i]/(1.0-b[i]);
q.push(M(i,f[i]));
}
}
printf("%.15f\n",f[1]);
return 0;
}

  


By NeighThorn

CodeForces 605 E. Intergalaxy Trips的更多相关文章

  1. 【CF605E】Intergalaxy Trips(贪心,动态规划)

    [CF605E]Intergalaxy Trips(贪心,动态规划) 题面 Codeforces 洛谷 有\(n\)个点,每个时刻第\(i\)个点和第\(j\)个点之间有\(p_{ij}\)的概率存在 ...

  2. CF#335 Intergalaxy Trips

     Intergalaxy Trips time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  3. CF605E Intergalaxy Trips

    CF605E Intergalaxy Trips 考虑你是不知道后来的边的出现情况的,所以可以这样做:每天你都选择一些点进行观察,知道某天往这些点里面的某条边可用了,你就往这条边走.这样贪心总是对的. ...

  4. [Codeforces]605E Intergalaxy Trips

    小C比较棘手的概率期望题,感觉以后这样的题还会贴几道出来. Description 给定一个n*n的邻接矩阵,邻接矩阵中元素pi,j表示的是从 i 到 j 这条单向道路在这一秒出现的概率百分比,走一条 ...

  5. Intergalaxy Trips CodeForces - 605E (期望,dijkstra)

    大意: 给定矩阵$p$, $p_{i,j}$表示每一秒点$i$到点$j$有一条边的概率, 每秒钟可以走一条边, 或者停留在原地, 求最优决策下从$1$到$n$的期望用时. $f_x$为从$x$到$n$ ...

  6. CF605E Intergalaxy Trips 贪心 概率期望

    (当时写这篇题解的时候,,,不知道为什么,,,写的非常冗杂,,,不想改了...) 题意:一张有n个点的图,其中每天第i个点到第j个点的边都有$P_{i, j}$的概率开放,每天可以选择走一步或者留在原 ...

  7. E. Intergalaxy Trips

    完全图,\(1 \leq n \leq 1000\)每一天边有 \(p_{i,j}=\frac{A_{i,j}}{100}\) 的概率出现,可以站在原地不动,求 \(1\) 号点到 \(n\) 号点期 ...

  8. [Manthan, Codefest 18][Codeforces 1037E. Trips]

    题目链接:1037E - Trips 题目大意:有n个人,m天,每天晚上都会有一次聚会,一个人会参加一场聚会当且仅当聚会里有至少k个人是他的朋友.每天早上都会有一对人成为好朋友,问每天晚上最多能有多少 ...

  9. Codeforces Round #605 (Div. 3) E - Nearest Opposite Parity

    题目链接:http://codeforces.com/contest/1272/problem/E 题意:给定n,给定n个数a[i],对每个数输出d[i]. 对于每个i,可以移动到i+a[i]和i-a ...

随机推荐

  1. javascript的基本类型和引用类型

    一.基本类型和引用类型 基本的数据类型有5个:undefined,boolean,number,string,null ? 1 2 3 4 5 typeof null; //"object& ...

  2. ATM-conf-settings

    import os BASE_DIR = os.path.dirname(os.path.dirname(__file__))BASE_DB = os.path.join(BASE_DIR, 'db' ...

  3. vue 组件的书写

    简单的来说是 vue组件最核心的就是props和自定义函数,来实现组件的开发 最简单的一个组件 子组件如下: <template> <div class="bgClass& ...

  4. relu函数是否存在梯度消失问题以及relu函数的死亡节点问题

    relu函数是否存在梯度消失问题以及relu函数的死亡节点问题 存在,在小于的时候,激活函数梯度为零,梯度消失,神经元不更新,变成了死亡节点. 出现这个原因可能是因为学习率太大,导致w更新巨大,使得输 ...

  5. javascript隐藏和显示元素以及清空textarea

    当前希望写一个单选框,选中“paste”则显示粘贴框,选中“upload”则提示选择文件. 因为这两种情况只是显示不同,所以只需要用javascript来进行显示和隐藏. 最后的结果大概这样: 初始时 ...

  6. 在MAC下使用Robotframework+Selenium2【第一枪】robotframework安装步骤

    最近使用苹果的MAC Pro本本,感受着苹果系统的新鲜,确实让我手忙脚乱一阵,毕竟使用windows系统太长时间了,刚开始用MAC Pro确实感觉别扭,用了一段,发现MAC系统还不错,好了,转入正题. ...

  7. Go语言之反射(二)

    反射的值对象 反射不仅可以获取值的类型信息,还可以动态地获取或者设置变量的值.Go语言中使用reflect.Value获取和设置变量的值. 使用反射值对象包装任意值 Go语言中,使用reflect.V ...

  8. TCP/IP网络编程之套接字的多种可选项

    套接字可选项进而I/O缓冲大小 我们进行套接字编程时往往只关注数据通信,而忽略了套接字具有的不同特性.但是,理解这些特性并根据实际需要进行更改也十分重要.之前我们写的程序在创建好套接字后都是未经特别操 ...

  9. 03012_会话技术Cookie&Session

    1.会话技术简介 (1)存储客户端的技术 网站的购物系统,用户将购买的商品信息存储到哪里?因为Http协议是无状态的,也就是说每个客户访问服务器端资源时,服务器并不知道该客户端是谁,所以需要会话技术识 ...

  10. datagrid的右键菜单

    1. 2.右键菜单,主要是用onRowContextMenu:function(e,index,row){}方法来实现 onRowContextMenu:function(e,index,row){ ...