Visible Lattice Points
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 8397   Accepted: 5144

Description

A lattice point (x, y) in the first quadrant (x and y are integers greater than or equal to 0), other than the origin, is visible from the origin if the line from (0, 0) to (x, y) does not pass through any other lattice point. For example, the point (4, 2) is not visible since the line from the origin passes through (2, 1). The figure below shows the points (x, y) with 0 ≤ x, y ≤ 5 with lines from the origin to the visible points.

Write a program which, given a value for the size, N, computes the number of visible points (x, y) with 0 ≤ x, yN.

Input

The first line of input contains a single integer C (1 ≤ C ≤ 1000) which is the number of datasets that follow.

Each dataset consists of a single line of input containing a single integer N (1 ≤ N ≤ 1000), which is the size.

Output

For each dataset, there is to be one line of output consisting of: the dataset number starting at 1, a single space, the size, a single space and the number of visible points for that size.

Sample Input

4
2
4
5
231

Sample Output

1 2 5
2 4 13
3 5 21
4 231 32549

Source

[Submit]   [Go Back]   [Status]   [Discuss]

刚开始脑子简单去暴力循环。。当然是T掉啦!

原来一直不明白欧拉函数,f(n)代表小于n的正整数中与n互质的数的数目。。就是这个题嘛。。记住了。

 #include <cstdlib>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include<iostream>
#include <cmath>
#include<string>
#define ll long long
#define dscan(a) scanf("%d",&a)
#define mem(a,b) memset(a,b,sizeof a)
using namespace std;
#define MAXL 1105
#define maxn 1000005
int f[MAXL];
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>'') {if(ch=='-') f=-;ch=getchar();}
while(ch>=''&&ch<='') {x=*x+ch-'';ch=getchar();}
return x*f;
}
int p[MAXL], pNum, phi[MAXL];
void ola()
{
int i, j;
for(i = ; i < MAXL; i++) {
if(!f[i]) { p[pNum++] = i; phi[i] = i-;}
for(j = ; j < pNum && p[j] * i < MAXL; j++ ) {
f[p[j]*i] = ;
if(i % p[j] == ){
phi[i*p[j]] = phi[i] * p[j];
break;
}
else phi[i*p[j]] = phi[i] *(p[j] - );
}
}
}
int main()
{
int n,c;
cin>>n;int hh=;
ola();
while(n--)
{
int c=read();
phi[]=;
cout<<hh++<<" "<<c<<" ";
ll ans=;
for(int i=;i<=c;++i) ans+=phi[i];
cout<<ans*+<<endl;
}
}

POJ 3090的更多相关文章

  1. POJ 3090 Visible Lattice Points 欧拉函数

    链接:http://poj.org/problem?id=3090 题意:在坐标系中,从横纵坐标 0 ≤ x, y ≤ N中的点中选择点,而且这些点与(0,0)的连点不经过其它的点. 思路:显而易见, ...

  2. poj 3090 &amp;&amp; poj 2478(法雷级数,欧拉函数)

    http://poj.org/problem?id=3090 法雷级数 法雷级数的递推公式非常easy:f[1] = 2; f[i] = f[i-1]+phi[i]. 该题是法雷级数的变形吧,答案是2 ...

  3. 【POJ 3090】 Visible Lattice Points

    [题目链接] http://poj.org/problem?id=3090 [算法] 通过观察发现,在这个平面直角坐标系中,除了(1,1),(1,0)和(0,1),所有可见点的横纵坐标互质 那么,问题 ...

  4. POJ 3090 Visible Lattice Points (ZOJ 2777)

    http://poj.org/problem?id=3090 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1777 题目大意: ...

  5. 【poj 3090】Visible Lattice Points(数论--欧拉函数 找规律求前缀和)

    题意:问从(0,0)到(x,y)(0≤x, y≤N)的线段没有与其他整数点相交的点数. 解法:只有 gcd(x,y)=1 时才满足条件,问 N 以前所有的合法点的和,就发现和上一题-- [poj 24 ...

  6. 数论 - 欧拉函数的运用 --- poj 3090 : Visible Lattice Points

    Visible Lattice Points Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5636   Accepted: ...

  7. POJ 3090 (欧拉函数) Visible Lattice Points

    题意: UVa 10820 这两个题是同一道题目,只是公式有点区别. 给出范围为(0, 0)到(n, n)的整点,你站在原点处,问有多少个整点可见. 对于点(x, y), 若g = gcd(x, y) ...

  8. poj 3090 Visible Lattice Points(离线打表)

    这是好久之前做过的题,算是在考察欧拉函数的定义吧. 先把欧拉函数讲好:其实欧拉函数还是有很多解读的.emmm,最基础同时最重要的算是,¢(n)表示范围(1, n-1)中与n互质的数的个数 好了,我把规 ...

  9. POJ 3090 Visible Lattice Points 【欧拉函数】

    <题目链接> 题目大意: 给出范围为(0, 0)到(n, n)的整点,你站在(0,0)处,问能够看见几个点. 解题分析:很明显,因为 N (1 ≤ N ≤ 1000) ,所以无论 N 为多 ...

  10. [poj 3090]Visible Lattice Point[欧拉函数]

    找出N*N范围内可见格点的个数. 只考虑下半三角形区域,可以从可见格点的生成过程发现如下规律: 若横纵坐标c,r均从0开始标号,则 (c,r)为可见格点 <=>r与c互质 证明: 若r与c ...

随机推荐

  1. centos7.4安装rabbitmq服务(3.7.10版本)

    一.需要安装erlang版本依赖,可以使用二进制安装方式,也可以通过rpm安装,但是安装的时候会提示需要erlang版本>=19.3,而且直接默认yum仓库中的版本较低.,为了节省时间,文章中直 ...

  2. 748. Shortest Completing Word

    https://leetcode.com/problems/shortest-completing-word/description/ class Solution { public: string ...

  3. DFS、栈、双向队列:CF264A- Escape from Stones

    题目: Squirrel Liss liv Escape from Stonesed in a forest peacefully, but unexpected trouble happens. S ...

  4. 江西理工大学编程俱乐部 2328 Star

    : Star 时间限制: C/C++ s Java/Python s 内存限制: MB 答案正确: 提交: 题目描述 31世纪,人类世界的科技已经发展到了空前的高度,星际移民,星际旅游早已经不再是问题 ...

  5. nova boot添加volume_type参数支持

    早前由于添加了全SSD的高性能Ceph集群,区别于现有的HDD集群,在OpenStack端需要能够选择使用两种集群.Cinder配置多Ceph后端的文档早已整理,整理文件夹时发现这篇为nova boo ...

  6. 笔记-编程-IO模型

    笔记-编程-IO模型 1.      简介 常用IO模型 1)      同步阻塞IO(Blocking IO) 2)      同步非阻塞IO(Non-blocking IO) 3)      IO ...

  7. 新手用WPF山寨QQ管家7.6(三)

    由于一直忙工作,没有更新完博客,更可恨的是...在清理资料的时候不小心删除了之前自己做的各种效果的DEMO....好在项目中用到了大部分,也算有所保留,以后可不敢随便删东西了....太可怕了! 在 新 ...

  8. WCF,WebServices,WebApi区别

    http://www.cnblogs.com/hetring/p/4493137.html

  9. IOS开发---菜鸟学习之路--(十三)-利用MBProgressHUD进行异步获取数据

    本章将介绍如何利用MBProgressHUD实现异步处理数据. 其实我本来只是像实现一个加载数据时提示框的效果,然后问了学长知道了这个类,然后就使用了 接着就发现了一个“BUG” 再然后就发现原来MB ...

  10. 转:vc与界面开发之间的文章

    [很好的一篇文章,很喜欢看同行的心路历程:http://www.vckbase.com/index.php/nv/444.html] 本屌丝在新春放假期间闲来无事,在各大编程论坛溜达了一圈.发现年前的 ...