POJ 3090
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 8397 | Accepted: 5144 |
Description
A lattice point (x, y) in the first quadrant (x and y are integers greater than or equal to 0), other than the origin, is visible from the origin if the line from (0, 0) to (x, y) does not pass through any other lattice point. For example, the point (4, 2) is not visible since the line from the origin passes through (2, 1). The figure below shows the points (x, y) with 0 ≤ x, y ≤ 5 with lines from the origin to the visible points.
Write a program which, given a value for the size, N, computes the number of visible points (x, y) with 0 ≤ x, y ≤ N.
Input
The first line of input contains a single integer C (1 ≤ C ≤ 1000) which is the number of datasets that follow.
Each dataset consists of a single line of input containing a single integer N (1 ≤ N ≤ 1000), which is the size.
Output
For each dataset, there is to be one line of output consisting of: the dataset number starting at 1, a single space, the size, a single space and the number of visible points for that size.
Sample Input
4
2
4
5
231
Sample Output
1 2 5
2 4 13
3 5 21
4 231 32549
Source
[Submit] [Go Back] [Status] [Discuss]
刚开始脑子简单去暴力循环。。当然是T掉啦!
原来一直不明白欧拉函数,f(n)代表小于n的正整数中与n互质的数的数目。。就是这个题嘛。。记住了。
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include<iostream>
#include <cmath>
#include<string>
#define ll long long
#define dscan(a) scanf("%d",&a)
#define mem(a,b) memset(a,b,sizeof a)
using namespace std;
#define MAXL 1105
#define maxn 1000005
int f[MAXL];
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>'') {if(ch=='-') f=-;ch=getchar();}
while(ch>=''&&ch<='') {x=*x+ch-'';ch=getchar();}
return x*f;
}
int p[MAXL], pNum, phi[MAXL];
void ola()
{
int i, j;
for(i = ; i < MAXL; i++) {
if(!f[i]) { p[pNum++] = i; phi[i] = i-;}
for(j = ; j < pNum && p[j] * i < MAXL; j++ ) {
f[p[j]*i] = ;
if(i % p[j] == ){
phi[i*p[j]] = phi[i] * p[j];
break;
}
else phi[i*p[j]] = phi[i] *(p[j] - );
}
}
}
int main()
{
int n,c;
cin>>n;int hh=;
ola();
while(n--)
{
int c=read();
phi[]=;
cout<<hh++<<" "<<c<<" ";
ll ans=;
for(int i=;i<=c;++i) ans+=phi[i];
cout<<ans*+<<endl;
}
}
POJ 3090的更多相关文章
- POJ 3090 Visible Lattice Points 欧拉函数
链接:http://poj.org/problem?id=3090 题意:在坐标系中,从横纵坐标 0 ≤ x, y ≤ N中的点中选择点,而且这些点与(0,0)的连点不经过其它的点. 思路:显而易见, ...
- poj 3090 && poj 2478(法雷级数,欧拉函数)
http://poj.org/problem?id=3090 法雷级数 法雷级数的递推公式非常easy:f[1] = 2; f[i] = f[i-1]+phi[i]. 该题是法雷级数的变形吧,答案是2 ...
- 【POJ 3090】 Visible Lattice Points
[题目链接] http://poj.org/problem?id=3090 [算法] 通过观察发现,在这个平面直角坐标系中,除了(1,1),(1,0)和(0,1),所有可见点的横纵坐标互质 那么,问题 ...
- POJ 3090 Visible Lattice Points (ZOJ 2777)
http://poj.org/problem?id=3090 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1777 题目大意: ...
- 【poj 3090】Visible Lattice Points(数论--欧拉函数 找规律求前缀和)
题意:问从(0,0)到(x,y)(0≤x, y≤N)的线段没有与其他整数点相交的点数. 解法:只有 gcd(x,y)=1 时才满足条件,问 N 以前所有的合法点的和,就发现和上一题-- [poj 24 ...
- 数论 - 欧拉函数的运用 --- poj 3090 : Visible Lattice Points
Visible Lattice Points Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5636 Accepted: ...
- POJ 3090 (欧拉函数) Visible Lattice Points
题意: UVa 10820 这两个题是同一道题目,只是公式有点区别. 给出范围为(0, 0)到(n, n)的整点,你站在原点处,问有多少个整点可见. 对于点(x, y), 若g = gcd(x, y) ...
- poj 3090 Visible Lattice Points(离线打表)
这是好久之前做过的题,算是在考察欧拉函数的定义吧. 先把欧拉函数讲好:其实欧拉函数还是有很多解读的.emmm,最基础同时最重要的算是,¢(n)表示范围(1, n-1)中与n互质的数的个数 好了,我把规 ...
- POJ 3090 Visible Lattice Points 【欧拉函数】
<题目链接> 题目大意: 给出范围为(0, 0)到(n, n)的整点,你站在(0,0)处,问能够看见几个点. 解题分析:很明显,因为 N (1 ≤ N ≤ 1000) ,所以无论 N 为多 ...
- [poj 3090]Visible Lattice Point[欧拉函数]
找出N*N范围内可见格点的个数. 只考虑下半三角形区域,可以从可见格点的生成过程发现如下规律: 若横纵坐标c,r均从0开始标号,则 (c,r)为可见格点 <=>r与c互质 证明: 若r与c ...
随机推荐
- C++ lambda 表达式 简介
自己根据对lambda表达式的理解,做了一套ppt简单介绍
- CentOS 7 环境下挂载新磁盘
最近某个项目需要给数据库服务器添加磁盘,由于太久没搞过,就给虚拟机加了10G的空间,用来练习一下磁盘的挂载 一. 首先执行"fdisk -l"命令,查看磁盘信息 [root@loc ...
- RPC框架 - thrift 服务端
-------服务端程序 ------ 下载 下载 thrift 源代码包 下载 thrift 的bin包 准备描述文件(使用源代码包的示例文件) \thrift-0.10.0\tu ...
- MQTT的学习之Mosquitto发布-订阅(2)
在<MQTT的学习之Mosquitto安装&使用(1)>一文末尾,我已经模拟了发布-订阅模式,只是那时在服务器直接模拟的,并不是java代码模拟的.下面贴出Java代码 1.首先引 ...
- L1-039 古风排版 (20 分)
L1-039 古风排版 (20 分) 中国的古人写文字,是从右向左竖向排版的.本题就请你编写程序,把一段文字按古风排版. 输入格式: 输入在第一行给出一个正整数N(<),是每一列的字符数.第 ...
- CSU-2007 Football Training Camp
Football Training Camp 在一次足球联合训练中一共有n支队伍相互进行了若干场比赛. 对于每场比赛,赢了的队伍得3分,输了的队伍不得分,如果为平局则两支队伍各得1分. Input 输 ...
- 笔记-python-变量作用域
笔记-python-变量作用域 1. python变量作用域和引用范围 1.1. 变量作用域 一般而言程序的变量并不是任何对象或在任何位置都可以访问的,访问权限决定于这个变量是在哪里赋 ...
- 修改python新建文件时的模板
- leetcode 【 Unique Paths 】python 实现
题目: A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). ...
- linux环境搭建系列之tomcat安装步骤
前提: Linux centOS 64位 JDK 1.7 安装包从官网上下载 安装Tomcat之前要先安装JDK. 我的JDK是1.7版本的,所以Tomcat版本也选了7的 1.新建目录tomcat ...