优雅编写Python3 的62个小贴士
iterable技巧
▍1、创建一个数字序列(从0到10,间隔为2)
>>> range(0,10,2)
[0, 2, 4, 6, 8]
▍2、对一串数字求和(从0到10,间隔为2)
>>> l = range(0,10,2)
>>> sum(l)
20
▍3、检查序列中的任一元素是否为True
>>> any(a % 2 for a in range(0,10,2))
True
▍4、检查序列中的所有元素是否为True
>>> all(a % 2 for a in range(0,10,2))
True
▍5、累计求和一串数字序列
>>> import numpy as np
>>> res = list(np.cumsum(range(0,10,2)))
>>> res
[ 0, 2, 6, 12, 20]
▍6、给定每个iterable,通过添加索引来构造一个元组
>>> a = ['Hello', 'world', '!']
>>> list(enumerate(a))
[(0, 'Hello'), (1, 'world'), (2, '!')]
▍7、将iterable连接到单个字符串
>>> a = ["python","really", "rocks"]
>>> " ".join(a)
'python really rocks'
▍8、组合两个可迭代的元组或pivot嵌套的iterables
# Combining two iterables
>>> a = [1, 2, 3]
>>> b = ['a', 'b', 'c']
>>> z = zip(a, b)
>>> z
[(1, 'a'), (2, 'b'), (3, 'c')]
# Pivoting list of tuples
>>> zip(*z)
[(1, 2, 3), ('a', 'b', 'c')]
▍9、从iterables中获取最小值/最大值(具有/不具有特定功能)
# Getting maximum from iterable
>>> a = [1, 2, -3]
>>> max(a)
2
# Getting maximum from iterable
>>> min(a)
1
# Bot min/max has key value to allow to get maximum by appliing function
>>> max(a,key=abs)
3
▍10、可迭代排序(可以通过“compare”函数排序)
>>> a = [1, 2, -3]
>>> sorted(a)
[-3, 1, 2]
>>> sorted(a,key=abs)
[1, 2, -3]
▍11、将单个字符串拆分为列表
>>> s = "a,b,c"
>>> s.split(",")
["a", "b", "c"]
▍12、初始化一个包含重复数字的列表
>> [1]* 10
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
▍13、合并/插入两个字典
>>> a = {"a":1, "b":1}
>>> b = {"b":2, "c":1}
>>> a.update(b)
>>> a
{"a":1, "b":2, "c":1}
▍14、命名和保存iterables切片
# Naming slices (slice(start, end, step))
>>> a = [0, 1, 2, 3, 4, 5]
>>> LASTTHREE = slice(-3, None)
>>> LASTTHREE
slice(-3, None, None)
>>> a[LASTTHREE]
[3, 4, 5]
▍15、在列表中查找项的索引
>>> a = ["foo", "bar", "baz"]
>>> a.index("bar")
1
▍16、在iterables中查找最小/最大项的索引
>>> a = [2, 3, 1]
>>> min(enumerate(a),key=lambda x: x[1])[0]
2
▍17、旋转iterables的k个元素
>>> a = [1, 2, 3, 4]
>>> k = 2
>>> a[-2:] + a[:-2]
[3, 4, 1, 2]
▍18、删除字符串末尾/开始/两端无用的字符
>>> name = "//George//"
>>> name.strip("/")
'George'
>>> name.rstrip("/")
'//George'
>>> name.lstrip("/")
'George//'
▍19、倒序iterables的顺序(字符串、列表等)
# Reversing string
>>> s = "abc"
>>> s[::-1]
"cba"
# Reversing list
>>> l = ["a", "b", "c"]
>>> l[::-1]
["c", "b", "a"]
branching技巧
▍20、多个short-cut
>>> n = 10
>>> 1 < n < 20
True
▍21、For-else结构在搜索某些东西并找到它时很有用
for i in mylist:
if i == theflag:
break
process(i)
else:
raise ValueError("List argument missing terminal flag.")
▍22、Trenary operator
>>> "Python ROCK" if True else " I AM GRUMPY"
"Python ROCK"
▍23、Try-catch-else结构
try:
foo()
except Exception:
print("Exception occured")
else:
print("Exception didnt occur")
finally:
print("Always gets here")
▍24、While-else结构
i = 5
while i > 1:
print("Whil-ing away!")
i -= 1
if i == 3:
break
else:
print("Finished up!")
comprehensions(推导式)技巧
▍25、List推导式
>>> m = [x ** 2 for x in range(5)]
>>> m
[0, 1, 4, 9, 16]
▍26、Set推导式
>>> m = {x ** 2 for x in range(5)}
>>> m
{0, 1, 4, 9, 16}
▍27、Dict推导式
>>> m = {x: x ** 2 for x in range(5)}
>>> m
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}
▍28、Generator推导式
# A generator comprehension is the lazy version of a list comprehension.
>>> m = (x ** 2 for x in range(5))
>>> m
<generator object <genexpr> at 0x108efe408>
>>> list(m)
[0, 1, 4, 9, 16]
>>> m = (x ** 2 for x in range(5))
>>> next(m)
0
>>> list(m)
[1, 4, 9, 16]
▍29、list推导使用当前值和过往值
>>> a = [1, 2, 4,2]
>>> [y - x for x,y in zip(a,a[1:])]
[1, 2, -2]
unpacking技巧
▍30、从iterable解压缩变量
# One can unpack all iterables (tuples, list etc)
>>> a, b, c = 1, 2, 3
>>> a, b, c
(1, 2, 3)
>>> a, b, c = [1, 2, 3]
>>> a, b, c
(1, 2, 3)
▍31、交换变量值
>>> a, b = 1, 2
>>> a, b = b, a
>>> a, b
(2, 1)
▍32、在不指示所有元素的情况下从iterable解包变量
>>> a, *b, c = [1, 2, 3, 4, 5]
>>> a
1
>>> b
[2, 3, 4]
>>> c
5
▍33、使用splat运算符解包变量
>>> def test(x, y, z):
>>> print(x, y, z)
>>> res = test(*[10, 20, 30])
10 20 30
>>> res = test(**{'x': 1, 'y': 2, 'z': 3} )
10 20 30
view raw
Itertools技巧
▍34、Flatten iterables
>>> a = [[1, 2], [3, 4], [5, 6]]
>>> list(itertools.chain.from_iterable(a))
[1, 2, 3, 4, 5, 6]
▍35、从iterables创建笛卡尔积
>>> for p in itertools.product([1, 2, 3], [4, 5]):
>>> print(''.join(str(x) for x in p))
(1, 4)
(1, 5)
(2, 4)
(2, 5)
(3, 4)
(3, 5)
▍36、从iterable创建排列
>>> for p in itertools.permutations([1, 2, 3, 4]):
>>> print(''.join(str(x) for x in p))
123
132
213
231
312
321
▍37、从iterable创建ngram
>>> from itertools import islice
>>> def n_grams(a, n):
... z = (islice(a, i, None) for i in range(n))
... return zip(*z)
...
>>> a = [1, 2, 3, 4, 5, 6]
>>> n_grams(a, 3)
[(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)]
>>> n_grams(a, 2)
[(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)]
>>> n_grams(a, 4)
[(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6)]
▍38、使用填充组合元组的两个迭代器或使用填充pivot嵌套迭代
>>> import itertools as it
>>> x = [1, 2, 3, 4, 5]
>>> y = ['a', 'b', 'c']
>>> list(zip(x, y))
[(1, 'a'), (2, 'b'), (3, 'c')]
>>> list(it.zip_longest(x, y))
[(1, 'a'), (2, 'b'), (3, 'c'), (4, None), (5, None)]
▍39、从一个iterable n中创建k个组合
>>> import itertools
>>> bills = [20, 20, 20, 10, 10, 10, 10, 10, 5, 5, 1, 1, 1, 1, 1]
>>> list(itertools.combinations(bills, 3))
[(20, 20, 20), (20, 20, 10), (20, 20, 10), ... ]
▍40、在给定函数情况下创建一个迭代的累积结果
>>> import itertools
>>> list(itertools.accumulate([9, 21, 17, 5, 11, 12, 2, 6], min))
[9, 9, 9, 5, 5, 5, 2, 2]
▍41、创建一个迭代器,只要谓词为True,就从iterable返回元素
>>> import itertools
>>> itertools.takewhile(lambda x: x < 3, [0, 1, 2, 3, 4])
[0, 1, 2]
>>> it.dropwhile(lambda x: x < 3, [0, 1, 2, 3, 4])
[3, 4]
▍42、创建一个迭代器,它从iterable中过滤元素,只返回谓词为False的元素
>>> import itertools
# keeping only false values
>>> list(itertools.filterfalse(bool, [None, False, 1, 0, 10]))
[None, False, 0]
▍43、创建一个迭代器,使用从迭代的迭代中获得的参数来计算函数
>>> import itertools
>>> import operator
>>> a = [(2, 6), (8, 4), (7, 3)]
>>> list(itertools.starmap(operator.mul, a))
[12, 32, 21]
collections技巧
▍44、设置基本操作
>>> A = {1, 2, 3, 3}
>>> A
set([1, 2, 3])
>>> B = {3, 4, 5, 6, 7}
>>> B
set([3, 4, 5, 6, 7])
>>> A | B
set([1, 2, 3, 4, 5, 6, 7])
>>> A & B
set([3])
>>> A - B
set([1, 2])
>>> B - A
set([4, 5, 6, 7])
>>> A ^ B
set([1, 2, 4, 5, 6, 7])
>>> (A ^ B) == ((A - B) | (B - A))
True
▍45、计数器数据结构(无序集合,其中元素存储为字典键,其计数存储为字典值)
import collections
>>> A = collections.Counter([1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7])
>>> A
Counter({3: 4, 1: 2, 2: 2, 4: 1, 5: 1, 6: 1, 7: 1})
>>> A.most_common(1)
[(3, 4)]
>>> A.most_common(3)
[(3, 4), (1, 2), (2, 2)]
▍46、默认字典结构(字典的子类,在访问不存在的键时检索默认值)
>>> import collections
>>> m = collections.defaultdict(int)
>>> m['a']
0
>>> m = collections.defaultdict(str)
>>> m['a']
''
>>> m['b'] += 'a'
>>> m['b']
'a'
>>> m = collections.defaultdict(lambda: '[default value]')
>>> m['a']
'[default value]'
>>> m['b']
'[default value]'
>>> m = collections.defaultdict(list)
>>> m['a']
[]
▍47、有序的dict结构(保持有序字典的子类)
>>> from collections import OrderedDict
>>> d = OrderedDict.fromkeys('abcde')
>>> d.move_to_end('b')
>>> ''.join(d.keys())
'acdeb'
>>> d.move_to_end('b', last=False)
>>> ''.join(d.keys())
'bacde'
▍48、Deques结构(Deques是堆栈和队列的概括)
>>> import collection
>>> Q = collections.deque()
>>> Q.append(1)
>>> Q.appendleft(2)
>>> Q.extend([3, 4])
>>> Q.extendleft([5, 6])
>>> Q
deque([6, 5, 2, 1, 3, 4])
>>> Q.pop()
4
>>> Q.popleft()
6
>>> Q
deque([5, 2, 1, 3])
>>> Q.rotate(3)
>>> Q
deque([2, 1, 3, 5])
>>> Q.rotate(-3)
>>> Q
deque([5, 2, 1, 3])
>>> last_three = collections.deque(maxlen=3)
>>> for i in range(4):
... last_three.append(i)
... print ', '.join(str(x) for x in last_three)
...
0
0, 1
0, 1, 2
1, 2, 3
2, 3, 4
▍49、命名元组结构(创建类元组的对象,这些对象的字段可通过属性查找访问,也可索引和迭代)
>>> import collections
>>> Point = collections.namedtuple('Point', ['x', 'y'])
>>> p = Point(x=1.0, y=2.0)
>>> p
Point(x=1.0, y=2.0)
>>> p.x
1.0
>>> p.y
2.0
▍50、使用字典来存储Switch
>>> func_dict = {'sum': lambda x, y: x + y, 'subtract': lambda x, y: x - y}
>>> func_dict['sum'](9,3)
12
>>> func_dict['subtract'](9,3)
6
▍51、数据类结构
>>> from dataclasses import dataclass
>>> @dataclass
>>> class DataClassCard:
>>> rank: str
>>> suit: str
>>> queen_of_hearts = DataClassCard('Q', 'Hearts')
>>> queen_of_hearts.rank
'Q'
>>> queen_of_hearts
DataClassCard(rank='Q', suit='Hearts')
>>> queen_of_hearts == DataClassCard('Q', 'Hearts')
True
其他技巧
▍52、生成uuid
# This creates a randomized
#128-bit number that will almost certainly be unique.
# In fact, there are over 2¹²² possible
#UUIDs that can be generated.
#That’s over five undecillion (or 5,000,000,000,000,000,000,000,000,000,000,000,000).
>>> import uuid
>>> user_id = uuid.uuid4()
>>> user_id
UUID('7c2faedd-805a-478e-bd6a-7b26210425c7')
▍53、使用LRU缓存进行记忆
import functools
@functools.lru_cache(maxsize=128)
def fibonacci(n):
if n == 0:
return 0
elif n == 1:
return 1
return fibonacci(n - 1) + fibonacci(n - 2)
▍54、Suppression of expressions
>>> from contextlib import suppress
>>> with contextlib.suppress(ZeroDivisionError):
>>> 10/0
# No exception raised
▍55、在需要设置和拆卸时创建上下文管理
地址:
https://docs.python.org/2/library/contextlib.html?source=post_page---------------------------
▍56、一种处理文件路径的优雅方法(3.4≥)
>>> from pathlib import Path
>>> data_folder = Path("source_data/text_files/)
# Path calculation and metadata
>>> file_to_open = data_folder / "raw_data.txt"
>>> file_to_open.name
"raw_data.txt"
>>> file_to_open.suffix
"txt"
>>>file_to_open.stem
"raw_data"
# Files functions
>>> f = open(file_to_open)
>>> f.read()
# content of the file
>>> file_to_open.exists()
True
▍57、将标准操作符实现为类的函数
地址:
https://docs.python.org/3/library/operator.html?source=post_page---------------------------
▍58、创建装饰器来分离concerns
>>>from functools import wraps
>>>def add_sandwich(wrapped):
>>> @wraps(wrapped)
>>> def wrapper(*args, **kwargs):
>>> return wrapped(*args, **kwargs) + ' sandwich'
>>> return wrapper
>>>@add_sandwich
>>>def ham():
>>> return 'ham'
>>>ham()
'ham sandwich'
▍59、使用yield创建一个简单的迭代器
>>> def foo(lst):
>>> for x in lst:
>>> yield x
>>> yield x*2
>>> a = [1, 3]
>>> list(foo(a))
[1, 2, 3, 6]
▍60、yield from use cases and tricks
地址:
https://stackoverflow.com/questions/9708902/in-practice-what-are-the-main-uses-for-the-new-yield-from-syntax-in-python-3?source=post_page---------------------------
彩蛋
▍61、Anti-gravity
import antigravity
antigravity.fly()
▍62、The Zen of Python
>>> import this
The Zen of Python, by Tim Peters
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren not special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one and preferably only one obvious way to do it.
Although that way may not be obvious at first unless you are Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it is a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea let us do more of those!
希望以上62个小贴士对你在今天的学习和工作中有所帮助哦!
优雅编写Python3 的62个小贴士的更多相关文章
- 五个 .NET 性能小贴士
原文:bit.ly/3wSpO4o 作者:Nikita Starichenko 翻译:精致码农 大家好!今天我想和大家分享几个 .NET 的性能小贴士与基准测试. 我的系统环境: BenchmarkD ...
- Angular2 小贴士 Name
Angular2 正式版已经发布了一个月了,我也是通过各种方式在进行验证是否可以满足我们的需求,今天我就发现了一个问题.现在我们来一起说明一下,这个可能不算是bug,而应该需要我们记住就可以了. 我们 ...
- 【小贴士】虚拟键盘与fixed带给移动端的痛!
前言 今天来公司的主要目的就是研究虚拟键盘与fixed的问题,期间因为同事问起闭包与事件委托(阻止冒泡)相关问题,便穿插了一篇别的: [小贴士]工作中的”闭包“与事件委托的”阻止冒泡“,有兴趣的朋友可 ...
- SVN小贴士
我辛辛苦苦写的到哪里了? SVN小贴士SVN服务器上的代码项目组公用,你的每一个提交都会体现给项目组每个人,所以提交要慎重,要注意避免代码冲突,使用SVN小贴士: 1.提前宣布开发计划,保持项目组成员 ...
- android性能小贴士 翻译
转自http://developer.android.com/training/articles/perf-tips.html 性能小贴士: 这篇文档主要一些微优化可以提升应用程序性能,但是这些改变不 ...
- 小贴士——提高PHP程序在NGINX代理服务器的性能
NGINX本身就是面向最大性能的代理服务器,因此在使用NGINX,并没有性能调整的配置工作.但是却有很多选项可用于定制NGINX的行为,利用底层硬件和操作系统. 下面将介绍用于提供PHP在NGINX的 ...
- jprofiler8使用小贴士
说明:本文的小贴士是针对jprofiler8的,其他版本上可能有不适用的地方 贴士一:使用jpenable监控,无需增加jvm参数和重启 贴士一:使用jpenable监控,无需增加jvm参数和重启 j ...
- 初识bd时的一些技能小贴士
既然小豆腐如此给力,而且充分的利用主动学习的优势,已经有了迅速脑补,压倒式的优势,不过这只是表面而已,一切才刚刚开始,究竟鹿死谁手,还有待验证. 以上可以看到,小豆腐为什么拼命的要teach我们了么, ...
- SharePoint每日小贴士Web部件
SharePoint每日小贴士Web部件 项目描写叙述 此Web部件从指定SP自己定义列表或一个选定的 RSS源选择一个随机项目.并显示一张图片.标题和一个Tip. 适 ...
随机推荐
- 用js刷剑指offer(二叉搜索树与双向链表)
题目描述 输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表.要求不能创建任何新的结点,只能调整树中结点指针的指向. 牛客网链接 js代码 /* function TreeNode(x) { ...
- k8s的组件
1.Master组件 1.API Server K8S对外的唯一接口,提供HTTP/HTTPS RESTful API,即kubernetes API.所有的请求都需要经过这个接口进行通信.主要负责接 ...
- java kafka
https://blog.csdn.net/panchang199266/article/details/82113453 安装部署 scala语言开发 + java
- rmi的调用
在java8 121版本以前,只要这样就能任意代码 rmiTest.java import javax.naming.InitialContext; import javax.naming.Nami ...
- Robot Framework--Scalar变量
一.变量赋值 1)Set赋值 通常使用Set Variable关键字对变量进行赋值,其他Set相关的带Variable的关键字也可以进行赋值 赋值的时候,变量后面写不写『=』都可以,如下: 如果${v ...
- 多任务udp聊天器完整版
import socket import threading def send_msg(udp_socket,dest_ip,dest_port): while True: send_data = i ...
- 阿里云轻量级服务器和NGINX部署Django项目
部署条件: 1.一台阿里云服务器(本人的是CentOS系统的服务器) 2.已经构建好的项目 3.服务器上安装并配置Nginx 首先第一步:在服务器上安装并配置Nginx 进入服务器 $ ssh roo ...
- [Cypress] install, configure, and script Cypress for JavaScript web applications -- part5
Use the Most Robust Selector for Cypress Tests Which selectors your choose for your tests matter, a ...
- Hive中的数据库、表、数据与HDFS的对应关系
1.hive数据库 我们在hive终端,查看数据库信息,可以看出hive有一个默认的数据库default,而且我们还知道hive数据库对应的是hdfs上面的一个目录,那么默认的数据库default到底 ...
- 解决 ImportError: No module named 'pip._internal'问题
pip错误 ImportError: No module named 'pip_internal' 解决 ImportError: No module named 'pip._internal' 问 ...