题目链接

题意 : 给出一个数、问其能不能被任何一个平方数整除、如果可以则输出 No 即不是 Square-free Number 、否则输出 Yes

分析 :

首先 N 有 1e18 那么大、不能暴力

根据唯一分解定理、任何数可以分解成若干素数乘积形式

N = p1^a1 + p2^a2 + p3^a3 .....

那么可以利用这个特性来解决这个问题

首先可以知道其素因子肯定是不超过 1e6 的

那么对于 1e6 以内的素数我们先预处理出来

然后开始枚举、如果 N 能被两个或以上相同的素数整除的话

那么就说明其有平方因子

不过这个还不全面、对于 1e6 内的素数全部分解完了之后

如果 N 还是一个 > 1e6 的数、且它还包含平方因子的话

那么肯定是两个平方因子相乘的形式

直接开根验证即可

#include<bits/stdc++.h>
#define LL long long
#define ULL unsigned long long

#define scl(i) scanf("%lld", &i)
#define scll(i, j) scanf("%lld %lld", &i, &j)
#define sclll(i, j, k) scanf("%lld %lld %lld", &i, &j, &k)
#define scllll(i, j, k, l) scanf("%lld %lld %lld %lld", &i, &j, &k, &l)

#define scs(i) scanf("%s", i)
#define sci(i) scanf("%d", &i)
#define scd(i) scanf("%lf", &i)
#define scIl(i) scanf("%I64d", &i)
#define scii(i, j) scanf("%d %d", &i, &j)
#define scdd(i, j) scanf("%lf %lf", &i, &j)
#define scIll(i, j) scanf("%I64d %I64d", &i, &j)
#define sciii(i, j, k) scanf("%d %d %d", &i, &j, &k)
#define scddd(i, j, k) scanf("%lf %lf %lf", &i, &j, &k)
#define scIlll(i, j, k) scanf("%I64d %I64d %I64d", &i, &j, &k)
#define sciiii(i, j, k, l) scanf("%d %d %d %d", &i, &j, &k, &l)
#define scdddd(i, j, k, l) scanf("%lf %lf %lf %lf", &i, &j, &k, &l)
#define scIllll(i, j, k, l) scanf("%I64d %I64d %I64d %I64d", &i, &j, &k, &l)

#define lson l, m, rt<<1
#define rson m+1, r, rt<<1|1
#define lowbit(i) (i & (-i))
#define mem(i, j) memset(i, j, sizeof(i))

#define fir first
#define sec second
#define VI vector<int>
#define ins(i) insert(i)
#define pb(i) push_back(i)
#define pii pair<int, int>
#define VL vector<long long>
#define mk(i, j) make_pair(i, j)
#define all(i) i.begin(), i.end()
#define pll pair<long long, long long>

#define _TIME 0
#define _INPUT 0
#define _OUTPUT 0
clock_t START, END;
void __stTIME();
void __enTIME();
void __IOPUT();
using namespace std;

;

bool isPrime[maxn];
int Prime[maxn];
int tot;

inline void init()
{
    tot = ;
    LL i, j;
    mem(isPrime, true);
    ; i<maxn; i++){
        if(isPrime[i]){
            Prime[tot++] = i;
            for(j=i+i; j<maxn; j+=i){
                isPrime[j] = false;
            }
        }
    }
}

bool Test(LL &N)
{
    ; i<tot; i++){
        ) return false;
        ){
            N /= Prime[i];
             && N%Prime[i] == ) return true;
        }
    }
    return false;
}

int main(void){__stTIME();__IOPUT();

    init();

    ;

    sci(nCase);

    while(nCase--){
        LL N;
        scl(N);

        printf("Case %d: ", ++Case);

        if(Test(N)) puts("No");
        else{
            if(N > (LL)1e6){
                bool Yes = true;
                LL num = (LL)sqrt((double)N);
                ; i<=num+; i++){
                    if(i * i == N){
                        Yes = false;
                        break;
                    }
                }
                if(Yes) puts("Yes");
                else puts("No");
            }else puts("Yes");
        }

    }

__enTIME();;}

void __stTIME()
{
    #if _TIME
        START = clock();
    #endif
}

void __enTIME()
{
    #if _TIME
        END = clock();
        cerr<<"execute time = "<<(double)(END-START)/CLOCKS_PER_SEC<<endl;
    #endif
}

void __IOPUT()
{
    #if _INPUT
        freopen("in.txt", "r", stdin);
    #endif
    #if _OUTPUT
        freopen("out.txt", "w", stdout);
    #endif
}

HDU 3826 Squarefree number ( 唯一分解定理 )的更多相关文章

  1. HDU 1452 Happy 2004(唯一分解定理)

    题目链接:传送门 题意: 求2004^x的全部约数的和. 分析: 由唯一分解定理可知 x=p1^a1*p2^a2*...*pn^an 那么其约数和 sum = (p1^0+p1^1^-+p1^a1)* ...

  2. [ HDOJ 3826 ] Squarefree number

    \(\\\) \(Description\) \(T\)组数据,每次给出一个正整数 \(N\) ,判断其是否能被任意一个完全平方数整除. \(T\le 20,N\le 10^{18}\) \(\\\) ...

  3. HDU 6069 Counting Divisors(唯一分解定理+因子数)

    http://acm.hdu.edu.cn/showproblem.php?pid=6069 题意: 思路: 根据唯一分解定理,$n={a_{1}}^{p1}*{a2_{}}^{p2}...*{a_{ ...

  4. hdu 1215 求约数和 唯一分解定理的基本运用

    http://acm.hdu.edu.cn/showproblem.php?pid=1215 题意:求解小于n的所有因子和 利用数论的唯一分解定理. 若n = p1^e1 * p2^e2 * ……*p ...

  5. HDU-1492-The number of divisors(约数) about Humble Numbers -求因子总数+唯一分解定理的变形

    A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence 1, 2, 3, 4, ...

  6. hdu3826-Squarefree number-(欧拉筛+唯一分解定理)

    Squarefree number Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  7. 2018 南京预选赛 J Sum ( 欧拉素数筛 、Square-free Number、DP )

    题目链接 题意 : 定义不能被平方数整除的数为 Square-free Number 定义 F(i) = 有几对不同的 a 和 b 使得 i = a * b 且 a .b 都是 Square-free ...

  8. UVA - 10375 Choose and divide[唯一分解定理]

    UVA - 10375 Choose and divide Choose and divide Time Limit: 1000MS   Memory Limit: 65536K Total Subm ...

  9. LightOJ 1341 - Aladdin and the Flying Carpet (唯一分解定理 + 素数筛选)

    http://lightoj.com/volume_showproblem.php?problem=1341 Aladdin and the Flying Carpet Time Limit:3000 ...

随机推荐

  1. css多种方式实现等宽布局

    本文讲的等宽布局是在不手动设置元素宽度的情况下,使用纯css实现各个元素宽度都相当的效果. 1.使用table-cell实现(兼容ie8) <style> body,div{ margin ...

  2. CentOS7 Python3上安装paramiko

    1. CentOS 7下安装Python3.5 CentOS7默认安装了python2.7.5,要用 Python3需要自己手动安装.注意不要删除python2. 1.1 下载python3源码包 w ...

  3. 实现双向绑定Proxy比defineproperty优劣如何?

    前言 双向绑定其实已经是一个老掉牙的问题了,只要涉及到MVVM框架就不得不谈的知识点,但它毕竟是Vue的三要素之一. Vue三要素 响应式: 例如如何监听数据变化,其中的实现方法就是我们提到的双向绑定 ...

  4. vuex用法

    // 配置vuex的步骤 // 1. 运行 cnpm i vuex -S // 2. 导入包 import Vuex from 'vuex' // 3. 注册vuex到vue中 Vue.use(Vue ...

  5. OSCP-FristiLeaks

    环境搭建 靶机下载: https://www.vulnhub.com/entry/fristileaks-13,133/ 安装:直接用virtualbox打开 网络桥接 找到靶机IP 虚拟机启动就显示 ...

  6. Cannot assign to read only property 'exports' of object at webpack ....BaseClient

    网上找了很多资料说是import和export不能一起用,改代码 其实根本原因是es6和es5混合使用造成的兼容性问题 只需要配置.babelrc就可以了 首先安装 npm install -D tr ...

  7. Vue-router 报NavigationDuplicated的可能解决方案

    出现这个问题,控制台会报[NavigationDuplicated {_name: "NavigationDuplicated", name: "NavigationDu ...

  8. Linux 下vim命令详解

    原博文:https://www.cnblogs.com/zknublx/p/6058679.html 高级一些的编辑器,都会包含宏功能,vim当然不能缺少了,在vim中使用宏是非常方便的: :qx   ...

  9. Manjaro18+kde 更换壁纸重启失效

    更换壁纸 ​ 在kde的桌面右键->配置桌面 壁纸里更换壁纸,我不能直接添加图像并应用.我的系统在这样操作后重启就会发现一切都被重置了.刚刚添加的图片也不见了. ​ 于是,我就模范原本存在壁纸文 ...

  10. 网络初级篇之VLAN(原理)

    一.早期网络的问题 1.若某时刻有多个节点同时试图发送数据,极易产生冲突域,这样使得网络传输效率大大降低. 2.从一节点发送的数据都会被送到各个节点,极易形成广播域,这样会使得产生太多的广播流量而耗费 ...