最短路--Bellman-Ford
Bellman-Ford 贝尔曼-福特
算法思想
贝尔曼-福特算法(英语:Bellman–Ford algorithm),求解单源最短路径问题的一种算法,由理查德·贝尔曼 和 莱斯特·福特 创立的。它的原理是对图进行次松弛操作,得到所有可能的最短路径。其优于迪科斯彻算法的方面是边的权值可以为负数、实现简单,缺点是时间复杂度过高,高达O(|N||M|)。但算法可以进行若干种优化,提高了效率。
首先指出,图的任意一条最短路径既不能包含负权回路,也不会包含正权回路,因此它最多包含|N|-1条边。
枚举n次,每次枚举每一条边,如果dis[u] > dis[v]+w[v][u],则dis[u] = dis[v]+w[v][u],如果图没有负环则最多跑n-1次,否则可以一直跑下去
模板
bool Bellman_Ford(int s)
{
memset(dis,inf,sizeof dis);
dis[s] = 0;
bool flag;
for(int i = 1; i <= n; i++) //n个点,跑n次
{
flag = false;
for(int j = 0; j < m; j++) //m条边,每次枚举每一条边
{
int x = edge[j].u;
int y = edge[j].v;
int z = edge[j].w;
if(dis[y] > dis[x]+z)
{
dis[y] = dis[x]+z;
flag = true;
}
}
if(!flag) break;
if(i==n && flag) return false;//存在负环
}
return true;
}
模板
bool bellman_ford(){
memset(dis,INF,sizeof(dis));
for(int i=1;i<n;++i){
for(int j=1;j<=m;++j){
if(dis[edge[j].v]>dis[edge[j].u]+edge[j].w){
dis[edge[j].v]=dis[edge[j].u]+edge[j].w;
}
}
}
for(int j=1;j<=m;++j){
if(dis[edge[j].v]>dis[edge[j].u]+edge[j].w)
return false;
}
return true;
}
例题
参考博客
百度百科
https://www.cnblogs.com/CLAYzhan/articles/11621448.html
最短路--Bellman-Ford的更多相关文章
- ACM/ICPC 之 最短路径-Bellman Ford范例(POJ1556-POJ2240)
两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可 ...
- poj1860 bellman—ford队列优化 Currency Exchange
Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 22123 Accepted: 799 ...
- uva 558 - Wormholes(Bellman Ford判断负环)
题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...
- Bellman—Ford算法思想
---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...
- Bellman - Ford 算法解决最短路径问题
Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...
- 蓝桥杯 算法训练 最短路 [ 最短路 bellman ]
传送门 算法训练 最短路 时间限制:1.0s 内存限制:256.0MB 锦囊1 锦囊2 锦囊3 问题描述 给定一个n个顶点,m条边的有向图(其中某些边权可能为负,但保证 ...
- 多源第k短路 (ford + 重新定义编号) / 出发点、终点确定的第k短路 (Spfa+ 启发搜索)
第k短路 Description 一天,HighLights实在是闲的不行,他选取了n个地点,n各地点之间共有m条路径,他想找到这m条路径组成的第k短路,你能帮助他嘛? Input 第一行三个正整数, ...
- ACM/ICPC 之 Bellman Ford练习题(ZOJ1791(POJ1613))
这道题稍复杂一些,需要掌握字符串输入的处理+限制了可以行走的时间. ZOJ1791(POJ1613)-Cave Raider //限制行走时间的最短路 //POJ1613-ZOJ1791 //Time ...
- Dijkstra算法与Bellman - Ford算法示例(源自网上大牛的博客)【图论】
题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and ...
- POJ 2240 Arbitrage (Bellman Ford判正环)
Arbitrage Time Limit: 1000MS Memory Limit: 65536K Total Submissions:27167 Accepted: 11440 Descri ...
随机推荐
- Git时间 —— 初始版本控制工具
<第一行代码>读书手札 可能你早就听闻git,奈何看不懂命令吓退了. 今天逆流而上. (1.)安装Git 登录官网,下载最新版,一路下一步.就完成安装了. (2.)创建本地代码仓库 首先配 ...
- C++Primer 5th Chap10 Generic Algorithms(未完)
大多数算法定义在头文件algorithm中,在头文件numeric中定义了数值泛型算法. 以find算法为例:在容器的两个迭代器指定的范围内遍历,查找特定值. auto result= cout< ...
- P1308(字符串类,处理字符串查找)
题目描述 一般的文本编辑器都有查找单词的功能,该功能可以快速定位特定单词在文章中的位置,有的还能统计出特定单词在文章中出现的次数. 现在,请你编程实现这一功能,具体要求是:给定一个单词,请你输出它在给 ...
- python学习-54 正则表达式2
re模块 之分组 >>> import re >>> re.findall("ab|c","sdfab|csdf") ['a ...
- Mysql之rpm安装5.7版本遇见的问题
前言:环境是centos7.5的系统,用rpm方式安装mysql5.7 1.由于是centos7.5 所以需要将默认的mariadb给卸载 rpm -qa | grep mariadb 查看下是否有m ...
- PAT(B) 1031 查验身份证(Java)
题目链接:1031 查验身份证 (15 point(s)) 题目描述 一个合法的身份证号码由17位地区.日期编号和顺序编号加1位校验码组成.校验码的计算规则如下: 首先对前17位数字加权求和,权重分配 ...
- try except 异常捕获的方法、断言的使用
except as e中的'e'的作用总结 - 2puT - CSDN博客 Python使用try except处理程序异常的三种常用方法分析 Python3和Python2 异常处理except的不 ...
- 怎样通过正则匹配IP地址
Ipv4的地址是0.0.0.0 到 255.255.255.255, 匹配这个字段需要判断三种情况: 1. 如果第一位是0或1, 则第二位和第三位可以是0-9的任意数值: [01]\d\d 2. 如果 ...
- TR-TR模块资料汇总
转载: TR模块培训 https://www.docin.com/p-1704805923.html 现金管理(Cash Management)和预算控制(Cash Budget Management ...
- 修改Linux命令:ls为例
Linux命令可以被修改,用于启动一些不起眼的程序. 操作方法如下: whereis ls cd /usr/bin mv ls ls_bak vim ls 新建的ls文件中 chmod +x ls c ...