line: (434,300) (453,144) (0,0,0),(-0.926698,-1.25853,2.032)

0.781452

----------------------------------------------------

line: (259,104) (472,107) (-1.14799,-1.27092,2.052),(-1.11387,-1.25048,2.019)

0.0198861

----------------------------------------------------

line: (260,108) (486,120) (-1.10865,-1.25048,2.019),(0,0,0)

0.835585

----------------------------------------------------

line: (122,86) (255,202) (-1.23559,-1.26287,2.039),(-0.680211,-1.37621,2.222)

0.283413

----------------------------------------------------

line: (337,207) (421,307) (-0.642403,-1.35701,2.191),(0,0,0)

0.750692

----------------------------------------------------

line: (341,191) (571,134) (-0.717631,-1.32852,2.145),(0,0,0)

0.754976

----------------------------------------------------

line: (280,64) (603,69) (-1.25212,-1.16996,1.889),(0,0,0)

0.856828

----------------------------------------------------

line: (258,51) (601,63) (-1.21531,-1.08078,1.745),(0,0,0)

0.81318

----------------------------------------------------

line: (321,235) (450,298) (-0.476977,-1.33781,2.16),(0,0,0)

0.710148

----------------------------------------------------

line: (336,109) (489,114) (-1.09961,-1.24614,2.012),(0,0,0)

0.830965

----------------------------------------------------

line: (345,202) (453,296) (-0.680211,-1.37621,2.222),(0,0,0)

0.767567

----------------------------------------------------

line: (258,53) (603,65) (-1.23394,-1.10555,1.785),(0,0,0)

0.828378

----------------------------------------------------

line: (331,225) (483,271) (-0.538485,-1.35205,2.183),(0,0,0)

0.727671

----------------------------------------------------

line: (261,102) (473,106) (-1.17046,-1.28393,2.073),(-1.1263,-1.25853,2.032)

0.0254702

----------------------------------------------------

line: (266,62) (549,67) (-1.26188,-1.16996,1.889),(0,0,0)

0.860402

----------------------------------------------------

line: (258,44) (530,53) (-1.17686,-1.02008,1.647),(0,0,0)

0.77871

----------------------------------------------------

line: (337,191) (571,133) (-0.717631,-1.32852,2.145),(0,0,0)

0.754976

----------------------------------------------------

line: (408,201) (568,196) (-0.685955,-1.37621,2.222),(0,0,0)

0.768844

----------------------------------------------------

line: (442,197) (568,193) (-0.703825,-1.3663,2.206),(0,0,0)

0.768463

----------------------------------------------------

line: (262,110) (449,119) (-1.09441,-1.24614,2.012),(-1.04083,-1.23809,1.999)

0.0270892

----------------------------------------------------

line: (204,299) (209,160) (0,0,0),(-0.868367,-1.29693,2.094)

0.780399

----------------------------------------------------

line: (259,42) (534,51) (-1.17602,-1.01203,1.634),(0,0,0)

0.77576

----------------------------------------------------

line: (258,54) (604,66) (-1.24792,-1.12227,1.812),(0,0,0)

0.839166

----------------------------------------------------

line: (393,176) (571,131) (-0.814988,-1.35205,2.183),(0,0,0)

0.789344

----------------------------------------------------

line: (259,107) (488,119) (-1.11387,-1.25048,2.019),(0,0,0)

0.837319

----------------------------------------------------

line: (258,55) (510,63) (-1.25421,-1.13218,1.828),(0,0,0)

0.84482

----------------------------------------------------

line: (260,40) (536,50) (-1.18156,-1.00955,1.63),(0,0,0)

0.777059

----------------------------------------------------

line: (445,69) (601,71) (-1.2238,-1.16625,1.883),(0,0,0)

0.845256

----------------------------------------------------

line: (260,111) (411,119) (-1.08596,-1.24243,2.006),(-1.04083,-1.23809,1.999)

0.0226678

----------------------------------------------------

line: (358,100) (485,104) (-1.19314,-1.29693,2.094),(0,0,0)

0.881137

----------------------------------------------------

line: (306,65) (602,70) (-1.24327,-1.16625,1.883),(0,0,0)

0.85233

----------------------------------------------------

line: (336,207) (413,305) (-0.642403,-1.35701,2.191),(0,0,0)

0.750692

----------------------------------------------------

line: (264,115) (370,118) (-1.06522,-1.24243,2.006),(-1.046,-1.23809,1.999)

0.00985092

----------------------------------------------------

line: (202,318) (208,159) (0,0,0),(-0.870859,-1.2926,2.087)

0.779295

----------------------------------------------------

line: (464,198) (568,195) (-0.700654,-1.37125,2.214),(0,0,0)

0.769944

----------------------------------------------------

line: (356,101) (477,105) (-1.18376,-1.2926,2.087),(-1.13545,-1.26287,2.039)

0.0283616

----------------------------------------------------

line: (299,106) (468,109) (-1.1263,-1.25853,2.032),(-1.09961,-1.24614,2.012)

0.0147114

----------------------------------------------------

line: (347,191) (470,163) (-0.717631,-1.32852,2.145),(-0.866778,-1.31923,2.13)

0.0747182

----------------------------------------------------

line: (258,43) (532,52) (-1.17538,-1.01512,1.639),(0,0,0)

0.776529

----------------------------------------------------

line: (203,257) (206,157) (0,0,0),(-0.875734,-1.28393,2.073)

0.777074

----------------------------------------------------

line: (308,108) (490,117) (-1.10865,-1.25048,2.019),(0,0,0)

0.835585

----------------------------------------------------

line: (259,52) (602,64) (-1.22467,-1.09316,1.765),(0,0,0)

0.820797

----------------------------------------------------

line: (362,187) (531,145) (-0.734636,-1.31923,2.13),(0,0,0)

0.754992

----------------------------------------------------

line: (348,103) (457,105) (-1.15723,-1.27525,2.059),(-1.13545,-1.26287,2.039)

0.012529

----------------------------------------------------

line: (260,105) (471,108) (-1.13545,-1.26287,2.039),(-1.10865,-1.25048,2.019)

0.0147595

----------------------------------------------------

line: (267,112) (404,119) (-1.08077,-1.24243,2.006),(-1.04083,-1.23809,1.999)

0.0200885

----------------------------------------------------

line: (265,108) (467,118) (-1.10865,-1.25048,2.019),(-1.046,-1.23809,1.999)

0.0319339

----------------------------------------------------

line: (299,108) (440,115) (-1.10865,-1.25048,2.019),(-1.06522,-1.24243,2.006)

0.0220881

----------------------------------------------------

realsense数据分析的更多相关文章

  1. 基于realsense的深度数据分析工具

  2. 基于RealSense的坐姿检测技术

    计算机的飞速普及,让人们将越来越多的工作放在计算机上去完成,各行各业,尤其是程序开发人员.文字工作者,在计算机上的工作时间越来越长,这种情况下不良的坐姿对颈肩腰椎都会产生很大影响,容易导致多种疾病的发 ...

  3. 利用Python进行数据分析 基础系列随笔汇总

    一共 15 篇随笔,主要是为了记录数据分析过程中的一些小 demo,分享给其他需要的网友,更为了方便以后自己查看,15 篇随笔,每篇内容基本都是以一句说明加一段代码的方式, 保持简单小巧,看起来也清晰 ...

  4. 利用Python进行数据分析(10) pandas基础: 处理缺失数据

      数据不完整在数据分析的过程中很常见. pandas使用浮点值NaN表示浮点和非浮点数组里的缺失数据. pandas使用isnull()和notnull()函数来判断缺失情况. 对于缺失数据一般处理 ...

  5. 利用Python进行数据分析(12) pandas基础: 数据合并

    pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...

  6. 利用Python进行数据分析(5) NumPy基础: ndarray索引和切片

    概念理解 索引即通过一个无符号整数值获取数组里的值. 切片即对数组里某个片段的描述. 一维数组 一维数组的索引 一维数组的索引和Python列表的功能类似: 一维数组的切片 一维数组的切片语法格式为a ...

  7. 利用Python进行数据分析(9) pandas基础: 汇总统计和计算

    pandas 对象拥有一些常用的数学和统计方法.   例如,sum() 方法,进行列小计:   sum() 方法传入 axis=1 指定为横向汇总,即行小计:   idxmax() 获取最大值对应的索 ...

  8. 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作

    一.reindex() 方法:重新索引 针对 Series   重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 ...

  9. 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍

    一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...

随机推荐

  1. Dell T30解决报Alert! Cover was previously removed.

    DELL T30自检中卡在F1/F2/F5选项,需要F1手动启动时报:Alert! Cover was previously removed是指向机器盖问题 [解决方法]: 1.检查机箱盖是否有盖紧 ...

  2. log:日志处理模块

    为了更好的跟踪程序,我们通常都会使用日志,当然在golang中也提供了相应的模块. 基本使用 可以直接通过log来调用格式化输出的方法. package main import "log&q ...

  3. 主板(motherboard)

    若转载请于明显处标明出处:http://www.cnblogs.com/kelamoyujuzhen/p/8979262.html 整台PC都是围绕主板(motherboard)构建的,它是PC中最重 ...

  4. sqlmap中文帮助文档

    Options(选项):  -h,--help             显示基本帮助消息并退出  -hh                     显示高级帮助消息并退出  --version      ...

  5. 创建守护进程步骤与setsid()

    原创:http://www.cnblogs.com/mickole/p/3188321.html 一,守护进程概述 Linux Daemon(守护进程)是运行在后台的一种特殊进程.它独立于控制终端并且 ...

  6. pip安装超时:Read timed out.

    环境:win10 和 pip 在pip install h5py(或者其他第三方依赖包时) 会出现Read timed out.的问题,即安装超时.如下图所示: 解决方法: 1. 在用户目录下,新建p ...

  7. 深度解析Word2vec

    Word2vec 本质上是一种降维操作--把词语从 one-hot encoder 形式的表示降维到 Word2vec 形式的表示,即Distributed Representation.也就是,通过 ...

  8. Spring Bean装配(下)——注解

    @Repository,@Service,@Controller这三个注解是基于component定义的注解 component-scan:组件扫描 base-package:扫描这个下的所有类 &l ...

  9. k8s 命令自动补全

    yum install -y bash-completion source /usr/share/bash-completion/bash_completion source <(kubectl ...

  10. javaMail 详解

    原文:http://www.matrix.org.cn/resource/article/44/44101_JavaMail.html 一.JavaMail API简介JavaMail API是读取. ...