CodeForces - 1202F You Are Given Some Letters... (整除分块)
题意:一个字符串包含a个A和b个B,求这个字符串所有可能的循环节长度(末尾可能存在不完整的循环节)
好题,但思路不是很好想。
首先由于循环节长度可以任意取,而循环次数最多只有$O(\sqrt n)$个,因此考虑枚举循环次数(利用整除分块的思想),求a,b可能的循环长度。
那么问题转化成了:给定最大循环次数k和字符个数n,求循环长度l的取值范围,也就是使得$\left \lfloor \frac{n}{l}\right \rfloor=k$的l的取值范围。
首先确定l的上界,即$kl\leqslant n$,$l\leqslant \left \lfloor \frac{n}{k}\right \rfloor$,这个是显然的。
然后确定l的下界,如果$kl+l\leqslant n$的话,那么可以再分出去一个l,与最大循环次数为k矛盾,因此下界为$(k+1)l>n$,$l\geqslant\left \lfloor \frac{n}{k+1}\right \rfloor+1$。
综上,l的取值范围应为$[\left \lfloor \frac{n}{k+1}\right \rfloor+1,\left \lfloor \frac{n}{k}\right \rfloor]$。
然后貌似对于每个最大循环次数k,令n分别等于a,b,求出a和b的取值范围,进而确定a+b的取值范围就可以了。
但是这里有一个问题:a和b的k值不一定相等!比如说有10个a,9个b,每段有2个a和2个b,那么a和b的k值分别为5和4!(坑死人)
于是只能允许$kl+l=n$的情况存在了,也就是强行令$(k+1)l\geqslant n$,即$l\geqslant \left \lceil \frac{n}{k+1}\right \rceil=\left \lfloor \frac{n+k}{k+1}\right \rfloor$,这样就能应付上面的特殊情况了。
然而这样还没完,求出的取值范围可能有重复!怎样去重呢?最无脑的方法是把所有取值范围的区间排个序然后从左往右扫一遍,不过也可以限制一下l的取值范围,也就是强行令$l\in [\left \lfloor \frac{a+b}{k+1}\right \rfloor+1,\left \lfloor \frac{a+b}{k}\right \rfloor]$,这样就能避免重复了。
逻辑可能不是很清晰,如果还不明白的话可以去看官方题解
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e5+,inf=0x3f3f3f3f;
int a,b;
int main() {
scanf("%d%d",&a,&b);
int ans=;
for(int l=,r,k; l<=a+b; l=r+) {
k=(a+b)/l,r=(a+b)/k;
int L1=(a+k)/(k+),R1=a/k;
int L2=(b+k)/(k+),R2=b/k;
if(L1<=R1&&L2<=R2)ans+=min(R1+R2,r)-max(L1+L2,l)+;
}
printf("%d\n",ans);
return ;
}
CodeForces - 1202F You Are Given Some Letters... (整除分块)的更多相关文章
- CodeForces 1202F(数论,整除分块)
题目 CodeForces 1213G 做法 假设有\(P\)个完整的循环块,假设此时答案为\(K\)(实际答案可能有多种),即每块完整块长度为\(K\),则\(P=\left \lfloor \fr ...
- 51Nod 1225 余数之和 [整除分块]
1225 余数之和 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 F(n) = (n % 1) + (n % 2) + (n % 3) + ... ...
- [Bzoj 2956] 模积和 (整除分块)
整除分块 一般形式:\(\sum_{i = 1}^n \lfloor \frac{n}{i} \rfloor * f(i)\). 需要一种高效求得函数 \(f(i)\) 的前缀和的方法,比如等差等比数 ...
- P2568 莫比乌斯反演+整除分块
#include<bits/stdc++.h> #define LL long long using namespace std; ; bool vis[maxn]; int prime[ ...
- LOJ #2802. 「CCC 2018」平衡树(整除分块 + dp)
题面 LOJ #2802. 「CCC 2018」平衡树 题面有点难看...请认真阅读理解题意. 转化后就是,给你一个数 \(N\) ,每次选择一个 \(k \in [2, N]\) 将 \(N\) 变 ...
- [POI2007]ZAP-Queries (莫比乌斯反演+整除分块)
[POI2007]ZAP-Queries \(solution:\) 唉,数论实在有点烂了,昨天还会的,今天就不会了,周末刚证明的,今天全忘了,还不如早点写好题解. 这题首先我们可以列出来答案就是: ...
- [笔记] 整除分块 & 异或性质
整除分块 参考资料:整除分块_peng-ym OI生涯中的各种数论算法的证明 公式 求:\(\sum_{i=1}^{n}\lfloor\frac{n}{i}\rfloor\) 对于每个\(\lfloo ...
- 洛谷P3935 Calculating(整除分块)
题目链接:洛谷 题目大意:定义 $f(x)=\prod^n_{i=1}(k_i+1)$,其中 $x$ 分解质因数结果为 $x=\prod^n_{i=1}{p_i}^{k_i}$.求 $\sum^r_{ ...
- 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)
上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...
随机推荐
- 在vue的element图片的上传及回调
首先声明,本人用的是element组件写的图片的上传及回调,若非element本方法暂不支持. 下面开始正式讲图片的上传及回调.(本篇拒绝一切花里胡哨,都是干活,言辞粗糙,望请见谅) 1,elemen ...
- redis同步到磁盘
- 手把手教你安装 FastAdmin 到虚拟主机 (phpStudy)
手把手教你安装 FastAdmin 到虚拟主机 (phpStudy)原文: https://forum.fastadmin.net/thread/2524 下载 FastAdmin下载 FastAdm ...
- 《鸟哥的Linux私房菜:基础学习篇》读书笔记之第一部分
一.如何学习Linux 1. Linux基础知识 (1) 计算机概论与硬件相关知识. (2) 先从Linux的安装与命令学起. (3) Linux操作系统的基础技能.如用户/用户组.权限.程序等概念. ...
- Windows远程连接server(Linux系统)及可视化
方法1:命令行连接后使用server上安装好的可视化编辑器IDE: Step 1: 工具准备:putty.exe:Xming-6-9-0-31-setup.exe:Xming-fonts-7-7-0- ...
- HTTP请求方法:GET、HEAD、POST、PUT、DELETE、CONNECT、OPTIONS、TRACE 说明
平时的Rest开发,用到的都是GET,POST,PUT,DELETE类型的请求. 但Rest支持的请求类型不止前面4种,还有其他几种. 下面部分转自: https://www.html.cn/arch ...
- JDBCtemplete 模板
package com.augmentum.oes.common; import java.sql.Connection; import java.sql.PreparedStatement; imp ...
- Windows Eclipse Scala的入门HelloWorld
[学习笔记] Windows Eclipse Scala的入门HelloWorld 有关带scala版本的eclipse4.7的下载, 你可以直接去: http://scala-ide.org/dow ...
- Java--垃圾回收【转载】
一:垃圾回收机制的意义 java 语言中一个显著的特点就是引入了java回收机制,可以有效的防止内存泄露,有效的使用空闲的内存. 内存泄露:指该内存空间使用完毕后未回收,在不涉及复杂数据结构的一般情况 ...
- LRU算法简介
LRU是什么? 按照英文的直接原义就是Least Recently Used,最近最久未使用法,它是按照一个非常注明的计算机操作系统基础理论得来的:最近使用的页面数据会在未来一段时期内仍然被使用,已经 ...