很难找到spark-sql cli使用的教程,总结下
一、启动方法
/data/spark-1.4.0-bin-cdh4/bin/spark-sql --master spark://master:7077 --total-executor-cores 10 --executor-memory 1g --executor-cores 2 注:/data/spark-1.4.0-bin-cdh4/为spark的安装路径 /data/spark-1.4.0-bin-cdh4/bin/spark-sql –help 查看启动选项 --master MASTER_URL 指定master url
--executor-memory MEM 每个executor的内存,默认为1G
--total-executor-cores NUM 所有executor的总核数
-e <quoted-query-string> 直接执行查询SQL -f <filename> 以文件方式批量执行SQL 二、Spark sql对hive支持的功能 1、查询语句:SELECT GROUP BY ORDER BY CLUSTER BY SORT BY
2、hive操作运算:
1) 关系运算:= ==, <>, <, >, >=, <=
2) 算术运算:+, -, *, /, %
3) 逻辑运算:AND, &&, OR, ||
4) 复杂的数据结构
5) 数学函数:(sign, ln, cos, etc)
6) 字符串函数:
3、 UDF
4、 UDAF 5、 用户定义的序列化格式
6、join操作:JOIN {LEFT|RIGHT|FULL} OUTER JOIN LEFT SEMI JOIN CROSS JOIN
7、 unions操作:
8、 子查询: SELECT col FROM ( SELECT a + b AS col from t1) t2
9、Sampling
10、 Explain
11、 分区表
12、 视图
13、 hive ddl功能:CREATE TABLE、CREATE TABLE AS SELECT、ALTER TABLE 14、 支持的数据类型:TINYINT SMALLINT INT BIGINT BOOLEAN FLOAT DOUBLE STRING BINARY TIMESTAMPDATE ARRAY MAP STRUCT 三、Spark sql 在客户端编程方式进行查询数据
1、启动spark-shell
./spark-shell --master spark://master:7077 --total-executor-cores 10 --executor-memory 1g --executor-cores 2
2、编写程序
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
val df = sqlContext.read.json("../examples/src/main/resources/people.json")
查看所有数据:df.show()
查看表结构:df.printSchema()
只看name列:df.select("name").show()
对数据运算:df.select(df("name"), df("age") + 1).show()
过滤数据:df.filter(df("age") > 21).show() 分组统计:df.groupBy("age").count().show() 1、查询txt数据
import sqlContext.implicits._
case class Person(name: String, age: Int)
val people = sc.textFile("../examples/src/main/resources/people.txt").map(_.split(",")).map(p => Person(p(0), p(1).trim.toInt)).toDF()
people.registerTempTable("people")
val teenagers = sqlContext.sql("SELECT name, age FROM people WHERE age >= 13 AND age <= 19")
2、parquet文件
val df = sqlContext.read.load("../examples/src/main/resources/users.parquet")
3、hdfs文件 val df = sqlContext.read.load("hdfs://namenode.Hadoop:9000/user/hive/warehouse/spark_test.db/test_parquet/part-r-00001.gz.parquet")
4、保存查询结果数据
val df = sqlContext.read.load("../examples/src/main/resources/users.parquet") df.select("name", "favorite_color").write.save("namesAndFavColors.parquet“) 四、Spark sql性能调优 缓存数据表:sqlContext.cacheTable("tableName") 取消缓存表:sqlContext.uncacheTable("tableName") spark.sql.inMemoryColumnarStorage.compressedtrue 当设置为true时,Spark SQL将为基于数据统计信息的每列自动选择一个压缩算法。
spark.sql.inMemoryColumnarStorage.batchSize 10000 柱状缓存的批数据大小。更大的批数据可以提高内存的利用率以及压缩效率,但有OOMs的风险 转载注明出处

spark-sql cli 参数 及使用的更多相关文章

  1. SparkSQL使用之Spark SQL CLI

    Spark SQL CLI描述 Spark SQL CLI的引入使得在SparkSQL中通过hive metastore就可以直接对hive进行查询更加方便:当前版本中还不能使用Spark SQL C ...

  2. Spark SQL CLI 实现分析

    背景 本文主要介绍了Spark SQL里眼下的CLI实现,代码之后肯定会有不少变动,所以我关注的是比較核心的逻辑.主要是对照了Hive CLI的实现方式,比較Spark SQL在哪块地方做了改动,哪些 ...

  3. 6. 运行Spark SQL CLI

    Spark SQL CLI可以很方便的在本地运行Hive元数据服务以及从命令行执行任务查询.需要注意的是,Spark SQL CLI不能与Thrift JDBC服务交互.在Spark目录下执行如下命令 ...

  4. 第6章 运行Spark SQL CLI

    第6章 运行Spark SQL CLI Spark SQL CLI可以很方便的在本地运行Hive元数据服务以及从命令行执行查询任务.需要注意的是,Spark SQL CLI不能与Thrift JDBC ...

  5. spark-sql(spark sql cli)客户端集成hive

    1.安装hadoop集群 参考:http://www.cnblogs.com/wcwen1990/p/6739151.html 2.安装hive 参考:http://www.cnblogs.com/w ...

  6. Spark 官方文档(5)——Spark SQL,DataFrames和Datasets 指南

    Spark版本:1.6.2 概览 Spark SQL用于处理结构化数据,与Spark RDD API不同,它提供更多关于数据结构信息和计算任务运行信息的接口,Spark SQL内部使用这些额外的信息完 ...

  7. Spark SQL 官方文档-中文翻译

    Spark SQL 官方文档-中文翻译 Spark版本:Spark 1.5.2 转载请注明出处:http://www.cnblogs.com/BYRans/ 1 概述(Overview) 2 Data ...

  8. Spark SQL 之 Performance Tuning & Distributed SQL Engine

    Spark SQL 之 Performance Tuning & Distributed SQL Engine 转载请注明出处:http://www.cnblogs.com/BYRans/ 缓 ...

  9. Apache Spark 2.2.0 中文文档 - Spark SQL, DataFrames and Datasets Guide | ApacheCN

    Spark SQL, DataFrames and Datasets Guide Overview SQL Datasets and DataFrames 开始入门 起始点: SparkSession ...

  10. Spark SQL官方文档阅读--待完善

    1,DataFrame是一个将数据格式化为列形式的分布式容器,类似于一个关系型数据库表. 编程入口:SQLContext 2,SQLContext由SparkContext对象创建 也可创建一个功能更 ...

随机推荐

  1. UDP通信简单 小结

    Android手机版和电脑版 效果图: 通过WiFi局域网 电脑和手机连接通信. 电脑版本和手机版本使用了相同的消息发送头协议, 可以相互接收消息. 若有做的不好的地方还希望大家指导一下. 1. 手机 ...

  2. TCP/IP协议栈各个层次及分别的功能

    网络接口层:这是协议栈的最低层,对应OSI的物理层和数据链路层,主要完成数据帧的实际发送和接收.网络层:处理分组在网络中的活动,例如路由选择和转发等,这一层主要包括IP协议.ARP.ICMP协议等.传 ...

  3. sqlserver关于发布订阅replication_subscription的总结

    (转载)sqlserver关于发布订阅replication_subscription的总结 来自 “ ITPUB博客 ” ,原文地址:http://blog.itpub.net/30126024/v ...

  4. Mycat1.6启动报NumberFormatException解决方案(server内存太大)

    https://blog.csdn.net/lijieshare/article/details/84826280 2019-09-02 18:28:27,829 [ERROR][main] 2019 ...

  5. java 获取视频时间

    //先将视频保存到项目生成临时文件,获取时长后删除临时文件 // 使用fastdfs进行文件上传 @RequestMapping("/uploadVideoToFast") @Re ...

  6. Java SE 核心 I

    Java SE 核心 I 1.Object类 在 Java 继承体系中,java.lang.Object 类位于顶端(是所有对象的直接或间接父类).如果一个类没有写 extends 关键字声明其父类, ...

  7. DNS负载均衡与NGINX负载均衡策略

    负载均衡是指的是把请求均匀的分摊到多个服务器上处理.一般常见的负载均衡有两种:①客户端与反向代理服务器之间的DNS负载均衡②反向代理服务器与应用服务器之间的负载均衡(这种负载均衡有很多,可以是webl ...

  8. Hive(七)Hive参数操作和运行方式

    Hive参数操作和运行方式 1.Hive参数操作 1.hive参数介绍 ​ hive当中的参数.变量都是以命名空间开头的,详情如下表所示: 命名空间 读写权限 含义 hiveconf 可读写 hive ...

  9. Elasticsearch中Mapping

    映射(Mapping) 概念:创建索引时,可以预先定义字段的类型以及相关属性.从而使得索引建立得更加细致和完善.如果不预先设置映射,会自动识别输入的字段类型. 官方文档(字段数据类型):https:/ ...

  10. “联邦对抗技术大赛”9月开战 微众银行呼唤开发者共同“AI创新”

    “联邦对抗技术大赛”9月开战  微众银行呼唤开发者共同“AI创新”   从<第五元素>中的智能系统到<超体>中的信息操控,在科幻电影中人工智能已经发展到了极致.而在现实中,目前 ...