BZOJ1123 BLO
割点的好题。
联通图,难度降低。首先对于一个点,如果他不是割点,那它的贡献是2*(n-1),就是任何一个其他节点都少了正反两个数对,这个看样例可以看出来。
如果它是一个割点,去掉他以后会出现若干个联通块,而这些联通块两两之间不相连,把它们的大小两两相乘即可。
我们知道,在进行tarjan时会跑出一颗搜索树,我们直接记size[x]表示以x为根节点的子树大小,在找到一个割点时,low值大于dfn[x]的子树们各自为家,剩下的会构成另一棵大的子树。这样的话,根据(乘法结合律)原理即可得出:
ans[x]=size[s1]*(n-size[s1])+size[s2]*(n-size[s2])+……+1*(n-1)+(n-1-∑k=1->tsize[sk])*(1+∑k=1->tsize[sk]) (抄式子就是爽)。
一开始NC了,把sum放判断外面了,那这样更出来的sum就不是能作出上式贡献的size了。
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<stack>
#include<set>
#include<map>
using namespace std;
int read(){
int sum=,f=;char x=getchar();
while(x<''||x>''){
if(x=='-') f=-;
x=getchar();
}while(x>=''&&x<=''){
sum=sum*+x-'';
x=getchar();
}return sum*f;
}
struct EDGE{
int ed,nex;
}edge[];int first[],num;
int n,m,ord,root=;
int dfn[],low[];
bool cut[];
long long ans[],size[];
void add(int st,int ed){
edge[++num].ed=ed;
edge[num].nex=first[st];
first[st]=num;
}
void tarjan(int x){
dfn[x]=low[x]=++ord;
size[x]=;
int child=,sum=;
for(int i=first[x];i;i=edge[i].nex){
int y=edge[i].ed;
if(!dfn[y]){
tarjan(y);
size[x]+=size[y];
low[x]=min(low[x],low[y]);
if(low[y]>=dfn[x]){
child++;
ans[x]+=1ll*size[y]*(n-size[y]);
sum+=size[y];
}
}else low[x]=min(low[x],dfn[y]);
}if((x!=root&&child>)||(x==root&&child>=))
/*cout<<"cut is "<<x<<endl,*/ ans[x]+=1ll*(n--sum)*(sum+)+n-;
else ans[x]=*(n-);
}
int main(){
n=read();m=read();
for(int i=,x,y;i<=m;i++){
x=read();y=read();
add(x,y);add(y,x);
}
tarjan(root);
/* for(int i=1;i<=n;i++)
cout<<size[i]<<" ";cout<<endl;*/
for(int i=;i<=n;i++)
printf("%lld\n",ans[i]);
return ;
}
BZOJ1123 BLO的更多相关文章
- 割顶树 BZOJ1123 BLO
无向图中,求去掉点x[1,n]后每个联通块的大小. 考虑tarjan求bcc的dfs树,对于每个点u及其儿子v,若low[v]<prv[u],则v对u的父亲联通块有贡献,否则对u的子树有贡献.每 ...
- 有关图的连通性的Tarjan算法
割点与桥 在一个无向连通图中,若将某个点及其相连的边删除后,图就不连通了,则这样的点被称为割点. 在一个无向连通图中,若将某条边删除后,图就不连通了,则这样的边被称为割边,即桥. 在一张图中求出割点或 ...
- 【BZOJ-1123】BLO Tarjan 点双连通分量
1123: [POI2008]BLO Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 970 Solved: 408[Submit][Status][ ...
- BZOJ1123: [POI2008]BLO
1123: [POI2008]BLO Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 614 Solved: 235[Submit][Status] ...
- 【bzoj1123】BLO
1123: [POI2008]BLO Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2222 Solved: 1090[Submit][Status ...
- 【dfs+连通分量】Bzoj1123 POI2008 BLO
Description Byteotia城市有n个 towns m条双向roads. 每条 road 连接 两个不同的 towns ,没有重复的road. 所有towns连通. Input 输入n&l ...
- BLO(bzoj1123)
Description Byteotia城市有n个 towns, m条双向roads. 每条 road 连接 两个不同的 towns ,没有重复的road. 所有towns连通. Input 输入n和 ...
- BZOJ1123:[POI2008]BLO(双连通分量)
Description Byteotia城市有n个 towns m条双向roads. 每条 road 连接 两个不同的 towns ,没有重复的road. 所有towns连通. Input 输入n&l ...
- 【bzoj1123】[POI2008]BLO DFS树
题目描述 Byteotia城市有n个 towns m条双向roads. 每条 road 连接 两个不同的 towns ,没有重复的road. 所有towns连通. 输入 输入n<=100000 ...
随机推荐
- Func<>委托、扩展方法、yield、linq ForEach综合运用
1.先定义一个Model类 public class P1 { public string name { get; set; } public int age ...
- 数组去重-----js 判断字符串中是否包含某个字符串indexOf
判断obj对象是否在arr数组里面,是返回true const dealArray = (arr, obj) => { Array.prototype.S = String.fromCharCo ...
- DevOps与Kubernetes 、容器的关系
近两年,随着容器.Kubernetes 等技术的兴起,DevOps 这个概念被广泛提及并被大量使用. 本文将会从以下几个方面着手,结合实验展现的方式,让读者真正理解 DevOps 的含义. DevOp ...
- Struts配置文件
本章节将带你学习Struts2 应用程序所需的基本配置.在这里可以看到哪些将被配置到一些重要的配置文件中:web.xml.struts.xml.struts-config.xml以及struts.pr ...
- hbase shell 基本操作
hbase shell 基本操作 启动HBASE [hadoop@master ~]$hbase shell 2019-01-24 13:53:59,990 WARN [main] ut ...
- Apache Shiro漏洞复现
利用burp dns进行检测,脚本如下: import sys import uuid import base64 import subprocess from Crypto.Cipher impor ...
- mac 下的操作
nodejs在Mac下的卸载 在 node 官网上下载的安装包,用安装包安装的node.应该可以用一下命令行卸载: 在终端输入以下命令: sudo rm -rf /usr/local/{bin/{no ...
- 第十五章、python中的进程操作-开启多进程
目录 第十五章.python中的进程操作-开启多进程 一.multprocess模块 二.multprocess.process模块 三.Process()对象方法介绍 四.Process()对象属性 ...
- DataTable To List<T> DataTable Linq学习笔记
LINQ 查询适用于实现的数据源 IEnumerable<T>接口或System.Query.IQueryable接口. DataTable类默认是没有实现以上接口的. 所以要在DataT ...
- KMP算法查找字符串
假设长字符串为t,短字符串为p.为了进行KMP匹配,首先需要计算字符串p的next数组,后面实现了计算该数组的函数void KmpGenNext(char* p, int* next).对于”abca ...