AT3913 XOR Tree(巧妙转换+状压dp)
Step1:首先定义一个点的权值为与其相连边的异或和。那么修改一条路径,权值改变的只有两个端点。边权都为0和点权都为0实质相同。
Step2:那么现在和树的结构就没有什么关系了。每次选两个点,然后同时异或上一个值。求最小次数。
Step3:首先权值为0的不用修改了,贪心先把权值一样的两两分组。那么就会剩下至多15个数。因为只有15个数,考虑状压。如果几个数异或值为0,那么显然存在方案n-1次全部消完。那么就可以子集转移。
Code
#include<bits/stdc++.h>
#define LL long long
#define RG register
using namespace std;
template<class T> inline void read(T &x) {
x = 0; RG char c = getchar(); bool f = 0;
while (c != '-' && (c < '0' || c > '9')) c = getchar(); if (c == '-') c = getchar(), f = 1;
while (c >= '0' && c <= '9') x = x*10+c-48, c = getchar();
x = f ? -x : x;
return ;
}
template<class T> inline void write(T x) {
if (!x) {putchar(48);return ;}
if (x < 0) x = -x, putchar('-');
int len = -1, z[20]; while (x > 0) z[++len] = x%10, x /= 10;
for (RG int i = len; i >= 0; i--) putchar(z[i]+48);return ;
}
const int N = 1e5 + 10, Limit = 1 << 15;
int val[N], cnt[15], res[Limit], f[Limit];
int main() {
int n;
read(n);
for (int i = 1; i < n; i++) {
int x, y, z; read(x), read(y), read(z);
x++; y++; val[x] ^= z; val[y] ^= z;
}
for (int i = 1; i <= n; i++) cnt[val[i]]++;
int ans = 0, S = 0;
for (int i = 1; i <= 15; i++)
ans += cnt[i] / 2, S |= (cnt[i] & 1) << (i - 1);
for (int i = 1, cnt; i < Limit; i++) {
cnt = 0;
for (int j = 1; j <= 15; j++)
if ((i >> (j - 1)) & 1) res[i] ^= j, cnt++;
f[i] = cnt - 1;
}
for (int i = 1; i < Limit; i++)
if (!res[i])
for (int j = i; j; j = (j - 1) & i)
if (!res[j]) f[i] = min(f[i], f[j] + f[i ^ j]);
printf("%d\n", ans + f[S]);
return 0;
}
AT3913 XOR Tree(巧妙转换+状压dp)的更多相关文章
- [Luogu P3959] 宝藏 (状压DP+枚举子集)
题面 传送门:https://www.luogu.org/problemnew/show/P3959 Solution 这道题的是一道很巧妙的状压DP题. 首先,看到数据范围,应该状压DP没错了. 根 ...
- 【思维题 状压dp】APC001F - XOR Tree
可能算是道中规中矩的套路题吧…… Time limit : 2sec / Memory limit : 256MB Problem Statement You are given a tree wit ...
- [多校联考2019(Round 5 T1)] [ATCoder3912]Xor Tree(状压dp)
[多校联考2019(Round 5)] [ATCoder3912]Xor Tree(状压dp) 题面 给出一棵n个点的树,每条边有边权v,每次操作选中两个点,将这两个点之间的路径上的边权全部异或某个值 ...
- Codeforces 429C Guess the Tree(状压DP+贪心)
吐槽:这道题真心坑...做了一整天,我太蒻了... 题意 构造一棵 $ n $ 个节点的树,要求满足以下条件: 每个非叶子节点至少包含2个儿子: 以节点 $ i $ 为根的子树中必须包含 $ c_i ...
- HDU 6984 - Tree Planting(数据分治+状压 dp)
题面传送门 傻逼卡常屑题/bs/bs,大概现场过得人比较少的原因就是它比较卡常罢(Fog 首先对于这样的题我们很难直接维护,不过注意到这个 \(n=300\) 给得很灵性,\(k\) 比较小和 \(k ...
- 「算法笔记」状压 DP
一.关于状压 dp 为了规避不确定性,我们将需要枚举的东西放入状态.当不确定性太多的时候,我们就需要将它们压进较少的维数内. 常见的状态: 天生二进制(开关.选与不选.是否出现--) 爆搜出状态,给它 ...
- BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]
1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3336 Solved: 1936[Submit][ ...
- 【62测试】【状压dp】【dfs序】【线段树】
第一题: 给出一个长度不超过100只包含'B'和'R'的字符串,将其无限重复下去. 比如,BBRB则会形成 BBRBBBRBBBRB 现在给出一个区间[l,r]询问该区间内有多少个字符'B'(区间下标 ...
- POJ 1185 炮兵阵地(状压DP)
炮兵阵地 Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 26426 Accepted: 10185 Descriptio ...
随机推荐
- 创客课堂——Scratch实例演示
大家好,这里是蓝精灵创客公益课堂,我是蓝老师. 前两期我们认识了Scratch的界面和菜单功能,本期我们就可以根据提示的步骤,学习一些Scratch的基本操作. 下面就开始今天学习内容 一.开始移动 ...
- rgba()和opacity的比较(转)
https://blog.csdn.net/u014150409/article/details/44906767
- (一)Maven基础及第一个Maven工程
一.Maven介绍 ANT/Maven/gradle是一个项目管理工具,它包含了一项目对象模型(Project Object Model),一组标准集合,一个项目生命周期(Project Lifecy ...
- centos禁止root用户ssh远程登录
首先,我们要以root身份登录远程主机 vim指令编辑ssh配置文件,如 vim /etc/ssh/sshd_config 查找PermitRootLogin,把yes改为no 修改完配置需要重启ss ...
- 通过Nginx统计网站的PV、UV、IP
转载:通过Nginx统计网站的PV.UV.IP 概念 UV:独立访客:以cookie为依据,假设一台电脑装有3个不同的浏览器,分别打开同一个页面,将会产生3个UV.PV:访问量:页面每访问或刷新一次, ...
- impala 中SQL的优化方法
1.取流水表的数据时,如果是使用全部分区数据,不能从SA层数据取数,需要改从SH层取数,因为SH层为parquet存储,查询性能较好. 2.对于脚本中使用的临时表,如果存在以下情况需要进行统计表信息 ...
- bond模式详解
目录 bond模式详解 一.什么是bond? 二.为什么使用bond? 三.bond模式配置 1.配置linux bond 2.将bond绑定到ovs上面(可选) 四.bond模式 1.模式0 2.模 ...
- 19C imp 导入合并表空间
因为项目需要从9i 导数据到18C,所以发现如下特性 1.18C imp 导入数据,如果表空间在目标库没有,会将表导入到用户默认表空间 2.18C imp 导入数据,如果表空间在目标库有,但缺少权限. ...
- Computer Vision_33_SIFT:SAR-SIFT: A SIFT-LIKE ALGORITHM FOR SAR IMAGES——2015
此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...
- Linux学习之六-Linux系统的基础优化
Linux系统的基础优化 何谓'优化'.顾名思义,优化就是采取某些措施使某个东西或者某事物变得更加优异,出色.对于Linux而言,在初期安装好系统之后,也需要对其进行一定的基础优化,可分为安全上的优化 ...