Step1:首先定义一个点的权值为与其相连边的异或和。那么修改一条路径,权值改变的只有两个端点。边权都为0和点权都为0实质相同。

Step2:那么现在和树的结构就没有什么关系了。每次选两个点,然后同时异或上一个值。求最小次数。

Step3:首先权值为0的不用修改了,贪心先把权值一样的两两分组。那么就会剩下至多15个数。因为只有15个数,考虑状压。如果几个数异或值为0,那么显然存在方案n-1次全部消完。那么就可以子集转移。

Code

#include<bits/stdc++.h>

#define LL long long
#define RG register using namespace std;
template<class T> inline void read(T &x) {
x = 0; RG char c = getchar(); bool f = 0;
while (c != '-' && (c < '0' || c > '9')) c = getchar(); if (c == '-') c = getchar(), f = 1;
while (c >= '0' && c <= '9') x = x*10+c-48, c = getchar();
x = f ? -x : x;
return ;
}
template<class T> inline void write(T x) {
if (!x) {putchar(48);return ;}
if (x < 0) x = -x, putchar('-');
int len = -1, z[20]; while (x > 0) z[++len] = x%10, x /= 10;
for (RG int i = len; i >= 0; i--) putchar(z[i]+48);return ;
}
const int N = 1e5 + 10, Limit = 1 << 15;
int val[N], cnt[15], res[Limit], f[Limit];
int main() {
int n;
read(n);
for (int i = 1; i < n; i++) {
int x, y, z; read(x), read(y), read(z);
x++; y++; val[x] ^= z; val[y] ^= z;
}
for (int i = 1; i <= n; i++) cnt[val[i]]++;
int ans = 0, S = 0;
for (int i = 1; i <= 15; i++)
ans += cnt[i] / 2, S |= (cnt[i] & 1) << (i - 1);
for (int i = 1, cnt; i < Limit; i++) {
cnt = 0;
for (int j = 1; j <= 15; j++)
if ((i >> (j - 1)) & 1) res[i] ^= j, cnt++;
f[i] = cnt - 1;
}
for (int i = 1; i < Limit; i++)
if (!res[i])
for (int j = i; j; j = (j - 1) & i)
if (!res[j]) f[i] = min(f[i], f[j] + f[i ^ j]);
printf("%d\n", ans + f[S]);
return 0;
}

AT3913 XOR Tree(巧妙转换+状压dp)的更多相关文章

  1. [Luogu P3959] 宝藏 (状压DP+枚举子集)

    题面 传送门:https://www.luogu.org/problemnew/show/P3959 Solution 这道题的是一道很巧妙的状压DP题. 首先,看到数据范围,应该状压DP没错了. 根 ...

  2. 【思维题 状压dp】APC001F - XOR Tree

    可能算是道中规中矩的套路题吧…… Time limit : 2sec / Memory limit : 256MB Problem Statement You are given a tree wit ...

  3. [多校联考2019(Round 5 T1)] [ATCoder3912]Xor Tree(状压dp)

    [多校联考2019(Round 5)] [ATCoder3912]Xor Tree(状压dp) 题面 给出一棵n个点的树,每条边有边权v,每次操作选中两个点,将这两个点之间的路径上的边权全部异或某个值 ...

  4. Codeforces 429C Guess the Tree(状压DP+贪心)

    吐槽:这道题真心坑...做了一整天,我太蒻了... 题意 构造一棵 $ n $ 个节点的树,要求满足以下条件: 每个非叶子节点至少包含2个儿子: 以节点 $ i $ 为根的子树中必须包含 $ c_i ...

  5. HDU 6984 - Tree Planting(数据分治+状压 dp)

    题面传送门 傻逼卡常屑题/bs/bs,大概现场过得人比较少的原因就是它比较卡常罢(Fog 首先对于这样的题我们很难直接维护,不过注意到这个 \(n=300\) 给得很灵性,\(k\) 比较小和 \(k ...

  6. 「算法笔记」状压 DP

    一.关于状压 dp 为了规避不确定性,我们将需要枚举的东西放入状态.当不确定性太多的时候,我们就需要将它们压进较少的维数内. 常见的状态: 天生二进制(开关.选与不选.是否出现--) 爆搜出状态,给它 ...

  7. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

  8. 【62测试】【状压dp】【dfs序】【线段树】

    第一题: 给出一个长度不超过100只包含'B'和'R'的字符串,将其无限重复下去. 比如,BBRB则会形成 BBRBBBRBBBRB 现在给出一个区间[l,r]询问该区间内有多少个字符'B'(区间下标 ...

  9. POJ 1185 炮兵阵地(状压DP)

    炮兵阵地 Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 26426   Accepted: 10185 Descriptio ...

随机推荐

  1. 如何使用JavaScript实现纯前端读取和导出excel文件(转)

    转自小茗同学博客:https://www.cnblogs.com/liuxianan/p/js-excel.html js-xlsx 介绍 由SheetJS出品的js-xlsx是一款非常方便的只需要纯 ...

  2. git 去除版本控制

    git会进入当前文件目录, 然后执行如下命令: find . -name ".git" | xargs rm -Rf 该项目就会去除git的版本控制了.再修改的话也不会影响git的 ...

  3. Shell脚本基础学习

    Shell脚本基础学习 当你在类Unix机器上编程时, 或者参与大型项目如k8s等, 某些框架和软件的安装都是使用shell脚本写的. 学会基本的shell脚本使用, 让你走上人生巅峰, 才怪. 学会 ...

  4. Java BinarySearch

    Java BinarySearch /** * <html> * <body> * <P> Copyright 1994-2018 JasonInternation ...

  5. 一个因MySQL大小写敏感导致的问题

    做一个积极的人 编码.改bug.提升自己 我有一个乐园,面向编程,春暖花开! 00 MYSQL对大小写敏感 见字如面,见标题知内容.你有遇到过因为MYSQL对大小写敏感而被坑的体验吗? 之前看过阿里巴 ...

  6. opencv-02--图像的邻域操作

    图像的邻域操作 很多时候,我们对图像处理时,要考虑它的邻域,比如3*3是我们常用的,这在图像滤波.去噪中最为常见,下面我们介绍如果在一次图像遍历过程中进行邻域的运算. 下面我们进行一个简单的滤波操作, ...

  7. centOS 7单机安装 kong

    kong 网关 单机部署 环境:centOS 7:依赖:jdk1.8 安装内容:postgresql数据库, kong 网关,nodeJs和npm,kong Dashboard (可视化管理界面) 版 ...

  8. S2-019、S2-020

    前言 “Struts2系列起始篇”是我整各系列的核心,希望大家能花些时间先看看. 正文 我发现关于一些早期的Struts2的漏洞,网上的分析文章并不多,不知道是不是我打开浏览器的方式不对,唯一看到的两 ...

  9. 一个SAP开发人员的养蚕流水帐

    Jerry打算以此文来给汪子熙全家进行了一个多月的养蚕经历画上一个圆满的句号. 南方长大的80后,对蚕应该不会太陌生.大家还记得你们小时候学过的课文<蚕姑娘>么?课文开头是这样的: 春天天 ...

  10. MySQL基础部分(一)

    一.MySQL简介 1.什么是数据库 ? 数据库(Database)是按照数据结构来组织.存储和管理数据的仓库,它产生于距今六十多年前,随着信息技术和市场的发展,特别是二十世纪九十年代以后,数据管理不 ...