title: 【概率论】3-6:条件分布(Conditional Distributions Part II)

categories:

  • Mathematic
  • Probability

    keywords:
  • Multiplication Rule for Distributions
  • 乘法法则
  • Bayes’ Theorem
  • 贝叶斯理论
  • Law of Total Probability for Random Variables
  • 随机变量的全概率公式

    toc: true

    date: 2018-03-12 09:06:00



Abstract: 本文介绍联合分布的构建,也就是条件分布部分的扩展和应用

Keywords: 乘法法则,贝叶斯定理,随机变量的全概率公式

开篇废话

今天这篇是上一篇的后半部分,其实应该是一篇,但是上一篇由于长时间没写博客导致写作速度下降,所以不得已分成两篇,最近除了写概率的博客,还有数学分析的博客,CUDA系列的也在更新,所以有点要累吐血的感觉,同时还在学习数理统计,数理统计用的是陈希孺先生的概率论与数理统计的数理统计部分,看了二十几页,发现他说的90%我基本都能看懂,但是真的不知道为啥上大学的时候,有老师讲还一脸懵x,是我智商进化了?还是书本难度降低了?这个就不得而知了,除非把大学教材重新拿过来比较一下,那就有点浪费时间了,我的目标是学好数学去研究机器学习,而不是做教材点评,难道不是么?

Multiplication Rule for Conditional Probability

乘法法则我们在事件的概率部分学过了传送到条件概率,也是通过条件概率过度出来的,并且乘法法则相对于条件概率适用面更广,因为条件概率有除法计算,所以必然会对概率为0的分母有所忌惮,但是乘法法则无所谓,0可以随便来:

Pr(A∣B)=Pr(A,B)Pr(B) for Pr(B)≠0Pr(A,B)=Pr(A∣B)×Pr(B) for Pr(B)≥0
Pr(A|B)=\frac{Pr(A,B)}{Pr(B)} \text{ for } Pr(B)\neq 0\\
Pr(A,B)=Pr(A|B)\times Pr(B) \text{ for } Pr(B)\geq 0
Pr(A∣B)=Pr(B)Pr(A,B)​ for Pr(B)̸​=0Pr(A,B)=Pr(A∣B)×Pr(B) for Pr(B)≥0

根据随机变量的定义,我们知道随机变量是个函数,可以把事件映射成数字,如果我们将上面的条件概率转化成条件分布,应该怎么转呢?我们先看个例子

前面我们说过所有概率都是条件概率只是有些条件在题设中已经明确固定了,我们就没有必要再分布中再反复的体现了。

举个

【概率论】3-6:条件分布(Conditional Distributions Part II)的更多相关文章

  1. 【概率论】3-6:条件分布(Conditional Distributions Part I)

    title: [概率论]3-6:条件分布(Conditional Distributions Part I) categories: Mathematic Probability keywords: ...

  2. 【概率论】3-7:多变量分布(Multivariate Distributions Part II)

    title: [概率论]3-7:多变量分布(Multivariate Distributions Part II) categories: Mathematic Probability keyword ...

  3. 【概率论】5-7:Gama分布(The Gamma Distributions Part II)

    title: [概率论]5-7:Gama分布(The Gamma Distributions Part II) categories: - Mathematic - Probability keywo ...

  4. 【概率论】5-6:正态分布(The Normal Distributions Part II)

    title: [概率论]5-6:正态分布(The Normal Distributions Part II) categories: - Mathematic - Probability keywor ...

  5. 【概率论】4-7:条件期望(Conditional Expectation)

    title: [概率论]4-7:条件期望(Conditional Expectation) categories: - Mathematic - Probability keywords: - Exp ...

  6. 【概率论】3-2:连续分布(Continuous Distributions)

    title: [概率论]3-2:连续分布(Continuous Distributions) categories: Mathematic Probability keywords: Continuo ...

  7. 【概率论】2-1:条件概率(Conditional Probability)

    title: [概率论]2-1:条件概率(Conditional Probability) categories: Mathematic Probability keywords: Condition ...

  8. infer.net 入门2 用一个侦探故事来讲解,通俗易懂

    The results look OK, but how do you know that you aren’t missing something. Would a more sophisticat ...

  9. Markov Random Fields

    We have seen that directed graphical models specify a factorization of the joint distribution over a ...

随机推荐

  1. Spring (2)框架

    Spring第二天笔记 1. 使用注解配置Spring入门 1.1. 说在前面 学习基于注解的IoC配置,大家脑海里首先得有一个认知,即注解配置和xml配置要实现的功能都是一样的,都是要降低程序间的耦 ...

  2. Centos6 yum安装nginx

    1.Centos6系统库中默认是没有nginx的rpn包的,所以我们需要先更新下rpm依赖库 (1):使用yum安装nginx,安装nginx库 rpm -Uvh http://nginx.org/p ...

  3. 怎样理解Object.create()方法

    Object.create()是一个用于生成新的对象的方法, 特点是: 1. Object.create()接收的第一个参数对象将会作为待生成的新对象的原型对象; 2. Object.create() ...

  4. 简单二次封装的Golang图像处理库:图片裁剪

    简单二次封装的Golang图像处理库:图片裁剪 一.功能 Go语言下的官方图像处理库 简单封装后对jpg和png图像进行缩放/裁剪的库 二.使用说明 1.首先下载 go get -v -u githu ...

  5. 整理一下rmq

    rmq(int i,int j,int a)表示查询a数组i到j区间的内容中的最大/最小值核心部分为二分区间以及st预处理算法 先说st预处理算法吧 int dp[i][j];//表示以i开始 长度为 ...

  6. 体验三大JavaScript文件上传库(Uppy.js/Filepond/Dropzone)

    最近发现了一个高颜值的前端上传组件Uppy.js,立即上手体验了一波,感觉还不错.然后又看到同类型的Filepond以及Dropzone.js,对比体验了一下,感觉都很优秀,但是在体验过程中,都遇到了 ...

  7. Docker多阶段构建实战(multi-stage builds)

    在编写Dockerfile构建docker镜像时,常遇到以下问题: RUN命令会让镜像新增layer,导致镜像变大,虽然通过&&连接多个命令能缓解此问题,但如果命令之间用到docker ...

  8. 最简单的理解 建立TCP连接 三次握手协议

     最简单的理解一:建立TCP连接:三次握手协议    客户端:我要对你讲话,你能听到吗:服务端:我能听到:而且我也要对你讲话,你能听到吗:客户端:我也能听到.…….互相开始通话…….. 二:关闭TCP ...

  9. 华为Python面试题

    最近在网上偶然看到此题: 有两个序列a,b,大小都为n,序列元素的值任意整形数,无序: 要求:通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小 经过一番思索,我试着用穷举法 ...

  10. docker安装与常规使用 && dockerfile编写springbootdemo镜像

    dockerfile教程参考 https://blog.csdn.net/qq_33256688/article/details/80319673   docker 创建容器命令: docker ru ...