例题:假设你获取了250部电影的时长(列表a中),希望统计出这些电影时长的分布状态(比如时长为100分钟到120分钟电影的数量,出现的频率)等信息,你应该如何呈现这些数据?

一些概念及问题:

  • 把数据分为多少组进行统计
  • 组数要适当,太少会有较大的统计误差,太多规律不明显
  • 组数:将数据分组,共分为多少组
  • 组距:指每个小组的两个端点的距离
  • 组数:极差 / 组距,也就是 (最大值-最小值)/ 组距  
  • 频数分布直方图与频率分布直方图,hist()方法需增加参数normed
  • 注意:一般来说能够使用plt.hist()方法绘制的直方图是那些没有统计过的数据,如果是统计过的数据为了能绘制像直方图一样的效果,可以使用条形图plt.bar()方法来绘制,不过中间过程就会稍微麻烦一些
 from matplotlib import pyplot as plt
import matplotlib font = {'family': 'MicroSoft YaHei'}
matplotlib.rc('font', **font) # 使支持中文 a = [131, 98, 125, 131, 124, 139, 131, 117, 128, 108, 135, 138, 131, 102, 107, 114, 119, 128, 121, 142, 127, 130, 124,
101, 110, 116, 117, 110, 128, 128, 115, 99, 136, 126, 134, 95, 138, 117, 111, 78, 132, 124, 113, 150, 110, 117, 86,
95, 144, 105, 126, 130, 126, 130, 126, 116, 123, 106, 112, 138, 123, 86, 101, 99, 136, 123, 117, 119, 105, 137,
123, 128, 125, 104, 109, 134, 125, 127, 105, 120, 107, 129, 116, 108, 132, 103, 136, 118, 102, 120, 114, 105, 115,
132, 145, 119, 121, 112, 139, 125, 138, 109, 132, 134, 156, 106, 117, 127, 144, 139, 139, 119, 140, 83, 110, 102,
123, 107, 143, 115, 136, 118, 139, 123, 112, 118, 125, 109, 119, 133, 112, 114, 122, 109, 106, 123, 116, 131, 127,
115, 118, 112, 135, 115, 146, 137, 116, 103, 144, 83, 123, 111, 110, 111, 100, 154, 136, 100, 118, 119, 133, 134,
106, 129, 126, 110, 111, 109, 141, 120, 117, 106, 149, 122, 122, 110, 118, 127, 121, 114, 125, 126, 114, 140, 103,
130, 141, 117, 106, 114, 121, 114, 133, 137, 92, 121, 112, 146, 97, 137, 105, 98, 117, 112, 81, 97, 139, 113, 134,
106, 144, 110, 137, 137, 111, 104, 117, 100, 111, 101, 110, 105, 129, 137, 112, 120, 113, 133, 112, 83, 94, 146,
133, 101, 131, 116, 111, 84, 137, 115, 122, 106, 144, 109, 123, 116, 111, 111, 133, 150]
# 计算组数
d = 3 # 组距
num_bins = (max(a) - min(a)) // d # 计算组距的公式 plt.figure(figsize=(20, 8), dpi=80) # 设置图片大小
plt.hist(a, num_bins) # 加上normed=True属性之后变为频率分布直方图 # 设置x轴的刻度
plt.xticks(range(min(a), max(a)+d, d)) plt.grid(alpha=0.3) plt.show()

matplotlib库之直方图的更多相关文章

  1. Python的Matplotlib库简述

    Matplotlib 库是 python 的数据可视化库import matplotlib.pyplot as plt 1.字符串转化为日期 unrate = pd.read_csv("un ...

  2. Python的工具包[2] -> matplotlib图像绘制 -> matplotlib 库及使用总结

    matplotlib图像绘制 / matplotlib image description  目录 关于matplotlib matplotlib库 补充内容 Figure和AxesSubplot的生 ...

  3. Matplotlib库常用函数大全

    Python之Matplotlib库常用函数大全(含注释) plt.savefig(‘test’, dpi = 600) :将绘制的图画保存成png格式,命名为 test plt.ylabel(‘Gr ...

  4. Python之matplotlib库学习:实现数据可视化

    1. 安装和文档 pip install matplotlib 官方文档 为了方便显示图像,还使用了ipython qtconsole方便显示.具体怎么弄网上搜一下就很多教程了. pyplot模块是提 ...

  5. Python基础——matplotlib库的使用与绘图可视化

    1.matplotlib库简介: Matplotlib 是一个 Python 的 2D绘图库,开发者可以便捷地生成绘图,直方图,功率谱,条形图,散点图等. 2.Matplotlib 库使用: 注:由于 ...

  6. 在Ubuntu 14.04 64bit上安装numpy和matplotlib库

    原文:http://blog.csdn.net/tao_627/article/details/44004541 按照这个成功安装! 机器学习是数据挖掘的一种实现形式,在学习<机器学习实战> ...

  7. 数据分析与展示——Matplotlib库入门

    Matplotlib库入门 Matplotlib库介绍 Matliotlib库是Python优秀的数据可视化第三方库. Matliotlib库的效果见:http://matplotlib.org/ga ...

  8. matplotlib库的简单应用

    matplotlib库 import matplotlib.pyplot as plt import matplotlib matplotlib.rcParams['font.family']='Si ...

  9. 对matplotlib库的运用

    1.matplotlib库的运用效果图 绘制基本的三角函数                                                                        ...

随机推荐

  1. 深度学习笔记(十三)YOLO V3 (Tensorflow)

    [代码剖析]   推荐阅读! SSD 学习笔记 之前看了一遍 YOLO V3 的论文,写的挺有意思的,尴尬的是,我这鱼的记忆,看完就忘了  于是只能借助于代码,再看一遍细节了. 源码目录总览 tens ...

  2. 一 、Linux基础命令及使用帮助

    linux的哲学思想: 一切皆文件: 把几乎所有资源,包括硬件设备都组织为文件系统 由众多单一目的小程序组成:一个程序只实现一个功能,而且要做好 组合小程序完成复杂任务 尽量避免跟用户交互 目的:实现 ...

  3. 1 - ImageNet Classification with Deep Convolutional Neural Network (阅读翻译)

    ImageNet Classification with Deep Convolutional Neural Network 利用深度卷积神经网络进行ImageNet分类 Abstract We tr ...

  4. Java核心复习 —— ArrayList源码阅读

    一.ArrayList 介绍 ArrayList是List接口可变数组的实现. 特点 非线程安全 查找和修改效率高 二.ArrayList 使用方法 remove元素 @Test public voi ...

  5. 2018-2019-2 20165330《网络对抗技术》Exp10 Final 基于PowerShell的渗透实践

    目录 实验内容 实验步骤 实验中遇到的问题 实验总结与体会 实验内容 PoweShell简介 PowerShell入门学习 PowerShell渗透工具介绍 相关渗透实践分析 ms15-034之Pow ...

  6. 前端知识点回顾——Javascript篇(二)

    JavaScript的解析顺序 第一阶段:编译期 寻找关键字声明的变量.函数声明的变量,同时会对变量进行作用域的绑定 var声明的变量,在编译期会赋一个默认值undefined,变量提升的特性. ES ...

  7. C memcpy()用法

    https://blog.csdn.net/qq_21792169/article/details/50561570

  8. linux系统中的一些典型问题汇总

    一.文件系统破坏导致系统无法启动:Checking root filesystem/dev/sda6 contains a file system with errors,check forcedAn ...

  9. Nginx URL重写(rewrite)配置及信息详解

    URL重写有利于网站首选域的确定,对于同一资源页面多条路径的301重定向有助于URL权重的集中 Nginx URL重写(rewrite)介绍 和apache等web服务软件一样,rewrite的组要功 ...

  10. Nginx知识

    OpenResty最佳实践->location匹配规则传说中图片防盗链的爱恨情仇 ​