例题:假设你获取了250部电影的时长(列表a中),希望统计出这些电影时长的分布状态(比如时长为100分钟到120分钟电影的数量,出现的频率)等信息,你应该如何呈现这些数据?

一些概念及问题:

  • 把数据分为多少组进行统计
  • 组数要适当,太少会有较大的统计误差,太多规律不明显
  • 组数:将数据分组,共分为多少组
  • 组距:指每个小组的两个端点的距离
  • 组数:极差 / 组距,也就是 (最大值-最小值)/ 组距  
  • 频数分布直方图与频率分布直方图,hist()方法需增加参数normed
  • 注意:一般来说能够使用plt.hist()方法绘制的直方图是那些没有统计过的数据,如果是统计过的数据为了能绘制像直方图一样的效果,可以使用条形图plt.bar()方法来绘制,不过中间过程就会稍微麻烦一些
 from matplotlib import pyplot as plt
import matplotlib font = {'family': 'MicroSoft YaHei'}
matplotlib.rc('font', **font) # 使支持中文 a = [131, 98, 125, 131, 124, 139, 131, 117, 128, 108, 135, 138, 131, 102, 107, 114, 119, 128, 121, 142, 127, 130, 124,
101, 110, 116, 117, 110, 128, 128, 115, 99, 136, 126, 134, 95, 138, 117, 111, 78, 132, 124, 113, 150, 110, 117, 86,
95, 144, 105, 126, 130, 126, 130, 126, 116, 123, 106, 112, 138, 123, 86, 101, 99, 136, 123, 117, 119, 105, 137,
123, 128, 125, 104, 109, 134, 125, 127, 105, 120, 107, 129, 116, 108, 132, 103, 136, 118, 102, 120, 114, 105, 115,
132, 145, 119, 121, 112, 139, 125, 138, 109, 132, 134, 156, 106, 117, 127, 144, 139, 139, 119, 140, 83, 110, 102,
123, 107, 143, 115, 136, 118, 139, 123, 112, 118, 125, 109, 119, 133, 112, 114, 122, 109, 106, 123, 116, 131, 127,
115, 118, 112, 135, 115, 146, 137, 116, 103, 144, 83, 123, 111, 110, 111, 100, 154, 136, 100, 118, 119, 133, 134,
106, 129, 126, 110, 111, 109, 141, 120, 117, 106, 149, 122, 122, 110, 118, 127, 121, 114, 125, 126, 114, 140, 103,
130, 141, 117, 106, 114, 121, 114, 133, 137, 92, 121, 112, 146, 97, 137, 105, 98, 117, 112, 81, 97, 139, 113, 134,
106, 144, 110, 137, 137, 111, 104, 117, 100, 111, 101, 110, 105, 129, 137, 112, 120, 113, 133, 112, 83, 94, 146,
133, 101, 131, 116, 111, 84, 137, 115, 122, 106, 144, 109, 123, 116, 111, 111, 133, 150]
# 计算组数
d = 3 # 组距
num_bins = (max(a) - min(a)) // d # 计算组距的公式 plt.figure(figsize=(20, 8), dpi=80) # 设置图片大小
plt.hist(a, num_bins) # 加上normed=True属性之后变为频率分布直方图 # 设置x轴的刻度
plt.xticks(range(min(a), max(a)+d, d)) plt.grid(alpha=0.3) plt.show()

matplotlib库之直方图的更多相关文章

  1. Python的Matplotlib库简述

    Matplotlib 库是 python 的数据可视化库import matplotlib.pyplot as plt 1.字符串转化为日期 unrate = pd.read_csv("un ...

  2. Python的工具包[2] -> matplotlib图像绘制 -> matplotlib 库及使用总结

    matplotlib图像绘制 / matplotlib image description  目录 关于matplotlib matplotlib库 补充内容 Figure和AxesSubplot的生 ...

  3. Matplotlib库常用函数大全

    Python之Matplotlib库常用函数大全(含注释) plt.savefig(‘test’, dpi = 600) :将绘制的图画保存成png格式,命名为 test plt.ylabel(‘Gr ...

  4. Python之matplotlib库学习:实现数据可视化

    1. 安装和文档 pip install matplotlib 官方文档 为了方便显示图像,还使用了ipython qtconsole方便显示.具体怎么弄网上搜一下就很多教程了. pyplot模块是提 ...

  5. Python基础——matplotlib库的使用与绘图可视化

    1.matplotlib库简介: Matplotlib 是一个 Python 的 2D绘图库,开发者可以便捷地生成绘图,直方图,功率谱,条形图,散点图等. 2.Matplotlib 库使用: 注:由于 ...

  6. 在Ubuntu 14.04 64bit上安装numpy和matplotlib库

    原文:http://blog.csdn.net/tao_627/article/details/44004541 按照这个成功安装! 机器学习是数据挖掘的一种实现形式,在学习<机器学习实战> ...

  7. 数据分析与展示——Matplotlib库入门

    Matplotlib库入门 Matplotlib库介绍 Matliotlib库是Python优秀的数据可视化第三方库. Matliotlib库的效果见:http://matplotlib.org/ga ...

  8. matplotlib库的简单应用

    matplotlib库 import matplotlib.pyplot as plt import matplotlib matplotlib.rcParams['font.family']='Si ...

  9. 对matplotlib库的运用

    1.matplotlib库的运用效果图 绘制基本的三角函数                                                                        ...

随机推荐

  1. 分布式缓存Redis之Pipeline(管道)

    Redis的pipeline(管道)功能在命令行中没有,但redis是支持pipeline的,而且在各个语言版的client中都有相应的实现. 由于网络开销延迟,就算redis server端有很强的 ...

  2. Raspberry Pi 4B基本设置

    目录 一.SSH登录Raspberry Pi 二.开启VNC服务 三.将SD卡分区扩展 四.修改软件源 一.SSH登录Raspberry Pi 完成系统烧录后,就需要登录Raspberry Pi,此时 ...

  3. IDEA checkout Git 分支 弹出 Git Checkout Problem

    1. 本地分支切换的时候(例如A切到B),会弹出来Restore workspace on branch switching 对话框,如果选择是的话,在切换分支的时候,你在当前分支(A)所做的一些还未 ...

  4. 20175329&20175313&20175318 2019-2020 《信息安全系统设计基础》实验一

    详见 https://www.cnblogs.com/xiannvyeye/p/11792152.html#%E4%B8%80%E5%AE%9E%E9%AA%8C%E5%86%85%E5%AE%B9

  5. cast()、decimal(M,D) --SQL对查询字段保留小数位操作

    参考:http://database.51cto.com/art/201005/201651.htm http://www.lai18.com/content/1693593.html 直接上例子,以 ...

  6. Mac下持续集成-Mac下Tomcat+Jenkins集成环境搭建

    一.MAC安装jdk及环境变量配置 1)访问Oracle官网 http://www.oracle.com,浏览到首页的底部菜单 ,然后按下图提示操作: 2)下载完成后点击安装包,按提示即可完成安装. ...

  7. 相似系数_杰卡德距离(Jaccard Distance)

    python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)https://study.163.com/course/introduction.htm?courseId=1005269003&ut ...

  8. 重画GoogleClusterTrace数据

    由于项目计划书写作需要,重画了Qi Zhang, Mohamed Faten Zhani, Raouf Boutaba, Joseph L. Hellerstein, Dynamic Heteroge ...

  9. iOS UIBarButtonItem 固定尺寸

    自定义UIBarButtonItem的时候发现 有时候UIBarButtonItem尺寸会发生变化 通过以下方式可以很好的解决问题 [button.widthAnchor constraintEqua ...

  10. sparkstreaming的状态计算-updateStateByKey源码

    转发请注明原创地址:https://www.cnblogs.com/dongxiao-yang/p/11358781.html 本文基于spark源码版本为2.4.3 在流式计算中通常会有状态计算的需 ...