spark 机器学习 knn 代码实现(二)
通过knn 算法规则,计算出s2表中的员工所属的类别
原始数据:
某公司工资表 s1(训练数据)
格式:员工ID,员工类别,工作年限,月薪(K为单位)
101 a类 8年 30k
[hadoop@h201 sss]$ cat s1.txt
101,a,8,30
102,a,6,35
103,a,12,42
104,b,1,6
105,b,1,5
106,a,3,50
没有分类的 员工工资表 s2(测试数据)
格式:员工ID, 工作年限, 月薪
108 1年 3.5k
[hadoop@h201 sss]$ cat s2.txt
108,1,3.5
109,6,22
以下代码为了方便初学者学习和理解,我把代码分开步骤展示,如果有spark开发经验可以把代码合并为spark脚本,或方法重写,能够减少上面代码中的冗余。
1.初始数据
1.1
scala> val train1=sc.textFile("hdfs://h201:9000/s1.txt")
//样本数据
scala> val test1=sc.textFile("hdfs://h201:9000/s2.txt")
//测试数据
1.2
scala> val cart1=test1 cartesian train1
//笛卡尔积
scala> cart1.collect
Array[(String, String)] = Array((108,1,3.5,101,a,8,30), (108,1,3.5,102,a,6,35), (108,1,3.5,103,a,12,42).....
1.3
val c1=cart1.map(_.toString()).map(a=>{
val a1=a.split(",")
val aa1=a1(0).replaceAll("\\(","")
val aa2=a1(1)
val aa3=a1(2)
val aa4=a1(3)
val aa5=a1(4)
val aa6=a1(5)
val aa7=a1(6).replaceAll("\\)","")
(aa1,(aa2,aa3,aa4,aa5,aa6,aa7))
})
//转换为key,value结构数据
2.1 欧式距离
def eur(x1: Double,y1: Double,x2: Double,y2: Double): Double = {
val d1=Math.sqrt(Math.pow(x1 - x2, 2) + Math.pow(y1 - y2, 2))
return d1
}
//math.pow 算数.平方 ,math.sqrt 算数.开根
eur(1,3.5,8,30,102)
val c2 =c1.groupByKey.flatMap(line =>{
val h1 = line._2.toArray.map{case(x1,y1,bid,fenlei,x2,y2)=>(line._1,Math.floor(eur(x1.toDouble,y1.toDouble,x2.toDouble,y2.toDouble)),fenlei,bid)}
(h1)
})
//每个新加入的数据 距离训练数据的距离
//Math.floor 作用去除小数位
2.2确定k值(k=3)
val c3=c2.map(a=>{
val a11=a._1
val a22=(a._2,a._3,a._4)
(a11,a22)
}).groupByKey().map(b=>{
val b1=b._1
val b2=b._2.toArray.sortBy(x=>x._1).take(3)
(b1,b2)
})
//sortBy reverse参数 为scala语言中,array排序方法的降序表达,不加为升序表达
//spark RDD中 sortBy(x=>x._1,false,1) :false 为降序排列,1为分区数
3.K点中出现次数最多的分类(确定分类)
val c4=c3.map(a=>{
val a1=a._1
val a2=a._2.map(b=>b._2)
(a1,a2)
})
val c5=c4.flatMap(line=>{
val u1=line._2.map(a=>((line._1+"@"+a).toString,1))
(u1)
}).reduceByKey(_+_)
c5.sortBy(a=>a._2,false).take(2)
结果:
员工ID:108 属于b类
员工ID:109 属于a类
spark 机器学习 knn 代码实现(二)的更多相关文章
- spark 机器学习 随机森林 实现(二)
通过天气,温度,风速3个特征,建立随机森林,判断特征的优先级结果 天气 温度 风速结果(0否,1是)天气(0晴天,1阴天,2下雨)温度(0热,1舒适,2冷)风速(0没风,1微风,2大风)1 1:0 2 ...
- spark 机器学习 knn原理(一)
1.knnK最近邻(k-Nearest Neighbor,KNN)分类算法,在给定一个已经做好分类的数据集之后,k近邻可以学习其中的分类信息,并可以自动地给未来没有分类的数据分好类.我们可以把用户分 ...
- Spark机器学习API之特征处理(二)
Spark机器学习库中包含了两种实现方式,一种是spark.mllib,这种是基础的API,基于RDDs之上构建,另一种是spark.ml,这种是higher-level API,基于DataFram ...
- Spark机器学习之协同过滤算法
Spark机器学习之协同过滤算法 一).协同过滤 1.1 概念 协同过滤是一种借助"集体计算"的途径.它利用大量已有的用户偏好来估计用户对其未接触过的物品的喜好程度.其内在思想是相 ...
- 深入浅出KNN算法(二) sklearn KNN实践
姊妹篇: 深入浅出KNN算法(一) 原理介绍 上次介绍了KNN的基本原理,以及KNN的几个窍门,这次就来用sklearn实践一下KNN算法. 一.Skelarn KNN参数概述 要使用sklearnK ...
- spark机器学习从0到1介绍入门之(一)
一.什么是机器学习 机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论.统计学.逼近论.凸分析.算法复杂度理论等多门学科.专门研究计算机怎样模拟或实现人类的学习行 ...
- 机器学习——kNN(1)基本原理
=================================版权声明================================= 版权声明:原创文章 禁止转载 请通过右侧公告中的“联系邮 ...
- 机器学习之支持向量机(二):SMO算法
注:关于支持向量机系列文章是借鉴大神的神作,加以自己的理解写成的:若对原作者有损请告知,我会及时处理.转载请标明来源. 序: 我在支持向量机系列中主要讲支持向量机的公式推导,第一部分讲到推出拉格朗日对 ...
- Spark机器学习解析下集
上次我们讲过<Spark机器学习(上)>,本文是Spark机器学习的下部分,请点击回顾上部分,再更好地理解本文. 1.机器学习的常见算法 常见的机器学习算法有:l 构造条件概率:回归分 ...
随机推荐
- Nginx搭建负载均衡集群
(1).实验环境 youxi1 192.168.5.101 负载均衡器 youxi2 192.168.5.102 主机1 youxi3 192.168.5.103 主机2 (2).Nginx负载均衡策 ...
- Delphi : TStringList的Find,IndexOf和Sort
关键:Find要事先Sort排序,Indexof不用排序. TStringList内部查找相关的数据.待调试代码时才知道痛苦,浪费无数时间后,只得一步步跟踪,才发 现Find方法返回的Index总是错 ...
- Redis的特性及运用
Redis特性 一个产品的使用场景肯定是需要根据产品的特性,先列举一下Redis的特点: 读写性能优异 持久化 数据类型丰富 单线程 数据自动过期 发布订阅 分布式 这里我们通过几个场景,不同维度说下 ...
- MVC ViewBag和ViewData的使用
ViewBag public ActionResult About() { ViewBag.Message = "Your application description page.&quo ...
- [LeetCode] 849. Maximize Distance to Closest Person 最大化最近人的距离
In a row of seats, 1 represents a person sitting in that seat, and 0 represents that the seat is emp ...
- 树莓派3B安装arm64操作系统
pi64 pi64基于Debian 9,地址如下https://github.com/bamarni/pi64 烧录过程还是用SDFormatter格式化,用Win32DiskImager写入即可,没 ...
- Andrew Ng机器学习课程9-补充
Andrew Ng机器学习课程9-补充 首先要说的还是这个bias-variance trade off,一个hypothesis的generalization error是指的它在样本上的期望误差, ...
- ubuntu18.04 阿里镜像源
备份:cp /etc/apt/sources.list /etc/apt/sources.list.bak 清空source.list:echo > /etc/apt/sources.list ...
- Python 装饰器执行顺序
Python 装饰器执行顺序 之前同事问到两个装饰器在代码中使用顺序不同会不会有什么问题,装饰器是对被装饰的函数做了一层包装,然后执行的时候执行了被包装后的函数,例如: def decorator_a ...
- 随机数种子random.seed()理解
总结: 若采用random.random(),每次都按照一定的序列(默认的某一个参数)生成不同的随机数. 若采用随机数种子random.seed(100),它将在所设置的种子100范围内调用rando ...