题目链接

https://www.luogu.org/problemnew/show/P2568

分析

题目即求\(\sum_{i=1}^N \sum_{j=1}^N [gcd(i,j)\) \(is\) \(a\) \(prime\) \(number\) \(]\)

我们提出这个素数变成\(\sum_p \sum_{i=1}^{\frac{N}{p} \ } \sum_{j=1}^{\frac{N}{p} \ } [gcd(i,j)\) \(is\) \(1]\)

对于后面两个\(sigma\),考虑\(i>=j\)和\(i<j\)两种情况,不难想到答案为\(2 * (\sum_{i=1}^{\frac {N}{P} \ }\phi(i))-1\),因为\(i=j=1\)时多算了种情况

于是求欧拉函数表同时前缀和就好了

代码

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <cctype>
#include <iostream>
#define ll long long
#define ri register int
using std::min;
using std::max;
template <class T>inline void read(T &x){
x=0;int ne=0;char c;
while(!isdigit(c=getchar()))ne=c=='-';
x=c-48;
while(isdigit(c=getchar()))x=(x<<3)+(x<<1)+c-48;
x=ne?-x:x;return ;
}
const int inf=0x7fffffff;
int pri[1000005],tot=0;
ll phi[10000007];
int n;
inline void get_phi(){
bool vis[10000005];
memset(vis,0,sizeof(vis));
vis[1]=1,phi[1]=1;
for(ri i=2;i<=n;i++){
if(!vis[i]){pri[++tot]=i,phi[i]=i-1;}
for(ri j=1;j<=tot&&pri[j]*i<=n;j++){
vis[i*pri[j]]=1;
if(i%pri[j]==0){phi[i*pri[j]]=phi[i]*pri[j];break;}//定义式,i*pri[j]与i的质因数是相同的
else phi[i*pri[j]]=phi[i]*phi[pri[j]];//积性函数
}
}
for(ri i=2;i<=n;i++)phi[i]+=phi[i-1];
return ;
}
ll ans=0;
int main(){
read(n);
get_phi();
for(ri i=1;i<=tot&&pri[i]<=n;i++){
ans+=(phi[n/pri[i]]<<1)-1;
}
printf("%lld\n",ans);
return 0;
}

luogu2568GCD题解--欧拉函数的更多相关文章

  1. 【POJ 2480】Longge's problem(欧拉函数)

    题意 求$ \sum_{i=1}^n gcd(i,n) $ 给定 $n(1\le n\le 2^{32}) $. 链接 题解 欧拉函数 $φ(x)$ :1到x-1有几个和x互质的数. gcd(i,n) ...

  2. POJ2478 - Farey Sequence(法雷级数&&欧拉函数)

    题目大意 直接看原文吧.... The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rat ...

  3. POJ2407–Relatives(欧拉函数)

    题目大意 给定一个正整数n,要求你求出所有小于n的正整数当中与n互质的数的个数 题解 欧拉函数模板题~~~因为n过大~~~所以直接用公式求 代码: #include<iostream> # ...

  4. Codeforces Round #538 (Div. 2) F 欧拉函数 + 区间修改线段树

    https://codeforces.com/contest/1114/problem/F 欧拉函数 + 区间更新线段树 题意 对一个序列(n<=4e5,a[i]<=300)两种操作: 1 ...

  5. 【luogu3768】简单的数学题 欧拉函数(欧拉反演)+杜教筛

    题目描述 给出 $n$ 和 $p$ ,求 $(\sum\limits_{i=1}^n\sum\limits_{j=1}^nij\gcd(i,j))\mod p$ . $n\le 10^{10}$ . ...

  6. 【bzoj3560】DZY Loves Math V 欧拉函数

    题目描述 给定n个正整数a1,a2,…,an,求 的值(答案模10^9+7). 输入 第一行一个正整数n. 接下来n行,每行一个正整数,分别为a1,a2,…,an. 输出 仅一行答案. 样例输入 3 ...

  7. 【bzoj3518】点组计数 欧拉函数(欧拉反演)

    题目描述 平面上摆放着一个n*m的点阵(下图所示是一个3*4的点阵).Curimit想知道有多少三点组(a,b,c)满足以a,b,c三点共线.这里a,b,c是不同的3个点,其顺序无关紧要.(即(a,b ...

  8. 【bzoj2190】[SDOI2008]仪仗队 欧拉函数

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...

  9. 【bzoj2705】[SDOI2012]Longge的问题 欧拉函数

    题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). 输入 一个整数,为N. 输出 ...

随机推荐

  1. Vagrant 如何调整虚拟机的内存大小?

    https://docs.vagrantup.com/v2/virtualbox/configuration.html 最下面 config.vm.provider "virtualbox& ...

  2. 图像模糊C均值聚类分割代码

    转自:直觉模糊C均值聚类与图像阈值分割 - liyuefeilong的专栏 - CSDN博客 https://blog.csdn.net/liyuefeilong/article/details/43 ...

  3. 17. dashboard

    17. dashboard dashboard的安装步骤: wget https://raw.githubusercontent.com/kubernetes/dashboard/v2.0.0-bet ...

  4. BigDecimal的toString和toPlainString区别

    创建一个BigDecimal的数,分别调用toPlainString和toString方法 import java.math.BigDecimal; public class Test05 { pub ...

  5. android studio 低版本升级高版本的问题

    配置 适用场景 2.0 升级3.0  / 3.0升级3.1 gradle的问题注意每个AS版本的gradle插件都对应了gradle的版本 传送门 https://developer.android. ...

  6. IE浏览器URL中的查询条件中包含中文时报404的解决办法

    情况是比如我输入如下URL到IE浏览器: http://localhost:8090/RPT_TYSH_JL_ZD_DETAIL.html?pageIndex=1&year=2018& ...

  7. Python3 Selenium自动化web测试 ==>FAQ:日期格式和日期字符串格式相互转换

    学习目的: 掌握python的基础应用 场景: 生成的测试日报需要加上时间戳作为唯一标志,免得文件覆盖,过往的文件丢失 因为os.rename方法要求文件名必须拼接的都是字符串 代码释义: # 日期转 ...

  8. Mac下Unity使用Jenkins自动化打包

    重要的事情说三遍:不要使用jenkins dmg安装包直接安装,用brew安装  PS:会有权限问题 重要的事情说三遍:不要使用jenkins dmg安装包直接安装,用brew安装 重要的事情说三遍: ...

  9. Intel GPA + 夜神模拟器

    环境:Win10,Intel GPA 2019R2,Nox(夜神模拟器)6.2.8.3 记录下注意的事项 1. 夜神模拟器下载地址建议 : https://www.bignox.com/ 2. 先运行 ...

  10. python之pandas学习笔记-初识pandas

    初识pandas python最擅长的就是数据处理,而pandas则是python用于数据分析的最常用工具之一,所以学python一定要学pandas库的使用. pandas为python提供了高性能 ...