题目链接:[https://www.luogu.com.cn/problem/P5658]

思路:

这道题不难。(为什么我在考场上一点思路也没有??)

假设我们已经处理到树上的节点u(假设1为根节点),那么可以知道:

\([1,u]的合法括号串数=[1,fa[u]]的合法括号串数+u处新增的合法括号串数\)

对于前者,直接继承即可。

对于后者,我们令f[u]表示u节点新增的合法括号串数,栈s表示还未被匹配的‘(’所处在的节点,那么可以得到:

  • u的字符为‘(’:\(s[++top]=u,f[u]=0\)
  • u的字符为‘)’:

    ---- 1. \(top==0\)(即栈为空)\(f[u]=0\)

    ---- 2. \(top>0\) (即栈非空)\(f[u]=f[fa[s[top]]]+1,top--\)

    (意思是u处新得到的合法括号串数要么由\([1,fa[s[top]]\)(即栈顶父亲)\(]\)的合法括号串数加这对括号得到,要么由\(s[top]\)与\(u\)这对括号本身匹配得到)

具体实现:

用数组模拟栈即可。需要注意的是当搜索完部分子树后,栈s中某些元素可能会被覆盖,在这种情况下就需要回溯时在加回去(具体见代码)

注意事项:

做本题时态拘泥于以前的想法与思路,没有跳出来对本题进行分析。只对当前进行求解,没有对所有已求出来的量进行递推求解。

代码:

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=5e5+5;
int n,tot;
ll ans,f[N];
int fi[N],ne[N],to[N],s[N],fa[N];
char ch[N];
inline int read()
{
int s=0,w=1; char ch=getchar();
for(;!isdigit(ch);ch=getchar())if(ch=='-')w=-1;
for(;isdigit(ch);ch=getchar())s=(s<<1)+(s<<3)+(ch^48);
return s*w;
}
inline void add(int x,int y)
{
ne[++tot]=fi[x],fi[x]=tot,to[tot]=y;
}
void dfs(int u,ll pre,int tp)
{
int pd=0;//pd即用来处理特殊情况的
if(ch[u]=='(') s[++tp]=u;
else
{
if(!tp) f[u]=0;
else
{
pd=s[tp];//要出栈了,记下此时的栈顶
f[u]=f[fa[s[tp]]]+1;
pre+=f[u];
tp--;
}
}
ans^=(u*pre);
for(int i=fi[u],v=to[i];i;v=to[i=ne[i]])
dfs(v,pre,tp);
if(pd) s[tp+1]=pd;//回溯时再加回来
}
int main()
{
n=read();
scanf("%s",ch+1);
for(int i=2;i<=n;++i)add(fa[i]=read(),i);
dfs(1,0,0);
printf("%lld\n",ans);
return 0;
}

CSP-S 2019 D1T2 括号树的更多相关文章

  1. 上午小测3 T1 括号序列 && luogu P5658 [CSP/S 2019 D1T2] 括号树 题解

    前 言: 一直很想写这道括号树..毕竟是在去年折磨了我4个小时的题.... 上午小测3 T1 括号序列 前言: 原来这题是个dp啊...这几天出了好几道dp,我都没看出来,我竟然折磨菜. 考试的时候先 ...

  2. 【NOIP/CSP2019】D1T2 括号树

    原题: 因为是NOIP题,所以首先先看特殊数据,前35分是一条长度不超过2000的链,N^2枚举所有子区间暴力check就能拿到分 其次可以思考特殊情况,一条链的情况怎么做 OI系列赛事的特殊性质分很 ...

  3. 「CSP-S 2019」括号树

    [题目描述] 传送门 [题解] 是时候讨论一下我在考场上是怎么将这道题写挂的了 初看这道题毫无思路,先看看部分分吧 一条链的情况?设k[i]表示前i个括号的方案数 显然\(k[i]=k[i-1]+\) ...

  4. [CSP-S 2019]括号树

    [CSP-S 2019]括号树 源代码: #include<cstdio> #include<cctype> #include<vector> inline int ...

  5. P5658 括号树

    P5658 括号树 题解 太菜了啥都不会写只能水5分数据 啥都不会写只能翻题解  题解大大我错了 我们手动找一下规律 我们设 w[ i ] 为从根节点到结点 i 对答案的贡献,也就是走到结点 i ,合 ...

  6. [CSP-S2019]括号树 题解

    CSP-S2 2019 D1T2 刚开考的时候先大概浏览了一遍题目,闻到一股浓浓的stack气息 调了差不多1h才调完,加上T1用了1.5h+ 然而T3还是没写出来,滚粗 思路分析 很容易想到的常规操 ...

  7. 「WC 2019」数树

    「WC 2019」数树 一道涨姿势的EGF好题,官方题解我并没有完全看懂,尝试用指数型生成函数和组合意义的角度推了一波.考场上只得了 44 分也暴露了我在数数的一些基本套路上的不足,后面的 \(\ex ...

  8. 【题解】#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT)

    [题解]#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT) 之前做这道题不理解,有一点走火入魔了,甚至想要一本近世代数来看,然后通过人类智慧思考后发现, ...

  9. CSP2019 括号树

    Description: 给定括号树,每个节点都是 ( 或 ) ,定义节点的权值为根到该节点的简单路径所构成的括号序列中不同合法子串的个数(子串需要连续,子串所在的位置不同即为不同.)与节点编号的乘积 ...

随机推荐

  1. vue 的 solt 子组件过滤

    如上图: 1.定义了一个类似下拉的组件 mySelect , 然后里面有自定义的组件 myOptions 2.有很多时候,我们希望, mySelect 组件内部的子组件,只能是 myOptions . ...

  2. Luogu5401 CTS2019珍珠(生成函数+容斥原理+NTT)

    显然相当于求有不超过n-2m种颜色出现奇数次的方案数.由于相当于是对各种颜色选定出现次数后有序排列,可以考虑EGF. 容易构造出EGF(ex-e-x)/2=Σx2k+1/(2k+1)!,即表示该颜色只 ...

  3. 【css】文本效果

    一.字体属性 在css字体样式中常见的字体属性有以下几种 p{ font-size: 50px; /*字体大小*/ line-height: 30px; /*行高*/ font-family: 幼圆, ...

  4. .Net Core Mvc/WebApi 返回结果封装

    一.背景 为了方便开发,简化代码,也为了与前端方便对接,需要对接口服务返回结果进行统一处理. .Net Core 中返回结果的处理与 .Net Framework 中的处理不一样. .Net Core ...

  5. 转 无损转换Image为Icon

    不可取 var handle = bmp.GetHicon();    //得到图标句柄return Icon.FromHandle(handle); //通过句柄得到图标 可取 /// <su ...

  6. MySQL 乱码问题解决

    修改 配置文件 只需留下 my.ini文件,然后修改其编码配置. 配置如下 # Example MySQL config file for large systems. # # This is for ...

  7. 实现CodeFirst自动数据迁移无需手动执行命令

    本主题假设您掌握了实体框架中 Code First 迁移的基本知识. 借助自动迁移功能,您无需对您所做的每一个更改都在程序包管理器控制台中手动Update-Database . 启用迁移 只需执行一次 ...

  8. C#合并选中EXCEL中的各个工作表

    合并选中EXCEL中的各个工作表,以第一个选中的EXCEL文件里的工作表进行匹配,遍历后面的每个EXCEL文件,有相同的工作表就合并: private void button1_Click(objec ...

  9. ScrollView小记

    常用代理方法: - (void)scrollViewDidScroll:(UIScrollView *)scrollView 只有  [self.scrolView setContentOffset: ...

  10. layui 后台分页

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...