[luogu] 斐波那契数列
https://www.luogu.org/problemnew/show/P1962
矩阵快速幂加速
#include <bits/stdc++.h> using namespace std; #define gc getchar()
#define LL long long const LL mod = ; LL n, s; inline LL read(){
LL x = ; char c = gc;
while(c < '' || c > '') c = gc;
while(c >= '' && c <= '') x = x * + c - '', c = gc;
return x;
} struct Node{
LL m[][];
Node() { memset(m,,sizeof m);}
void clear(){for(int i = ; i <= n; i ++) m[i][i] = ;}
}; Node operator *(Node a, Node b){
Node ret;
for(int i = ; i <= n; i ++)
for(int j = ; j <= n; j ++)
for(int k = ; k <= n; k ++)
ret.m[i][j] = (ret.m[i][j] + a.m[i][k] * b.m[k][j]) % mod;
return ret;
} Node ksm(Node a, LL p){
Node ret; ret.clear();
while(p){
if(p & ) ret = ret * a;
a = a * a;
p >>= ;
}
return ret;
} int main()
{
s = read();
n = ;
Node a, b;
a.m[][] = ; a.m[][] = ; a.m[][] = ; a.m[][] = ;
b.m[][] = ; b.m[][] = ;
Node Ans;
Ans = ksm(a, s - );
Node answer = Ans * b;
cout << answer.m[][]; return ;
}
[luogu] 斐波那契数列的更多相关文章
- Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂)
Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q, ...
- Luogu 1962 斐波那契数列(矩阵,递推)
Luogu 1962 斐波那契数列(矩阵,递推) Description 大家都知道,斐波那契数列是满足如下性质的一个数列: f(1) = 1 f(2) = 1 f(n) = f(n-1) + f(n ...
- 「Luogu 1349」广义斐波那契数列
更好的阅读体验 Portal Portal1: Luogu Description 广义的斐波那契数列是指形如\(an=p \times a_{n-1}+q \times a_{n-2}\)的数列.今 ...
- [Luogu P3986] 斐波那契数列 (逆元)
题面 传送门:https://www.luogu.org/problemnew/show/P3986 Solution 这是一道很有意思的数论题. 首先,我们可以发现直接枚举a和b会T的起飞. 接下来 ...
- Luogu P1962 斐波那契数列(矩阵乘法模板)
传送门(其实就是求斐波那契数列....) 累了 明天再解释 做这道题需要一些关于矩阵乘法的基础知识. 1. 矩阵乘法的基础运算 只有当矩阵A的列数等于矩阵B的行数时,A与B可以相乘(A的行数不一定等于 ...
- [luogu P1962] 斐波那契数列(带快速幂矩阵乘法模板)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- 关于斐波拉契数列(Fibonacci)
斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10 ...
- 矩阵乘法&&矩阵快速幂&&最基本的矩阵模型——斐波那契数列
矩阵,一个神奇又令人崩溃的东西,常常用来优化序列递推 在百度百科中,矩阵的定义: 在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合 ,最早来自于方程组的系数及常数所构成的方阵.这一 ...
- 【洛谷P1962】斐波那契数列
斐波那契数列 题目链接:https://www.luogu.org/problemnew/show/P1962 矩阵A 1,1 1,0 用A^k即可求出feb(k). 矩阵快速幂 #include&l ...
随机推荐
- Oracle 11g xe版本---总结1
一.创建用户和授予权限 1.1 环境: Oracle 11g xe 第三方图形客户端: PLSQL Windows 10 必须登录 HR 用户,下面的查询会使用到 HR 中的表. 1.2 SQL 语句 ...
- Java同C#的语法不同之处
Java同C#的语法不同之处... [注:转载而来但原出处不详:若是您原创请联系我]1,命名空间与包 C#为了把实现相似功能的类组织在一起,引入了命名空间的概念(namespace) Java中与此对 ...
- oracle笔记之计算年龄、工龄和TRUNC
方法一:利用months_between 函数计算 SELECT TRUNC(months_between(sysdate, birthday)/12) AS agefrom dual; 方法二:日期 ...
- 怎样获取iframe节点的window对象
需要使用iframeElement.contentWindow; var frame = document.getElementById('theFrame'); var frameWindow = ...
- Extending WCF using IServiceBehavior, IOperationBehavior, and IParameterInspector
[ServiceContract(Name = "PasswordGenerator")] public interface IPasswordGenerator { [Opera ...
- kubernets 证书过期的问题
.问题起源 kubeadm 是 kubernetes 提供的一个初始化集群的工具,使用起来非常方便.但是它创建的apiserver.controller-manager等证书默认只有一年的有效期,同时 ...
- Go 互斥锁(sync.Mutex)和 读写锁(sync.RWMutex)
什么时候需要用到锁? 当程序中就一个线程的时候,是不需要加锁的,但是通常实际的代码不会只是单线程,所以这个时候就需要用到锁了,那么关于锁的使用场景主要涉及到哪些呢? 多个线程在读相同的数据时 多个线程 ...
- 网络基础 URL
一.用JAVA实现URL 在JAVA中,Java.net包里面的类是进行网络编程的,其中java.net.URL类和java.net.URLConection类使编程者方便地利用URL在Intern ...
- 流程控制 if----else
流程控制: 对PHP程序执行的过程进行控制! PHP有哪些手段对程序执行过程进行控制!一.顺序执行 自上而下的执行即可! 对这个执行过程没有控制!二.分支执行 分支执行可以根据条件是否满足来选择执行某 ...
- MySql 8.0服务端安装后,用navicat12连接时报2059错误_解决
先看连接错误 连接失败:2059 - Authentication plugin 'caching_sha2_password' cannot be loaded: .... 解决方法: 进入MySQ ...