题目链接:洛谷

我一开始不知道$N,M$有什么用处,懵逼了一会儿,结果才发现是输入数据范围。。。

$$\begin{aligned}\binom{n}{k}Ans&=\sum_{i=0}^k\binom{m}{i}\binom{n-m}{k-i}i^L \\&=\sum_{i=0}^k\binom{m}{i}\binom{n-m}{k-i}\sum_{j=0}^Lj!\binom{i}{j}\begin{Bmatrix}L \\ j\end{Bmatrix} \\&=\sum_{j=0}^Lj!\begin{Bmatrix}L \\ j\end{Bmatrix}\sum_{i=0}^k\binom{m}{i}\binom{n-m}{k-i}\binom{i}{j} \\&=\sum_{j=0}^Lj!\begin{Bmatrix}L \\ j\end{Bmatrix}\sum_{i=0}^k\binom{m}{j}\binom{m-j}{i-j}\binom{n-m}{k-i} \\&=\sum_{j=0}^L\frac{m!}{(m-j)!}\begin{Bmatrix}L \\j\end{Bmatrix}\sum_{i=0}^k\binom{m-j}{i-j}\binom{n-m}{k-i} \\&=\sum_{j=0}^L\frac{m!(n-j)!}{(k-j)!(n-k)!(m-j)!}\begin{Bmatrix}L \\j\end{Bmatrix}\end{aligned}$$

所以答案

$$Ans=\frac{m!k!}{n!}\sum_{i=0}^{\min(L,m,k)}\frac{(n-i)!}{(m-i)!(k-i)!}\begin{Bmatrix}L \\ i\end{Bmatrix}$$

上面第五行到第六行使用了范德蒙德卷积

$$\sum_{i=0}^k\binom{n}{i}\binom{m}{k-i}=\binom{n+m}{k}$$

组合意义:在$n+m$个元素中取$k$个,前$n$个元素中选了$i$个。

而且要注意$i$的范围,不然就会挂成15分

时间复杂度$O(L(\log L+S))$。

Luogu2791 幼儿园篮球题【斯特林数,数学】的更多相关文章

  1. 【洛谷2791】幼儿园篮球题(第二类斯特林数,NTT)

    [洛谷2791]幼儿园篮球题(第二类斯特林数,NTT) 题面 洛谷 题解 对于每一组询问,要求的东西本质上就是: \[\sum_{i=0}^{k}{m\choose i}{n-m\choose k-i ...

  2. 【题解】幼儿园篮球题(范德蒙德卷积+斯特林+NTT)

    [题解]幼儿园篮球题(NTT+范德蒙德卷积+斯特林数) 题目就是要我们求一个式子(听说叫做超几何分布?好牛逼的名字啊) \[ \sum_{i=1}^{S}\dfrac 1 {N \choose n_i ...

  3. 洛谷 P2791 幼儿园篮球题

    洛谷 P2791 幼儿园篮球题 https://www.luogu.org/problemnew/show/P2791 我喜欢唱♂跳♂rap♂篮球 要求的是:\(\sum_{i=0}^kC_m^iC_ ...

  4. 【洛谷2791】 幼儿园篮球题 第二类斯特林数+NTT

    求 \(\sum_{i=0}^{k}\binom{m}{i}\binom{n-m}{k-i}i^L\) \((1\leqslant n,m\leqslant 2\times 10^7,1\leqsla ...

  5. [LGP2791] 幼儿园篮球题

    你猜猜题怎么出出来的? 显然第\(i\)场的答案为 \[ \frac{1}{\binom{n_i}{m_i}\binom{n_i}{k_i}}\sum_{x=0}^{k_i}\binom{n_i}{m ...

  6. 洛谷 P2791 - 幼儿园篮球题(第二类斯特林数)

    题面传送门 首先写出式子: \[ans=\sum\limits_{i=0}^m\dbinom{m}{i}\dbinom{n-m}{k-i}·i^L \] 看到后面有个幂,我们看它不爽,因此考虑将其拆开 ...

  7. luogu P2791 幼儿园篮球题

    传送门 先看我们要求的是什么,要求的期望就是总权值/总方案,总权值可以枚举进球的个数\(i\),然后就应该是\(\sum_{i=0}^{k} \binom{m}{i}\binom{n-m}{k-i}i ...

  8. [BJOI2019]勘破神机(斯特林数+二项式定理+数学)

    题意:f[i],g[i]分别表示用1*2的骨牌铺2*n和3*n网格的方案数,求ΣC(f(i),k)和ΣC(g(i),k),对998244353取模,其中l<=i<=r,1<=l< ...

  9. 具体数学斯特林数-----致敬Kunth

    注意这里讲的是斯特林数而非斯特林公式. 斯特林数分两类:第一类斯特林数 和 第二类斯特林数. 分别记为. 首先描述第二类斯特林数. 描述为:将一个有n件物品的集合划分成k个非空子集的方法数. 比如集合 ...

随机推荐

  1. shell 学习笔记5-shell-if语句

    一.if条件语句 1.语法 1)单分支结构 第一种 if <条件表达式> then 指令 fi 第二种 if <条件表达式>:then 指令 fi 上文的"<条 ...

  2. Java安装和环境配置

    Java安装和环境配置 从事Java开发第一关就是安装JAVA环境. 我们要安装JDK, 全称Java开发全套. 其中包含了JRE(运行时环境), 如果你打游戏的时候可能会提示你缺少JRE. 我们要做 ...

  3. SQL根据指定节点ID获取所有父级节点和子级节点(转载)

    --根据指定节点ID获取所有子节点-- WITH TEMP AS ( ' --表的主键ID UNION ALL SELECT T0.* FROM TEMP,table_name T0 WHERE TE ...

  4. GRPC代替webapi Demo。

    gRPC 是一种与语言无关的高性能远程过程调用 (RPC) 框架. gRPC 的主要优点是: 现代高性能轻量级 RPC 框架. 协定优先 API 开发,默认使用协议缓冲区,允许与语言无关的实现. 可用 ...

  5. NEST指定id

    1.默认以Id属性为Id,无Id属性则自动生成 2.可通过属性标签指定Id [ElasticsearchType(IdProperty = nameof(last_name))] public cla ...

  6. kafka的安装及使用(单节点)

    介绍了linux环境下,kafka 服务的安装与配置 安装 jdk 环境 下载 kafka 源码包放到服务器,解压 开启 zookeeper 开启 kafka server 创建主题 开启生产者 开启 ...

  7. 让image居中对齐,网页自适应

    <div class="page4_content"> <div class="page4_box"> <div class=&q ...

  8. 【公有云】在阿里云中申请免费ssl证书

    准备 拥有阿里云账号 拥有域名,最好是在同个账号下,方便操作. 申请证书 第一步:进入申请 第二步:选择证书类型 第三步:支付,就是走个流程,不用给钱 第四步:填写证书信息 第五步:验证域名 第六步: ...

  9. linux使用文本编辑器vi常用命令

    一:翻页 ctrl+u向上翻半页 ctrl+d   向下翻半页 ctrl+f/page up向上翻一页 ctrl+b/page on   向下翻一页 H光标移到当前页的第一个字符 M光标移到当前页的中 ...

  10. 个性化排序算法实践(一)——FM算法

    因子分解机(Factorization Machine,简称FM)算法用于解决大规模稀疏数据下的特征组合问题.FM可以看做带特征交叉的LR. 理论部分可参考FM系列,通过将FM的二次项化简,其复杂度可 ...