题目

一个比较自然的想法是线段树维护二进制分组。

因为我们询问的是一段连续的操作的积,所以我们可以建一棵线段树,每个节点存储当前区间各个操作的积。

这里的操作的积指的是把一系列操作做完之后区间每个位置的变换。因为有很多连续的变换是一样的所以我们可以把它们缩起来。

因为我们知道\(k\)个操作最多会把整个区间划为\(2k+1\)段,所以所有节点的区间的总数是\(O(n\log n)\)级别的。

而合并两个线段树节点的操作可以使用归并排序。

然后我们查询就可以找到对应的\(log\ n\)的线段树上的节点,然后在每个节点存储的区间中二分找到查询的位置所在的区间,然后把所有查询到的变换乘起来就行了。

还要注意一件事情:

因为是强制在线,我们的操作也是一个个给出而不是一开始全部给出,所以我们需要一开始先建出空的线段树,然后新加进来一个操作,我们就把它插入到线段树上对应的\(log\ n\)个节点中去,同时pushup一下。

#include<bits/stdc++.h>
#define ep emplace_back
#define pi pair<int,int>
#define fi first
#define se second
#define ls p<<1
#define rs p<<1|1
using namespace std;
namespace IO
{
char ibuf[(1<<21)+1],obuf[(1<<21)+1],st[15],*iS,*iT,*oS=obuf,*oT=obuf+(1<<21);
char Get(){return (iS==iT? (iT=(iS=ibuf)+fread(ibuf,1,(1<<21)+1,stdin),(iS==iT? EOF:*iS++)):*iS++);}
void Flush(){fwrite(obuf,1,oS-obuf,stdout),oS=obuf;}
void Put(char x){*oS++=x;if(oS==oT)Flush();}
int read(){int x=0,c=Get();while(!isdigit(c))c=Get();while(isdigit(c))x=x*10+c-48,c=Get();return x;}
void write(int x){int top=0;if(!x)Put('0');while(x)st[++top]=(x%10)+48,x/=10;while(top)Put(st[top--]);Put('\n');}
}
using namespace IO;
int max(int a,int b){return a>b? a:b;}
const int N=100007;
int n,m,q,ison,v[N],L[N<<2],R[N<<2];pi e(1,0),f;struct node{int l,r;pi x;node(int a=0,int b=0,pi c=e){l=a,r=b,x=c;}};
vector<int>id[N];vector<node>t[N<<2],tmp;
int operator<(node a,node b){return a.r<b.r;}
pi mul(pi a,pi b){return pi(1ll*a.fi*b.fi%m,(1ll*a.se*b.fi+b.se)%m);}
vector<node>merge(vector<node>a,vector<node>b)
{
vector<node>c;
for(int i=0,j=0;i<(int)a.size()||j<(int)b.size();)
if(a[i].r==b[j].r) c.ep(max(a[i].l,b[j].l),a[i].r,mul(a[i].x,b[j].x)),++i,++j;
else if(a[i].r<b[j].r) c.ep(max(a[i].l,b[j].l),a[i].r,mul(a[i].x,b[j].x)),++i;
else c.ep(max(a[i].l,b[j].l),b[j].r,mul(a[i].x,b[j].x)),++j;
return c;
}
void build(int p,int l,int r)
{
id[r].ep(p),L[p]=l,R[p]=r,t[p].ep(1,n,e);
if(l==r) return ;int mid=(l+r)>>1;
build(ls,l,mid),build(rs,mid+1,r);
}
pi query(int p,int l,int r,int x)
{
if(l<=L[p]&&R[p]<=r) return lower_bound(t[p].begin(),t[p].end(),(node){0,x,e})->x;
int mid=(L[p]+R[p])>>1;
return mul((l<=mid? query(ls,l,r,x):e),(r>mid? query(rs,l,r,x):e));
}
int main()
{
ison=read()&1,n=read(),m=read();
for(int i=1;i<=n;++i) v[i]=read();
q=read(),build(1,1,min(q,100000));
for(int i=1;i<=min(q,100000);++i) reverse(id[i].begin(),id[i].end());
for(int T=0,l,r,a,b,ans=0;q;--q)
{
if(read()==1)
{
l=read(),r=read(),a=read(),b=read(),tmp.clear(),++T;
if(ison) l^=ans,r^=ans;
if(l>1) tmp.ep(1,l-1,e);
tmp.ep(l,r,pi(a,b));
if(r<n) tmp.ep(r+1,n,e);
for(int p:id[T]) t[p]=L[p]==R[p]? merge(t[p],tmp):merge(t[ls],t[rs]);
}
else
{
l=read(),r=read(),a=read();
if(ison) l^=ans,r^=ans,a^=ans;
f=query(1,l,r,a),write(ans=(1ll*v[a]*f.fi+f.se)%m);
}
}
return Flush(),0;
}

UOJ46 玄学的更多相关文章

  1. uoj46玄学

    复杂度辣鸡没人权 疯狂爆oj 感觉要被众多uoj用户骂了 #include <bits/stdc++.h> #define ll long long #define LS ls[now]? ...

  2. 【BZOJ3821/UOJ46】玄学(二进制分组,线段树)

    [BZOJ3821/UOJ46]玄学(二进制分组,线段树) 题面 BZOJ UOJ 题解 呜,很好的题目啊QwQ. 离线做法大概可以线段树分治,或者直接点记录左右两次操作时的结果,两个除一下就可以直接 ...

  3. [UOJ46][清华集训2014]玄学

    uoj description 给出\(n\)个变换,第\(i\)个变换是将区间中\(l_i,r_i\)的数\(x\)变成\((a_ix+b_i)\mod m\). 每次会新增一个变换,或者查询询问如 ...

  4. UOJ46. 【清华集训2014】玄学

    传送门 Sol 考虑对于操作时间建立线段树,二进制分组 那么现在主要的问题就是怎么合并信息 你发现一个性质,就是每个修改只会在整个区间内增加两个端点 那么我们二进制分组可以得到每个区间内最多只有区间长 ...

  5. UOJ46. 【清华集训2014】玄学 [线段树,二进制分组]

    UOJ 思路 模拟赛出了这题,结果我没学过二进制分组--一波主席树然后空间就爆炸了-- 用线段树维护时间序列,每个节点维护\(a_i\to x_i\times a_i+b_i,i\in [1,n]\) ...

  6. UOJ46 清华集训2014玄学(线段树)

    注意到操作有结合律,容易想到用一个矩形表示第i次操作对第j个位置的数的影响.那么修改是单行内的区间修改,而查询是单列内的区间查询.这样二维线段树上以列为外层行为内层直接打标记就可以维护.然后就喜闻乐见 ...

  7. UOJ46 【清华集训2014】玄学 【时间线段树】

    题目链接:UOJ 这题的时间线段树非常的妙. 对时间建立线段树,修改的时候在后面加,每当填满一个节点之后就合并进它的父亲. 对于一个节点维护序列,发现这是一个分段函数,合并就是归并排序.于是就形成了差 ...

  8. 洛谷P2832 行路难 分析+题解代码【玄学最短路】

    洛谷P2832 行路难 分析+题解代码[玄学最短路] 题目背景: 小X来到了山区,领略山林之乐.在他乐以忘忧之时,他突然发现,开学迫在眉睫 题目描述: 山区有n座山.山之间有m条羊肠小道,每条连接两座 ...

  9. C++玄学预编译优化

    #pragma GCC diagnostic error "-std=c++11" #pragma GCC optimize("-fdelete-null-pointer ...

随机推荐

  1. 顺序表应用8:最大子段和之动态规划法(SDUT 3665)

    Problem Description 给定n(1<=n<=100000)个整数(可能为负数)组成的序列a[1],a[2],a[3],-,a[n],求该序列如a[i]+a[i+1]+-+a ...

  2. AtCoder AGC038D Unique Path (图论)

    题目链接 https://atcoder.jp/contests/agc038/tasks/agc038_d 题解 orz zjr神仙做法 考虑把所有\(C_i=0\)的提示的两点连边,那么连完之后的 ...

  3. zookeeper系列(二)zookeeper的使用--javaAPI

    作者:leesf    掌控之中,才会成功:掌控之外,注定失败: 出处:http://www.cnblogs.com/leesf456/ (尊重原创,感谢作者整理的这么好,作者的部分内容添加了我的理解 ...

  4. java_切面日志

    切面日志举例 package com.keyba1; import java.lang.annotation.ElementType; import java.lang.annotation.Rete ...

  5. Oracle 性能之 Enq: CF - contention

    Oracle 性能之 Enq: CF - contention Table of Contents 1. 原因 2. 解决问题 2.1. 针对持有锁进程类型处理 2.1.1. 查看持有锁会话的进程类型 ...

  6. MonkeyRunner基本操作

    1. #导入模块; from com.android.monkeyrunner import MonkeyRunner, MonkeyDevice, MonkeyImage 2. #连接当前设备,并返 ...

  7. Node.js的事件轮询Event Loop原理

    Node.js的事件轮询Event Loop原理解释 事件轮询主要是针对事件队列进行轮询,事件生产者将事件排队放入队列中,队列另外一端有一个线程称为事件消费者会不断查询队列中是否有事件,如果有事件,就 ...

  8. EL表达式与JSTL标签库(二)

    1.JSTL标签库 标签库 作用 URI 前缀 核心 包含Web应用的常见工作,如循环.输入输出等 http://java.sun.com/jsp/jstl/core c 国际化 语言区域.消息.数字 ...

  9. 卷积的三种模式:full、same、valid + 卷积输出size的计算

    转自https://blog.csdn.net/u012370185/article/details/95238828 通常用外部api进行卷积的时候,会面临mode选择. 这三种mode的不同点:对 ...

  10. POJO是什么,javabean是什么,以及POJO与javabean的区别

    POJO(Plain Ordinary Java Object)简单的Java对象,实际就是普通JavaBeans,是为了避免和EJB混淆所创造的简称.使用POJO名称是为了避免和EJB混淆起来, 而 ...