F. Heroes of Making Magic III
time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

I’m strolling on sunshine, yeah-ah! And doesn’t it feel good! Well, it certainly feels good for our Heroes of Making Magic, who are casually walking on a one-directional road, fighting imps. Imps are weak and feeble creatures and they are not good at much. However, Heroes enjoy fighting them. For fun, if nothing else.

Our Hero, Ignatius, simply adores imps. He is observing a line of imps, represented as a zero-indexed array of integers a of length n, where ai denotes the number of imps at the i-th position. Sometimes, imps can appear out of nowhere. When heroes fight imps, they select a segment of the line, start at one end of the segment, and finish on the other end, without ever exiting the segment. They can move exactly one cell left or right from their current position and when they do so, they defeat one imp on the cell that they moved to, so, the number of imps on that cell decreases by one. This also applies when heroes appear at one end of the segment, at the beginning of their walk.

Their goal is to defeat all imps on the segment, without ever moving to an empty cell in it (without imps), since they would get bored. Since Ignatius loves imps, he doesn’t really want to fight them, so no imps are harmed during the events of this task. However, he would like you to tell him whether it would be possible for him to clear a certain segment of imps in the above mentioned way if he wanted to.

You are given q queries, which have two types:

  • a b k — denotes that k imps appear at each cell from the interval [a, b]
  • a b - asks whether Ignatius could defeat all imps on the interval [a, b] in the way described above
Input

The first line contains a single integer n (1 ≤ n ≤ 200 000), the length of the array a. The following line contains n integers a1, a2, ..., an(0 ≤ ai ≤ 5 000), the initial number of imps in each cell. The third line contains a single integer q (1 ≤ q ≤ 300 000), the number of queries. The remaining q lines contain one query each. Each query is provided by integers ab and, possibly, k (0 ≤ a ≤ b < n, 0 ≤ k ≤ 5 000).

Output

For each second type of query output 1 if it is possible to clear the segment, and 0 if it is not.

Example
input
3
2 2 2
3
2 0 2
1 1 1 1
2 0 2
output
0
1
Note

For the first query, one can easily check that it is indeed impossible to get from the first to the last cell while clearing everything. After we add 1 to the second position, we can clear the segment, for example by moving in the following way: 

题目大意:给一个区间,有两种操作:1.将[a,b]所有的数+k. 2.询问能不能将[a,b]中的数减完.规则是:每经过一个数,这个数就会-1,不能经过为0的数,并且每次只能左移或右移一格.

分析:比较难的一道题.

关键是要想到第二种操作的方案.构造出方案就好做了.可以从最左端点走,每次将当前位置变成0,方法就是不断的在当前位置和下一位置走.这样的话需要满足条件:a(i + 1) >= ai,走到点i+1后,a(i + 1)就变成了a(i + 1) - ai,对于a(i + 1)和a(i + 2)有同样的条件.那么到最后需要满足的条件就是

ar−a(r−1)+⋯≥[(r−a+1)≡1(mod2)]这里的r是区间[a,b]的任意一个数,并且ab - a(b - 1) + ...... = (b - a + 1) mod 2.

考虑如何实现,因为第一个条件有大于等于号,并且r是区间的任意一个数,那么只需要维护一下最小值就可以了,记d = ai - a(i-1) + a(i - 2)......在线段树上维护d.注意到d中ai的系数是正数还是负数取决于维护的两个端点的奇偶性,在修改和查询的时候要对奇偶性进行分类讨论.

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; const int maxn = ,inf = 1e9; int n,m,a[maxn],b[maxn],minn[maxn << ][],tag[maxn << ][]; void pushup(int o)
{
minn[o][] = min(minn[o * ][],minn[o * + ][]);
minn[o][] = min(minn[o * ][],minn[o * + ][]);
} void pushdown(int o)
{
for (int i = ; i < ; i++)
{
if (tag[o][i])
{
minn[o * ][i] += tag[o][i];
minn[o * + ][i] += tag[o][i];
tag[o * ][i] += tag[o][i];
tag[o * + ][i] += tag[o][i];
tag[o][i] = ;
}
}
} void build(int o,int l,int r)
{
if (l == r)
{
minn[o][l & ] = b[l];
minn[o][l & ^ ] = inf;
return;
}
int mid = (l + r) >> ;
build(o * ,l,mid);
build(o * + ,mid + ,r);
pushup(o);
} void update(int o,int l,int r,int x,int y,int v,int id)
{
if (x > y)
return;
if(x <= l && r <= y)
{
tag[o][id] += v;
minn[o][id] += v;
return;
}
pushdown(o);
int mid = (l + r) >> ;
if (x <= mid)
update(o * ,l,mid,x,y,v,id);
if (y > mid)
update(o * + ,mid + ,r,x,y,v,id);
pushup(o);
} int query1(int o,int l,int r,int cur,int id)
{
if (cur == ) //易错
return ;
if (l == r)
return minn[o][id];
pushdown(o);
int mid = (l + r) >> ;
if (cur <= mid)
return query1(o * ,l,mid,cur,id);
if (cur > mid)
return query1(o * + ,mid + ,r,cur,id);
} int query2(int o,int l,int r,int x,int y,int id)
{
if (x <= l && r <= y)
return minn[o][id];
pushdown(o);
int mid = (l + r) >> ,res = inf;
if (x <= mid)
res = min(res,query2(o * ,l,mid,x,y,id));
if (y > mid)
res = min(res,query2(o * + ,mid + ,r,x,y,id));
return res;
} int main()
{
scanf("%d",&n);
for (int i = ; i <= n; i++)
scanf("%d",&a[i]);
for (int i = ; i <= n; i++)
b[i] = a[i] - b[i - ]; //维护的就是d
build(,,n);
scanf("%d",&m);
for (int i = ; i <= m; i++)
{
int id,a,b,k;
scanf("%d",&id);
if (id == )
{
scanf("%d%d%d",&a,&b,&k);
a++;
b++;
update(,,n,a,b,k,a & );
if ((b - a + ) & ) //如果区间长度是偶数的话,+-抵消了
{
update(,,n,b + ,n,k,a & ); //b维护的是类似前缀和一样的东西,所以要对区间右边的操作.
update(,,n,b + ,n,-k,a & ^ ); //这里+k,-k主要取决于有影响的数在之后的区间的系数.
}
}
else
{
scanf("%d%d",&a,&b);
a++;
b++;
if ((b - a + ) & )
{
int temp1 = query1(,,n,a - ,(a - ) & ); //这里的四个temp就是利用b数组类似前缀和的一个特点得到的.
int temp2 = query2(,,n,a,b,b & ) + temp1;
int temp3 = query2(,,n,a,b,b & ^ ) - temp1;
int temp4 = query1(,,n,b,b & ) + temp1;
if (temp4 == && temp2 >= && temp3 >= )
puts("");
else
puts("");
}
else
{
int temp1 = query1(,,n,a - ,(a - ) & );
int temp2 = query2(,,n,a,b,b & ) - temp1;
int temp3 = query2(,,n,a,b,b & ^ ) + temp1;
int temp4 = query1(,,n,b,b & ) - temp1;
if (temp4 == && temp2 >= &&temp3 >= )
puts("");
else
puts("");
}
}
} return ;
}

Codeforces 717.F Heroes of Making Magic III的更多相关文章

  1. 【Codeforces717F】Heroes of Making Magic III 线段树 + 找规律

    F. Heroes of Making Magic III time limit per test:3 seconds memory limit per test:256 megabytes inpu ...

  2. Codeforces 959 F. Mahmoud and Ehab and yet another xor task

    \(>Codeforces\space959 F. Mahmoud\ and\ Ehab\ and\ yet\ another\ xor\ task<\) 题目大意 : 给出一个长度为 \ ...

  3. Codeforces 835 F. Roads in the Kingdom

    \(>Codeforces\space835 F. Roads in the Kingdom<\) 题目大意 : 给你一棵 \(n\) 个点构成的树基环树,你需要删掉一条环边,使其变成一颗 ...

  4. Codeforces 731 F. Video Cards(前缀和)

    Codeforces 731 F. Video Cards 题目大意:给一组数,从中选一个数作lead,要求其他所有数减少为其倍数,再求和.问所求和的最大值. 思路:统计每个数字出现的个数,再做前缀和 ...

  5. Codeforces CF#628 Education 8 D. Magic Numbers

    D. Magic Numbers time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  6. Codeforces Round #335 (Div. 2) A. Magic Spheres 模拟

    A. Magic Spheres   Carl is a beginner magician. He has a blue, b violet and c orange magic spheres. ...

  7. Codeforces Round #335 (Div. 2) A. Magic Spheres 水题

    A. Magic Spheres Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.codeforces.com/contest/606/ ...

  8. Codeforces Round #443 (Div. 1) D. Magic Breeding 位运算

    D. Magic Breeding link http://codeforces.com/contest/878/problem/D description Nikita and Sasha play ...

  9. Codeforces Round #350 (Div. 2) D1. Magic Powder - 1 二分

    D1. Magic Powder - 1 题目连接: http://www.codeforces.com/contest/670/problem/D1 Description This problem ...

随机推荐

  1. 合并SQL 调优

    SELECT le.equipcode,sum(case when wo.ordertype=0 then 1 else 0 END) as wxcount,sum(case when wo.orde ...

  2. Elasticsearch.Net 异常:[match] query doesn't support multiple fields, found [field] and [query]

    用Elasticsearch.Net检索数据,报异常: )); ElasticLowLevelClient client = new ElasticLowLevelClient(settings); ...

  3. 【Python入门学习】闭包&装饰器&开放封闭原则

    1. 介绍闭包 闭包:如果在一个内部函数里,对在外部作用域的变量(不是全局作用域)进行引用,那边内部函数被称为闭包(closure) 例如:如果在一个内部函数里:func2()就是内部函数, 对在外部 ...

  4. [T-ARA][너 때문에 미쳐][因为你而疯了]

    歌词来源:http://music.163.com/#/song?id=5402880 作曲 : 赵英秀/김태현 [作曲 : 赵英秀/k/gim-Tae-hyeon] 作词 : 辉星 [作词 : 辉星 ...

  5. python基础知识-01-编码输入输出变量

    python其他知识目录 名词解释: 编辑器 ide 程序员 操作系统 ASCAII码 unicode utf-8 浅谈CPU.内存.硬盘之间的关系 操作系统及Python解释器工作原理讲解 关于编译 ...

  6. pspo过程文档

    项目计划总结:       日期/任务      听课        编写程序         阅读相关书籍 日总计          周一      110          60         ...

  7. 404 Note Found 现场编程

    目录 组员职责分工 github 的提交日志截图 程序运行截图 程序运行环境 GUI界面 基础功能实现 运行视频 LCG算法 过滤(降权)算法 算法思路 红黑树 附加功能一 背景 实现 附加功能二(迭 ...

  8. J2EE,J2SE,J2ME,JDK,SDK,JRE,JVM区别(转载)

    转载地址:http://blog.csdn.net/alspwx/article/details/20799017 一.J2EE.J2SE.J2ME区别 J2EE——全称Java 2 Enterpri ...

  9. Lucene 高级搜索

    自定义评分 public class MyScoreQuery { public void searchByScoreQuery(){ try { IndexSearcher searcher=new ...

  10. 【Linux 命令】- tar 命令

    语法 tar [-ABcdgGhiklmMoOpPrRsStuUvwWxzZ][-b <区块数目>][-C <目的目录>][-f <备份文件>][-F <Sc ...