题目链接

Problem Description

There are n nonnegative integers a1…n which are less than p. HazelFan wants to know how many pairs i,j(1≤i<j≤n) are there, satisfying 1ai+aj≡1ai+1aj when we calculate module p, which means the inverse element of their sum equals the sum of their inverse elements. Notice that zero element has no inverse element.

Input

The first line contains a positive integer T(1≤T≤5), denoting the number of test cases.

For each test case:

The first line contains two positive integers n,p(1≤n≤105,2≤p≤1018), and it is guaranteed that p is a prime number.

The second line contains n nonnegative integers a1...n(0≤ai<p).

Output

For each test case:

A single line contains a nonnegative integer, denoting the answer.

Sample Input

2

5 7

1 2 3 4 5

6 7

1 2 3 4 5 6

Sample Output

4

6

题意:

给定一个数组a,找出数组a里面所有的满足当(1≤i<j≤n)是,1/(ai+aj)≡1/ai+1/aj的关系有多少对。

分析:

如果暴力遍历整个a数组的话,因为i,j的位置都需要确定,时间复杂度相当于n^2,肯定会超时,所以想办法将上面的式子进行变形,使之变为在O(n)的时间之内可以确定出来结果。

将式子通分后化简可得(ai2+aj2+ai*aj)%p=0 。

然后等式两边同时乘上(ai-aj),化简可得(ai3-aj3)%p=0。现在的问题就转换为求满足这个关系的对数。

但是直接计算满足这个等式的pair的对数就可以了吗?不是。我们还要考虑到a[i]=a[j]的时候。

当a[i]=a[j]时,(ai2+aj2+aiaj)%p=0 可以转换为(a[i]a[i]+a[i]a[i]+a[i]a[i])%p=0%p(因为p是素数)是不满足条件的,但是我们直接计算上面那个式子会把满足这个关系的式子也算进去,所以我们需要把满足a[i]=a[j]即 3a[i]a[j]>0的这些对数减掉。 这样求出来的才是最终的结果。

代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll; const int N=1e5+7;
int t,n;
ll p,a[N];
map<ll,int>hsh;
map<ll,int>cnt; ll mul(ll a,ll b)///注意这里并不是整数幂,作用时将a连加b次,返回加后的结果
{
ll an=0;
while(b)
{
if(b&1)an=(an+a)%p;
b>>=1,a=(a+a)%p;
}
return an;
} int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d%lld",&n,&p);
hsh.clear();
cnt.clear();
ll ans=0;
for(int i=1;i<=n;i++)
{
scanf("%lld",a+i);
if(!a[i])continue;
if(mul(mul(a[i],a[i]),3))ans-=cnt[a[i]];///判断3*a[i]*a[i]的值是否大于0,大于的话要把之前加上的全部减去
ll tp=mul(mul(a[i],a[i]),a[i]);///求出的是a[i]^3
ans+=hsh[tp]++;///当前求出的这个tp值可以于之前的所有的相匹配,匹配过后个数再加,下次匹配时的方案数就是这次加过之后的
++cnt[a[i]];///a[i]所对应的值也要更新
}
printf("%lld\n",ans);
}
return 0;
}

2017ACM暑期多校联合训练 - Team 7 1009 HDU 6128 Inverse of sum (数学计算)的更多相关文章

  1. 2017ACM暑期多校联合训练 - Team 3 1003 HDU 6058 Kanade's sum (模拟)

    题目链接 Problem Description Give you an array A[1..n]of length n. Let f(l,r,k) be the k-th largest elem ...

  2. 2017ACM暑期多校联合训练 - Team 2 1009 HDU 60563 TrickGCD (容斥公式)

    题目链接 Problem Description You are given an array A , and Zhu wants to know there are how many differe ...

  3. 2017ACM暑期多校联合训练 - Team 2 1011 HDU 6055 Regular polygon (数学规律)

    题目链接 **Problem Description On a two-dimensional plane, give you n integer points. Your task is to fi ...

  4. 2017ACM暑期多校联合训练 - Team 4 1004 HDU 6070 Dirt Ratio (线段树)

    题目链接 Problem Description In ACM/ICPC contest, the ''Dirt Ratio'' of a team is calculated in the foll ...

  5. 2017ACM暑期多校联合训练 - Team 9 1005 HDU 6165 FFF at Valentine (dfs)

    题目链接 Problem Description At Valentine's eve, Shylock and Lucar were enjoying their time as any other ...

  6. 2017ACM暑期多校联合训练 - Team 9 1010 HDU 6170 Two strings (dp)

    题目链接 Problem Description Giving two strings and you should judge if they are matched. The first stri ...

  7. 2017ACM暑期多校联合训练 - Team 8 1006 HDU 6138 Fleet of the Eternal Throne (字符串处理 AC自动机)

    题目链接 Problem Description The Eternal Fleet was built many centuries ago before the time of Valkorion ...

  8. 2017ACM暑期多校联合训练 - Team 8 1002 HDU 6134 Battlestation Operational (数论 莫比乌斯反演)

    题目链接 Problem Description The Death Star, known officially as the DS-1 Orbital Battle Station, also k ...

  9. 2017ACM暑期多校联合训练 - Team 8 1011 HDU 6143 Killer Names (容斥+排列组合,dp+整数快速幂)

    题目链接 Problem Description Galen Marek, codenamed Starkiller, was a male Human apprentice of the Sith ...

随机推荐

  1. 上传web端——个人项目

    我用visual studio新建了一个web窗口,如图: 然后这里是系统自带的代码: [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile ...

  2. HDU 2164 Rock, Paper, or Scissors?

    http://acm.hdu.edu.cn/showproblem.php?pid=2164 Problem Description Rock, Paper, Scissors is a two pl ...

  3. PAT 甲级 1077 Kuchiguse

    https://pintia.cn/problem-sets/994805342720868352/problems/994805390896644096 The Japanese language ...

  4. Python @retry装饰器的使用与实现案例(requests请求失败并重复请求)

    在爬虫代码的编写中,requests请求网页的时候常常请求失败或错误,一般的操作是各种判断状态和超时,需要多次重试请求,这种情况下,如果想优雅的实现功能,可以学习下retrying包下的retry装饰 ...

  5. ADO.NET DBHelper 类库

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.D ...

  6. 【bzoj5130】[Lydsy12月赛]字符串的周期 DFS+KMP

    题目描述 给定 $n$ 和 $m$ ,求所有 长度为 $n$ ,字符集大小为 $m$ 的字符串,每个前缀的最短循环节长度乘积 的总和. $n\le 12,m\le 10^9$ 题解 DFS+KMP 对 ...

  7. 【明哥报错簿】之【解决eclipse项目小红叉】

    解决方案: 0.如果是jdk版本不一致,直接右击项目名称,选择maven里面的update project.原因一般是maven的pom.xml里面设置的编译插件org.apache.maven.pl ...

  8. 深入理解JVM一垃圾回收器

    上一篇我们介绍了常见的垃圾回收算法,不同的算法各有各的优缺点,在JVM中并不是单纯的使用某一种算法进行垃圾回收,而是将不同的垃圾回收算法包装在不同的垃圾回收器当中,用户可以根据自身的需求,使用不同的垃 ...

  9. 【转】WinForms 使用Graphics绘制字体阴影

    转自:http://www.cnblogs.com/LonelyShadow/p/3893743.html C#以两种方法实现文字阴影效果,同时还实现了简单的动画效果: 一种是对文本使用去锯齿的边缘处 ...

  10. 【刷题】HDU 4966 GGS-DDU

    Problem Description Do you think this is a strange problem name? That is because you don't know its ...