题目链接

Problem Description

There are n nonnegative integers a1…n which are less than p. HazelFan wants to know how many pairs i,j(1≤i<j≤n) are there, satisfying 1ai+aj≡1ai+1aj when we calculate module p, which means the inverse element of their sum equals the sum of their inverse elements. Notice that zero element has no inverse element.

Input

The first line contains a positive integer T(1≤T≤5), denoting the number of test cases.

For each test case:

The first line contains two positive integers n,p(1≤n≤105,2≤p≤1018), and it is guaranteed that p is a prime number.

The second line contains n nonnegative integers a1...n(0≤ai<p).

Output

For each test case:

A single line contains a nonnegative integer, denoting the answer.

Sample Input

2

5 7

1 2 3 4 5

6 7

1 2 3 4 5 6

Sample Output

4

6

题意:

给定一个数组a,找出数组a里面所有的满足当(1≤i<j≤n)是,1/(ai+aj)≡1/ai+1/aj的关系有多少对。

分析:

如果暴力遍历整个a数组的话,因为i,j的位置都需要确定,时间复杂度相当于n^2,肯定会超时,所以想办法将上面的式子进行变形,使之变为在O(n)的时间之内可以确定出来结果。

将式子通分后化简可得(ai2+aj2+ai*aj)%p=0 。

然后等式两边同时乘上(ai-aj),化简可得(ai3-aj3)%p=0。现在的问题就转换为求满足这个关系的对数。

但是直接计算满足这个等式的pair的对数就可以了吗?不是。我们还要考虑到a[i]=a[j]的时候。

当a[i]=a[j]时,(ai2+aj2+aiaj)%p=0 可以转换为(a[i]a[i]+a[i]a[i]+a[i]a[i])%p=0%p(因为p是素数)是不满足条件的,但是我们直接计算上面那个式子会把满足这个关系的式子也算进去,所以我们需要把满足a[i]=a[j]即 3a[i]a[j]>0的这些对数减掉。 这样求出来的才是最终的结果。

代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll; const int N=1e5+7;
int t,n;
ll p,a[N];
map<ll,int>hsh;
map<ll,int>cnt; ll mul(ll a,ll b)///注意这里并不是整数幂,作用时将a连加b次,返回加后的结果
{
ll an=0;
while(b)
{
if(b&1)an=(an+a)%p;
b>>=1,a=(a+a)%p;
}
return an;
} int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d%lld",&n,&p);
hsh.clear();
cnt.clear();
ll ans=0;
for(int i=1;i<=n;i++)
{
scanf("%lld",a+i);
if(!a[i])continue;
if(mul(mul(a[i],a[i]),3))ans-=cnt[a[i]];///判断3*a[i]*a[i]的值是否大于0,大于的话要把之前加上的全部减去
ll tp=mul(mul(a[i],a[i]),a[i]);///求出的是a[i]^3
ans+=hsh[tp]++;///当前求出的这个tp值可以于之前的所有的相匹配,匹配过后个数再加,下次匹配时的方案数就是这次加过之后的
++cnt[a[i]];///a[i]所对应的值也要更新
}
printf("%lld\n",ans);
}
return 0;
}

2017ACM暑期多校联合训练 - Team 7 1009 HDU 6128 Inverse of sum (数学计算)的更多相关文章

  1. 2017ACM暑期多校联合训练 - Team 3 1003 HDU 6058 Kanade's sum (模拟)

    题目链接 Problem Description Give you an array A[1..n]of length n. Let f(l,r,k) be the k-th largest elem ...

  2. 2017ACM暑期多校联合训练 - Team 2 1009 HDU 60563 TrickGCD (容斥公式)

    题目链接 Problem Description You are given an array A , and Zhu wants to know there are how many differe ...

  3. 2017ACM暑期多校联合训练 - Team 2 1011 HDU 6055 Regular polygon (数学规律)

    题目链接 **Problem Description On a two-dimensional plane, give you n integer points. Your task is to fi ...

  4. 2017ACM暑期多校联合训练 - Team 4 1004 HDU 6070 Dirt Ratio (线段树)

    题目链接 Problem Description In ACM/ICPC contest, the ''Dirt Ratio'' of a team is calculated in the foll ...

  5. 2017ACM暑期多校联合训练 - Team 9 1005 HDU 6165 FFF at Valentine (dfs)

    题目链接 Problem Description At Valentine's eve, Shylock and Lucar were enjoying their time as any other ...

  6. 2017ACM暑期多校联合训练 - Team 9 1010 HDU 6170 Two strings (dp)

    题目链接 Problem Description Giving two strings and you should judge if they are matched. The first stri ...

  7. 2017ACM暑期多校联合训练 - Team 8 1006 HDU 6138 Fleet of the Eternal Throne (字符串处理 AC自动机)

    题目链接 Problem Description The Eternal Fleet was built many centuries ago before the time of Valkorion ...

  8. 2017ACM暑期多校联合训练 - Team 8 1002 HDU 6134 Battlestation Operational (数论 莫比乌斯反演)

    题目链接 Problem Description The Death Star, known officially as the DS-1 Orbital Battle Station, also k ...

  9. 2017ACM暑期多校联合训练 - Team 8 1011 HDU 6143 Killer Names (容斥+排列组合,dp+整数快速幂)

    题目链接 Problem Description Galen Marek, codenamed Starkiller, was a male Human apprentice of the Sith ...

随机推荐

  1. MiniOS系统

    实验一  命令解释程序的编写 一.目的和要求 1. 实验目的 (1)掌握命令解释程序的原理: (2)*掌握简单的DOS调用方法: (3)掌握C语言编程初步. 2.实验要求 编写类似于DOS,UNIX的 ...

  2. Qt富文本编辑器QTextDocument

    版权声明:若无来源注明,Techie亮博客文章均为原创. 转载请以链接形式标明本文标题和地址: 本文标题:Qt富文本编辑器QTextDocument     本文地址:https://www.tech ...

  3. laravel连接多个不同数据库的单例类

    在連接多個不同數據庫時,需要寫多個連接,爲了簡化該操作,可以使用該基類,不同的數據庫只要建立好相對應的類繼承該類,就可以使用ORM模型進行操作了. class singletonInstance { ...

  4. [Oracle收费标准]

    http://www.oracle.com/us/corporate/pricing/technology-price-list-070617.pdf 1: 数据库 2. 中间件 3. weblogi ...

  5. 【前端学习笔记】arguments相关

    arguments转数组: (function() { console.log(arguments instanceof Array); // --> false console.log(Obj ...

  6. jQuery树形控件zTree

    初始化如下: function zTreeInit(){ parentCode = ""; setting = { view: { dblClickExpand: false, s ...

  7. 【Python】python学习文件的序列化和反序列化

    json和pickle序列化和反序列化 json是用来实现不同程序之间的文件交互,由于不同程序之间需要进行文件信息交互,由于用python写的代码可能要与其他语言写的代码进行数据传输,json支持所有 ...

  8. 【Python】Python处理csv文件

    Python处理csv文件 CSV(Comma-Separated Values)即逗号分隔值,可以用Excel打开查看.由于是纯文本,任何编辑器也都可打开.与Excel文件不同,CSV文件中: 值没 ...

  9. [Violet]蒲公英 分块

    发现写算法专题老是写不动,,,, 所以就先把我在luogu上的题解搬过来吧! 题目大意:查询区间众数,无修改,强制在线 乍一看是一道恐怖的题,仔细一看发现并没有那么难: 大致思路是这样的,首先我们要充 ...

  10. 洛谷 P2604 [ZJOI2010]网络扩容 解题报告

    P2604 [ZJOI2010]网络扩容 题目描述 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. ...