xv6/bootasm.S

 #include "asm.h"
#include "memlayout.h"
#include "mmu.h" # Start the first CPU: switch to -bit protected mode, jump into C.
# The BIOS loads this code from the first sector of the hard disk into
# memory at physical address 0x7c00 and starts executing in real mode
# with %cs= %ip=7c00. .code16 # Assemble for -bit mode
.globl start
start:
cli # BIOS enabled interrupts; disable # Zero data segment registers DS, ES, and SS.
xorw %ax,%ax # Set %ax to zero
movw %ax,%ds # -> Data Segment
movw %ax,%es # -> Extra Segment
movw %ax,%ss # -> Stack Segment # Physical address line A20 is tied to zero so that the first PCs
# with MB would run software that assumed MB. Undo that.
seta20.:
inb $0x64,%al # Wait for not busy
testb $0x2,%al
jnz seta20. movb $0xd1,%al # 0xd1 -> port 0x64
outb %al,$0x64 seta20.:
inb $0x64,%al # Wait for not busy
testb $0x2,%al
jnz seta20. movb $0xdf,%al # 0xdf -> port 0x60
outb %al,$0x60 # Switch from real to protected mode. Use a bootstrap GDT that makes
# virtual addresses map directly to physical addresses so that the
# effective memory map doesn’t change during the transition.
lgdt gdtdesc
movl %cr0, %eax
orl $CR0_PE, %eax
movl %eax, %cr0 # Complete transition to -bit protected mode by using long jmp
# to reload %cs and %eip. The segment descriptors are set up with no
# translation, so that the mapping is still the identity mapping.
ljmp $(SEG_KCODE<<), $start32 .code32 # Tell assembler to generate -bit code now.
start32:
# Set up the protected-mode data segment registers
movw $(SEG_KDATA<<), %ax # Our data segment selector
movw %ax, %ds # -> DS: Data Segment
movw %ax, %es # -> ES: Extra Segment
movw %ax, %ss # -> SS: Stack Segment
movw $, %ax # Zero segments not ready for use
movw %ax, %fs # -> FS
movw %ax, %gs # -> GS # Set up the stack pointer and call into C.
movl $start, %esp
call bootmain # If bootmain returns (it shouldn’t), trigger a Bochs
# breakpoint if running under Bochs, then loop.
movw $0x8a00, %ax # 0x8a00 -> port 0x8a00
movw %ax, %dx
outw %ax, %dx
movw $0x8ae0, %ax # 0x8ae0 -> port 0x8a00
outw %ax, %dx
spin:
jmp spin # Bootstrap GDT
.p2align # force byte alignment
gdt:
SEG_NULLASM # null seg
SEG_ASM(STA_X|STA_R, 0x0, 0xffffffff) # code seg
SEG_ASM(STA_W, 0x0, 0xffffffff) # data seg gdtdesc:
.word (gdtdesc - gdt - ) # sizeof(gdt) -
.long gdt # address gdt

xv6/bootmain.c

 // Boot loader.
//
// Part of the boot sector, along with bootasm.S, which calls bootmain().
// bootasm.S has put the processor into protected 32-bit mode.
// bootmain() loads an ELF kernel image from the disk starting at
// sector 1 and then jumps to the kernel entry routine. #include "types.h"
#include "elf.h"
#include "x86.h"
#include "memlayout.h" #define SECTSIZE 512 void readseg(uchar*, uint, uint); void
bootmain(void)
{
struct elfhdr *elf;
struct proghdr *ph, *eph;
void (*entry)(void);
uchar* pa; elf = (struct elfhdr*)0x10000; // scratch space // Read 1st page off disk
readseg((uchar*)elf, , ); // Is this an ELF executable?
if(elf->magic != ELF_MAGIC)
return; // let bootasm.S handle error // Load each program segment (ignores ph flags).
ph = (struct proghdr*)((uchar*)elf + elf->phoff);
eph = ph + elf->phnum;
for(; ph < eph; ph++){
pa = (uchar*)ph->paddr;
readseg(pa, ph->filesz, ph->off);
if(ph->memsz > ph->filesz)
stosb(pa + ph->filesz, , ph->memsz - ph->filesz);
} // Call the entry point from the ELF header.
// Does not return!
entry = (void(*)(void))(elf->entry);
entry();
} void
waitdisk(void)
{
// Wait for disk ready.
while((inb(0x1F7) & 0xC0) != 0x40)
;
} // Read a single sector at offset into dst.
void
readsect(void *dst, uint offset)
{
// Issue command.
waitdisk();
outb(0x1F2, ); // count = 1
outb(0x1F3, offset);
outb(0x1F4, offset >> );
outb(0x1F5, offset >> );
outb(0x1F6, (offset >> ) | 0xE0);
outb(0x1F7, 0x20); // cmd 0x20 - read sectors // Read data.
waitdisk();
insl(0x1F0, dst, SECTSIZE/);
} // Read ’count’ bytes at ’offset’ from kernel into physical address ’pa’.
// Might copy more than asked.
void
readseg(uchar* pa, uint count, uint offset)
{
uchar* epa; epa = pa + count; // Round down to sector boundary.
pa -= offset % SECTSIZE; // Translate from bytes to sectors; kernel starts at sector 1.
offset = (offset / SECTSIZE) + ; // If this is too slow, we could read lots of sectors at a time.
// We’d write more to memory than asked, but it doesn’t matter --
// we load in increasing order.
for(; pa < epa; pa += SECTSIZE, offset++)
readsect(pa, offset);
}

xv6/bootasm.S + xv6/bootmain.c的更多相关文章

  1. XV6源代码阅读-中断与系统调用

    Exercise1 源代码阅读 1.启动部分: bootasm.S bootmain.c 和xv6初始化模块:main.c bootasm.S 由16位和32位汇编混合编写成的XV6引导加载器.boo ...

  2. xv6 makefile

    1. xv6.img的构建 在makefile中 bootblock: bootasm.S bootmain.c $(CC) $(CFLAGS) -fno-pic -O -nostdinc -I. - ...

  3. xv6的作业翻译——作业1 - shell和系统调用

    Xv6的lecture LEC 1 Operating systems   L1: O/S overview L1:O/S概述   * 6.828 goals 6.828的目标   Understan ...

  4. ubuntu编译运行xv6

    最近想找个简单的类Unix系统学习下, xv6不错的, 所有代码加起来不到一万行,首先把代码跑起来还是很重要的. # 下载xv6源码并编译 git clone git://pdos.csail.mit ...

  5. xv6 + Qemu 在Ubuntu下编译运行教程【转】

    转自:https://blog.csdn.net/yinglang19941010/article/details/49310111 如果想要离线看教程,可以下载该 文档 一.使用工具说明 1.    ...

  6. XV6操作系统代码阅读心得(三):锁

    锁是操作系统中实现进程同步的重要机制. 基本概念 临界区(Critical Section)是指对共享数据进行访问与操作的代码区域.所谓共享数据,就是可能有多个代码执行流并发地执行,并在执行中可能会同 ...

  7. XV6学习(2)Lab syscall

    实验的代码放在了Github上. 第二个实验是Lab: system calls. 这个实验主要就是自己实现几个简单的系统调用并添加到XV6中. XV6系统调用 添加系统调用主要有以下几步: 在use ...

  8. XV6学习(1) Lab util

    正在学习MIT的6.S081,把做的实验写一写吧. 实验的代码放在了Github上. 第一个实验是Lab util,算是一个热身的实验,没有涉及到系统的底层,就是使用系统调用来完成几个用户模式的小程序 ...

  9. lab 1实验报告

    练习1:理解通过make生成执行文件的过程. 1.操作系统镜像文件ucore.img是如何一步一步生成的? 生成 bin/kern 部分 生成 init.o 生成 readline.o 生成 stdi ...

随机推荐

  1. jquery 添加与删除的规律 当要添加时候要定位到自己的父元素 当要删除时候 通过事件函数传入的this找到自己的父元素进行删除

    jquery 添加与删除的规律 当要添加时候要定位到自己的父元素  当要删除时候 通过事件函数传入的this找到自己的父元素进行删除

  2. js null表示没有取到html中的元素 undenfind 表示没有被赋值

    js null表示没有取到html中的元素 undenfind 表示没有被赋值

  3. TCP的拥塞控制 (三)

    1.   Multiple Packet Losses Fast Retransmit/Fast Recovery机制可以很好地处理单个packet丢失的问题,但当大量packet同时丢包时(一个RT ...

  4. 【EF】EntityFramework DBFirst的使用

    一.前言        久闻EF大名,之前做C/S产品用的是Dapper对SqlLite进行ORM.然后接触公司授权系统后发现用的是EntityFramework对SQLSever进行ORM.授权系统 ...

  5. 【WPF】日常笔记(持续更新)

    本文专用于记录WPF开发中的小细节,作为备忘录使用. 1. 关于绑定: Text ="{Binding AnchorageValue,Mode=TwoWay,UpdateSourceTrig ...

  6. 【BZOJ5251】【八省联考2018】劈配(网络流,二分答案)

    [BZOJ5251][八省联考2018]劈配(网络流,二分答案) 题面 洛谷 BZOJ Description 一年一度的综艺节目<中国新代码>又开始了. Zayid从小就梦想成为一名程序 ...

  7. ZJOI2018 D1

    归途的车上满是悲伤的气息 虽然早就预言到D1会滚粗,但一切都结束之后还是特别难过. 延时15min 50min T1 30pts 1.5h T2 10pts 2.5h T1 50pts 4.5h T3 ...

  8. BZOJ1002【FJOI2007】轮状病毒

    1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 6917  Solved: 3777[Submit][Statu ...

  9. Linux之Json20160705

    JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式.JSON采用完全独立于语言的文本格式,这些特性使JSON成为理想的数据交换语言.易于人阅读和编写,同时也易 ...

  10. Redundant data in update statements

    Q:   Hibernate generates UPDATE statements, which include all columns, regardless of whether I'm cha ...