上篇文章《 

Spark 源码解析 : DAGScheduler中的DAG划分与提交

》介绍了DAGScheduler的Stage划分算法。


本文继续分析Stage被封装成TaskSet,并将TaskSet提交到集群的Executor执行的过程

在DAGScheduler的submitStage方法中,将Stage划分完成,生成拓扑结构,当一个stage没有父stage时候,会调用DAGScheduler的submitMissingTasks方法来提交该stage包含tasks。
首先来分析一下DAGScheduler的submitMissingTasks方法

1.获取Task的最佳计算位置:
  1. val taskIdToLocations: Map[Int, Seq[TaskLocation]] = try {
  2. stage match {
  3. case s: ShuffleMapStage =>
  4. partitionsToCompute.map { id => (id, getPreferredLocs(stage.rdd, id))}.toMap
  5. case s: ResultStage =>
  6. val job = s.activeJob.get
  7. partitionsToCompute.map { id =>
  8. val p = s.partitions(id)
  9. (id, getPreferredLocs(stage.rdd, p))
  10. }.toMap
  11. }
  12. }

核心是其中的getPreferredLocs方法,根据RDD的数据信息得到task的最佳计算位置,从而获取较好的数据本地性。其中的细节这里先跳过,在以后的文章在做分析

2.序列化Task的Binary,并进行广播。Executor端在执行task时会向反序列化Task。

3.根据stage的不同类型创建,为stage的每个分区创建创建task,并封装成TaskSet。Stage分两种类型ShuffleMapStage生成ShuffleMapTask,ResultStage生成ResultTask。
  1. val tasks: Seq[Task[_]] = try {
  2. stage match {
  3. case stage: ShuffleMapStage =>
  4. partitionsToCompute.map { id =>
  5. val locs = taskIdToLocations(id)
  6. val part = stage.rdd.partitions(id)
  7. new ShuffleMapTask(stage.id, stage.latestInfo.attemptId,
  8. taskBinary, part, locs, stage.internalAccumulators)
  9. }
  10. case stage: ResultStage =>
  11. val job = stage.activeJob.get
  12. partitionsToCompute.map { id =>
  13. val p: Int = stage.partitions(id)
  14. val part = stage.rdd.partitions(p)
  15. val locs = taskIdToLocations(id)
  16. new ResultTask(stage.id, stage.latestInfo.attemptId,
  17. taskBinary, part, locs, id, stage.internalAccumulators)
  18. }
  19. }

4.调用TaskScheduler的submitTasks,提交TaskSet
  1. logInfo("Submitting " + tasks.size + " missing tasks from " + stage + " (" + stage.rdd + ")")
  2. stage.pendingPartitions ++= tasks.map(_.partitionId)
  3. logDebug("New pending partitions: " + stage.pendingPartitions)
  4. taskScheduler.submitTasks(new TaskSet(
  5. tasks.toArray, stage.id, stage.latestInfo.attemptId, jobId, properties))
  6. stage.latestInfo.submissionTime = Some(clock.getTimeMillis())

submitTasks方法的实现在TaskScheduler的实现类TaskSchedulerImpl中。

4.1 TaskSchedulerImpl的submitTasks方法首先创建TaskSetManager。
  1. val manager = createTaskSetManager(taskSet, maxTaskFailures)
  2. val stage = taskSet.stageId
  3. val stageTaskSets =
  4. taskSetsByStageIdAndAttempt.getOrElseUpdate(stage, new HashMap[Int, TaskSetManager])
  5. stageTaskSets(taskSet.stageAttemptId) = manager

TaskSetManager负责管理TaskSchedulerImpl中一个单独TaskSet,跟踪每一个task,如果task失败,负责重试task直到达到task重试次数的最多次数。并且通过延迟调度来执行task的位置感知调度。

  1. private[spark] class TaskSetManager(
  2. sched: TaskSchedulerImpl,//绑定的TaskSchedulerImpl
  3. val taskSet: TaskSet,
  4. val maxTaskFailures: Int, //失败最大重试次数
  5. clock: Clock = new SystemClock())
  6. extends Schedulable with Logging

4.2 将TaskSetManger加入schedulableBuilder
  1. schedulableBuilder.addTaskSetManager(manager, manager.taskSet.properties) //将TaskSetManager加入rootPool调度池中,由schedulableBuilder决定调度顺序

schedulableBuilder的类型是 SchedulerBuilder,SchedulerBuilder是一个trait,有两个实现FIFOSchedulerBuilder和 FairSchedulerBuilder,并且默认采用的是FIFO方式

  1. // default scheduler is FIFO
  2. private val schedulingModeConf = conf.get("spark.scheduler.mode", "FIFO")

而schedulableBuilder的创建是在SparkContext创建SchedulerBackend和TaskScheduler后调用TaskSchedulerImpl的初始化方法进行创建的。

  1. def initialize(backend: SchedulerBackend) {
  2. this.backend = backend
  3. // temporarily set rootPool name to empty
  4. rootPool = new Pool("", schedulingMode, 0, 0)
  5. schedulableBuilder = {
  6. schedulingMode match {
  7. case SchedulingMode.FIFO =>
  8. new FIFOSchedulableBuilder(rootPool)
  9. case SchedulingMode.FAIR =>
  10. new FairSchedulableBuilder(rootPool, conf)
  11. }
  12. }
  13. schedulableBuilder.buildPools()
  14. }

schedulableBuilder是TaskScheduler中一个重要成员,他根据调度策略决定了TaskSetManager的调度顺序。

4.3 接下来调用SchedulerBackend的riviveOffers方法对Task进行调度,决定task具体运行在哪个Executor中。

调用CoarseGrainedSchedulerBackend的riviveOffers方法,该方法给driverEndpoint发送ReviveOffer消息

  1. override def reviveOffers() {
  2. driverEndpoint.send(ReviveOffers)
  3. }

driverEndpoint收到ReviveOffer消息后调用makeOffers方法
  1. // Make fake resource offers on all executors
  2. private def makeOffers() {
  3. //过滤出活跃状态的Executor
  4. val activeExecutors = executorDataMap.filterKeys(executorIsAlive)
  5.      //将Executor封装成WorkerOffer对象
  6. val workOffers = activeExecutors.map { case (id, executorData) =>
  7. new WorkerOffer(id, executorData.executorHost, executorData.freeCores)
  8. }.toSeq

  9. launchTasks(scheduler.resourceOffers(workOffers))
  10. }

注意:上面代码中的executorDataMap,在客户的向Master注册Application的时候,Master已经为Application分配并启动好Executor,然后注册给CoarseGrainedSchedulerBackend,注册信息就是存储在executorDataMap数据结构中。

准备好计算资源后,接下来TaskSchedulerImpl基于这些计算资源为task分配Executor。
我们看一下TaskSchedulerImpl的resourceOffers方法:

  1. // 随机打乱offers
  2. val shuffledOffers = Random.shuffle(offers)

  3. // 构建一个二维数组,保存每个Executor上将要分配的那些task
  4. val tasks = shuffledOffers.map(o => new ArrayBuffer[TaskDescription](o.cores))
  5. val availableCpus = shuffledOffers.map(o => o.cores).toArray
  1.  
  2.    //根据SchedulerBuilder的调度算法,给TaskManager排好序
    1. val sortedTaskSets = rootPool.getSortedTaskSetQueue
  3. for (taskSet <- sortedTaskSets) {
  4. logDebug("parentName: %s, name: %s, runningTasks: %s".format(
  5. taskSet.parent.name, taskSet.name, taskSet.runningTasks))
  6. if (newExecAvail) {
  7. taskSet.executorAdded()
  8. }
  9. }
  10. // 使用双重循环,对每一个taskset 依照调度的顺序,依次按照本地性级别顺序尝试启动task
  11. // 数据本地性级别顺序: PROCESS_LOCAL, NODE_LOCAL, NO_PREF, RACK_LOCAL, ANY
  12. var launchedTask = false
  13. for (taskSet <- sortedTaskSets; maxLocality <- taskSet.myLocalityLevels) {
  14. do {
  15. launchedTask = resourceOfferSingleTaskSet(
  16. taskSet, maxLocality, shuffledOffers, availableCpus, tasks)
  17. } while (launchedTask)
  18. }
  19. if (tasks.size > 0) {
  20. hasLaunchedTask = true
  21. }
  22. return tasks

下面看看 resourceOfferSingleTaskSet 方法:
用当前的数据本地性,调用TaskSetManager的resourceOffer方法,在当前executor上分配task
  1. private def resourceOfferSingleTaskSet(
  2. taskSet: TaskSetManager,
  3. maxLocality: TaskLocality,
  4. shuffledOffers: Seq[WorkerOffer],
  5. availableCpus: Array[Int],
  6. tasks: Seq[ArrayBuffer[TaskDescription]]) : Boolean = {
  7. var launchedTask = false
  8. for (i <- 0 until shuffledOffers.size) {
  9. val execId = shuffledOffers(i).executorId
  10. val host = shuffledOffers(i).host
  11.        //如果executor 的cup数大于 每个task的cup数目(值为1)
  12. if (availableCpus(i) >= CPUS_PER_TASK) {
  13. try {
  14.        //
  15. for (task <- taskSet.resourceOffer(execId, host, maxLocality)) {
  16. tasks(i) += task
  17. val tid = task.taskId
  18. taskIdToTaskSetManager(tid) = taskSet
  19. taskIdToExecutorId(tid) = execId
  20. executorIdToTaskCount(execId) += 1
  21. executorsByHost(host) += execId
  22. availableCpus(i) -= CPUS_PER_TASK
  23. assert(availableCpus(i) >= 0)
  24. launchedTask = true
  25. }
  26. }

为Task分配好资源之后,DriverEndpint调用launchTask方法将task在Executor上启动运行。task在Executor上的启动运行过程,在后面的文章中会继续分析,敬请关注。

总结一下调用过程:
TaskSchedulerImpl#submitTasks
CoarseGrainedSchedulerBackend#riviveOffers
CoarseGrainedSchedulerBackend$DriverEndpoint#makeOffers
  |-TaskSchedulerImpl#resourceOffers(offers) 为offers分配task 
    |- TaskSchedulerImpl#resourceOfferSingleTaskSet
CoarseGrainedSchedulerBackend$DriverEndpoint#launchTask





Spark 源码解析:TaskScheduler的任务提交和task最佳位置算法的更多相关文章

  1. [Spark内核] 第34课:Stage划分和Task最佳位置算法源码彻底解密

    本課主題 Job Stage 划分算法解密 Task 最佳位置算法實現解密 引言 作业调度的划分算法以及 Task 的最佳位置的算法,因为 Stage 的划分是DAGScheduler 工作的核心,这 ...

  2. [源码解析]Oozie来龙去脉之提交任务

    [源码解析]Oozie来龙去脉之提交任务 0x00 摘要 Oozie是由Cloudera公司贡献给Apache的基于工作流引擎的开源框架,是Hadoop平台的开源的工作流调度引擎,用来管理Hadoop ...

  3. [源码解析] 并行分布式任务队列 Celery 之 Task是什么

    [源码解析] 并行分布式任务队列 Celery 之 Task是什么 目录 [源码解析] 并行分布式任务队列 Celery 之 Task是什么 0x00 摘要 0x01 思考出发点 0x02 示例代码 ...

  4. [源码解析] PyTorch 如何实现后向传播 (4)---- 具体算法

    [源码解析] PyTorch 如何实现后向传播 (4)---- 具体算法 目录 [源码解析] PyTorch 如何实现后向传播 (4)---- 具体算法 0x00 摘要 0x01 工作线程主体 1.1 ...

  5. Stage划分和Task最佳位置算法源码彻底解密

    本课主题 Job Stage 划分算法解密 Task 最佳位置算法实现解密 引言 作业调度的划分算法以及 Task 的最佳计算位置的算法,因为 Stage 的划分是DAGScheduler 工作的核心 ...

  6. Spark 源码解析 : DAGScheduler中的DAG划分与提交

    一.Spark 运行架构 Spark 运行架构如下图: 各个RDD之间存在着依赖关系,这些依赖关系形成有向无环图DAG,DAGScheduler对这些依赖关系形成的DAG,进行Stage划分,划分的规 ...

  7. Spark源码分析 -- TaskScheduler

    Spark在设计上将DAGScheduler和TaskScheduler完全解耦合, 所以在资源管理和task调度上可以有更多的方案 现在支持, LocalSheduler, ClusterSched ...

  8. Spark源码分析之四:Stage提交

    各位看官,上一篇<Spark源码分析之Stage划分>详细讲述了Spark中Stage的划分,下面,我们进入第三个阶段--Stage提交. Stage提交阶段的主要目的就一个,就是将每个S ...

  9. Scala实战高手****第4课:零基础彻底实战Scala控制结构及Spark源码解析

    1.环境搭建 基础环境配置 jdk+idea+maven+scala2.11.以上工具安装配置此处不再赘述. 2.源码导入 官网下载spark源码后解压到合适的项目目录下,打开idea,File-&g ...

随机推荐

  1. 「Django」rest_framework学习系列-序列化

    序列化方式一 :在业务类里序列化数据库数据 class RolesView(APIView): def get(self,request,*args,**kwargs): roles = models ...

  2. fastjson的@JSONField注解的一点问题

    @JSONField 看源码它可以作用于字段和方法上. 引用网上说的, 一.作用Field @JSONField作用在Field时,其name不仅定义了输入key的名称,同时也定义了输出的名称. 但是 ...

  3. extjs grid demo

    Ext.onReady(function () { var store = Ext.create('Ext.data.Store', { fields: ['id', 'name', 'account ...

  4. Oracl闪回数据命令。

    当数据库操作没有备份,并且误删数据.可闪回任何 当前闪回15分钟前数据库状态.  alter table BASE_APPOINT_LOG enable row movement;flashback  ...

  5. CSS3之伪元素选择器和伪类选择器

    伪类选择器,和一般的DOM中的元素样式不一样,它并不改变任何DOM内容.只是插入了一些修饰类的元素,这些元素对于用户来说是可见的,但是对于DOM来说不可见.伪类的效果可以通过添加一个实际的类来达到. ...

  6. Shell编程——bash基础知识

    # Bash中自动补全时忽略大小写 # 编辑~/.inputrc(没有的话,就新建一个),在最后加一行: set completion-ignore-case on # 若要用方向键Up,Down来搜 ...

  7. Java并发编程学习路线

    一年前由于工作需要从微软技术栈入坑Java,并陆陆续续做了一个Java后台项目,目前在搞Scala+Java混合的后台开发,一直觉得并发编程是所有后台工程师的基本功,所以也学习了小一年Java的并发工 ...

  8. 持续集成工具Jenkins安装、部署、使用

    本文介绍jenkins,利用其做项目发布与持续集成交付工具. 一.Jenkins是什么? Jenkins是基于Java开发的一种持续集成工具,用于监控持续重复的工作,功能包括: 1.持续的软件版本发布 ...

  9. 简单漂亮的php验证码函数

    /* *说明:函数功能是生成验证码 * 参数说明:输入 长度,宽度,高度 */ function vcode($_code_length = , $_width = , $_height = ){ $ ...

  10. Docker微容器Alpine Linux

    Alpine 操作系统是一个面向安全的轻型 Linux 发行版. 它不同于通常 Linux 发行版,Alpine 采用了 musl libc 和 busybox 以减小系统的体积和运行时资源消耗,但功 ...