python kd树 搜索 代码
kd树就是一种对k维空间中的实例点进行存储以便对其进行快速检索的树形数据结构,可以运用在k近邻法中,实现快速k近邻搜索。构造kd树相当于不断地用垂直于坐标轴的超平面将k维空间切分,依次选择坐标轴对空间进行切分,选择训练实例点在选定坐标轴上的中位数为切分点。具体kd树的原理可以参考kd树的原理。
代码是参考《统计学习方法》k近邻 kd树的python实现得到
首先创建一个类,用于表示树的节点,包括:该节点的值,用于划分左右子树的切分轴,左子树,右子树
class decisionnode:
def __init__(self,value=None,col=None,rb=None,lb=None):
self.value=value
self.col=col
self.rb=rb
self.lb=lb
切分点为坐标轴上的中值,下面代码求得一个序列的中值
def median(x):
n=len(x)
x=list(x)
x_order=sorted(x)
return x_order[n//2],x.index(x_order[n//2])
然后就可以构造一颗kd树,左子树小于切分点,右子树大于切分点,data是输入的数据
def buildtree(x,j=0):
rb=[]
lb=[]
m,n=x.shape
if m==0: return None
edge,row=median(x[:,j].copy())
for i in range(m):
if x[i][j]>edge:
rb.append(i)
if x[i][j]<edge:
lb.append(i)
rb_x=x[rb,:]
lb_x=x[lb,:]
rightBranch=buildtree(rb_x,(j+1)%n)
leftBranch=buildtree(lb_x,(j+1)%n)
return decisionnode(x[row,:],j,rightBranch,leftBranch)
接下来是树的搜索过程,可以用下图表示树的搜索过程,具体过程可以参考kd树的原理。

代码如下:
#搜索树:nearestPoint,nearestValue均为全局变量
def traveltree(node,point):
global nearestPoint,nearestValue
if node==None: return
print(node.value)
print('---')
col=node.col
if point[col]>node.value[col]:
traveltree(node.rb,point)
if point[col]<node.value[col]:
traveltree(node.lb,point)
dis=dist(node.value,point)
print(dis)
if dis<nearestValue:
nearestPoint=node
nearestValue=dis
#print('nearestPoint,nearestValue' % (nearestPoint,nearestValue))
if node.rb!=None or node.lb!=None:
if abs(point[node.col] - node.value[node.col]) < nearestValue:
if point[node.col]<node.value[node.col]:
traveltree(node.rb,point)
if point[node.col]>node.value[node.col]:
traveltree(node.lb,point) def searchtree(tree,aim):
global nearestPoint,nearestValue
#nearestPoint=None
nearestValue=float('inf')
traveltree(tree,aim)
return nearestPoint def dist(x1, x2): #欧式距离的计算
return ((np.array(x1) - np.array(x2)) ** 2).sum() ** 0.5
完整代码在此处取
import numpy as np
from numpy import array
class decisionnode:
def __init__(self,value=None,col=None,rb=None,lb=None):
self.value=value
self.col=col
self.rb=rb
self.lb=lb #读取数据并将数据转换为矩阵形式
def readdata(filename):
data=open(filename).readlines()
x=[]
for line in data:
line=line.strip().split('\t')
x_i=[]
for num in line:
num=float(num)
x_i.append(num)
x.append(x_i)
x=array(x)
return x #求序列的中值
def median(x):
n=len(x)
x=list(x)
x_order=sorted(x)
return x_order[n//2],x.index(x_order[n//2]) #以j列的中值划分数据,左小右大,j=节点深度%列数
def buildtree(x,j=0):
rb=[]
lb=[]
m,n=x.shape
if m==0: return None
edge,row=median(x[:,j].copy())
for i in range(m):
if x[i][j]>edge:
rb.append(i)
if x[i][j]<edge:
lb.append(i)
rb_x=x[rb,:]
lb_x=x[lb,:]
rightBranch=buildtree(rb_x,(j+1)%n)
leftBranch=buildtree(lb_x,(j+1)%n)
return decisionnode(x[row,:],j,rightBranch,leftBranch) #搜索树:nearestPoint,nearestValue均为全局变量
def traveltree(node,point):
global nearestPoint,nearestValue
if node==None: return
print(node.value)
print('---')
col=node.col
if point[col]>node.value[col]:
traveltree(node.rb,point)
if point[col]<node.value[col]:
traveltree(node.lb,point)
dis=dist(node.value,point)
print(dis)
if dis<nearestValue:
nearestPoint=node
nearestValue=dis
#print('nearestPoint,nearestValue' % (nearestPoint,nearestValue))
if node.rb!=None or node.lb!=None:
if abs(point[node.col] - node.value[node.col]) < nearestValue:
if point[node.col]<node.value[node.col]:
traveltree(node.rb,point)
if point[node.col]>node.value[node.col]:
traveltree(node.lb,point) def searchtree(tree,aim):
global nearestPoint,nearestValue
#nearestPoint=None
nearestValue=float('inf')
traveltree(tree,aim)
return nearestPoint def dist(x1, x2): #欧式距离的计算
return ((np.array(x1) - np.array(x2)) ** 2).sum() ** 0.5
kdtree
python kd树 搜索 代码的更多相关文章
- kd树 求k近邻 python 代码
之前两篇随笔介绍了kd树的原理,并用python实现了kd树的构建和搜索,具体可以参考 kd树的原理 python kd树 搜索 代码 kd树常与knn算法联系在一起,knn算法通常要搜索k近邻, ...
- RobHess的SIFT代码解析之kd树
平台:win10 x64 +VS 2015专业版 +opencv-2.4.11 + gtk_-bundle_2.24.10_win32 主要参考:1.代码:RobHess的SIFT源码:SIFT+KD ...
- KNN算法与Kd树
最近邻法和k-近邻法 下面图片中只有三种豆,有三个豆是未知的种类,如何判定他们的种类? 提供一种思路,即:未知的豆离哪种豆最近就认为未知豆和该豆是同一种类.由此,我们引出最近邻算法的定义:为了判定未知 ...
- 从K近邻算法谈到KD树、SIFT+BBF算法
转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章 ...
- C# 通过KD树进行距离最近点的查找.
本文首先介绍Kd-Tree的构造方法,然后介绍Kd-Tree的搜索流程及代码实现,最后给出本人利用C#语言实现的二维KD树代码.这也是我自己动手实现的第一个树形的数据结构.理解上难免会有偏差,敬请各位 ...
- <转>从K近邻算法、距离度量谈到KD树、SIFT+BBF算法
转自 http://blog.csdn.net/likika2012/article/details/39619687 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经 ...
- 从K近邻算法、距离度量谈到KD树、SIFT+BBF算法
转载自:http://blog.csdn.net/v_july_v/article/details/8203674/ 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说: ...
- 02-17 kd树
目录 kd树 一.kd树学习目标 二.kd树引入 三.kd树详解 3.1 构造kd树 3.1.1 示例 3.2 kd树搜索 3.2.1 示例 四.kd树流程 4.1 输入 4.2 输出 4.3 流程 ...
- k临近法的实现:kd树
# coding:utf-8 import numpy as np import matplotlib.pyplot as plt T = [[2, 3], [5, 4], [9, 6], [4, 7 ...
随机推荐
- linux信号的介绍
1.基本概念 中断: 中断是系统对于异步事件的响应 中断信号 中断源 现场信息 中断处理程序 中断向量表 ...
- Commons FileUpload
转载自(https://my.oschina.net/u/2000201/blog/486744) 1 概述 Commons FileUpdate包很容易为你的Servlet和web应用程序添加 ...
- Spring中RestTemplate进行Http调用
Spring中的RestTemplate类源自spring-web,http调用中设置超时时间.设置连接池管理等非常重要,保证了系统的可用性,避免了长时间连接不上或者等待数据返回,拖垮系统. 现贴出工 ...
- Task作为返回值以及Task<TResult>作为返回值
async await return Task https://stackoverflow.com/questions/25191512/async-await-return-task Can som ...
- python ConfigParse模块(转)
最近写程序要用到配置文件,那么配置文件的解析就很重要了,下文转自chinaunix 一.ConfigParser简介 ConfigParser 是用来读取配置文件的包.配置文件的格式如下:中括号“[ ...
- 洛谷P3601 签到题
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- vue-cli router的使用
用了很久这个vue-cli到现在连入门都算不了,为了防止忘记还是很有必要记一下随笔的. 关于vue-cli中的router的使用,, 我将所有页面都存放在components文件夹下, 灰后通过rou ...
- (3) iOS开发之UI处理-UIView篇
在UIView作为许多子控件的容器的时候,首先我们需要动态的计算出UIView下的所有子控件的高度,并布局排列好,然后我们还要把作为容器的UIView的高度调整到刚好包裹着所有子控件,不会过矮,也不会 ...
- B-Tree和B+Tree
目前大部分数据库系统及文件系统都采用B-Tree或其变种B+Tree作为索引结构,在本文的下一节会结合存储器原理及计算机存取原理讨论为什么B-Tree和B+Tree在被如此广泛用于索引,这一节先单纯从 ...
- OLT配置学习
1.console连接跟一般交换机一样,不赘述 2.修改系统名称 Add Hostname/Device Name: huawei(config)#system sys-info descriptio ...