【BZOJ】1044: [HAOI2008]木棍分割(二分+dp)
http://www.lydsy.com/JudgeOnline/problem.php?id=1044
如果只求最大的最小,,直接二分就行了。。。可是要求方案。。
好神!
我竟然想不到!
因为我们得到的答案已经是最大的最小了,那么我们只要在每一次切割的时候,保证连续的每一段不超过ans即可,这就是方案数!
orz
所以设d[i,j]表示前j个切了i次,那么d[i,j]=sum{d[i-1, k], sum[j]-sum[k]<=ans}
这个二维可以变成一维,sum[j]-sum[k]的k具有单调性,所以我们维护一下k就行了。
#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define pii pair<int, int>
#define mkpii make_pair<int, int>
#define pdi pair<double, int>
#define mkpdi make_pair<double, int>
#define pli pair<ll, int>
#define mkpli make_pair<ll, int>
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
#define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=50005, MD=10007;
int n, a[N], sum[N], f[N], d[N], m, ans; bool check(int x) {
int tot=0, s=0;
for1(i, 1, n) {
if(a[i]>x) return false;
s+=a[i];
if(s>x) { s=a[i]; ++tot; }
if(tot>m) return false;
}
return true;
} int main() {
read(n); read(m);
int l=1, r=0;
for1(i, 1, n) read(a[i]), r+=a[i], sum[i]=sum[i-1]+a[i];
while(l<=r) {
int mid=(l+r)>>1;
if(check(mid)) r=mid-1;
else l=mid+1;
}
ans=r+1;
printf("%d", ans);
for1(i, 0, n) if(sum[i]<=ans) d[i]=1; else break;
for1(j, 1, m) {
int k=0;
f[0]=d[0];
for1(i, 1, n) f[i]=(f[i-1]+d[i])%MD;
for1(i, j+1, n) {
while(k<i && sum[i]-sum[k]>ans) ++k;
d[i]=(f[i-1]-f[k-1]+MD)%MD;
}
// for1(i, j+1, n) {
// for1(k, 0, i-1) if(sum[i]-sum[k]<=ans) d[i][j]=(d[i][j]+d[k][j-1]);
// }
}
printf(" %d\n", d[n]);
return 0;
}
Description
有n根木棍, 第i根木棍的长度为Li,n根木棍依次连结了一起, 总共有n-1个连接处. 现在允许你最多砍断m个连接处, 砍完后n根木棍被分成了很多段,要求满足总长度最大的一段长度最小, 并且输出有多少种砍的方法使得总长度最大的一段长度最小. 并将结果mod 10007。。。
Input
输入文件第一行有2个数n,m. 接下来n行每行一个正整数Li,表示第i根木棍的长度.
Output
输出有2个数, 第一个数是总长度最大的一段的长度最小值, 第二个数是有多少种砍的方法使得满足条件.
Sample Input
1
1
10
Sample Output
HINT
两种砍的方法: (1)(1)(10)和(1 1)(10)
数据范围
n<=50000, 0<=m<=min(n-1,1000).
1<=Li<=1000.
Source
【BZOJ】1044: [HAOI2008]木棍分割(二分+dp)的更多相关文章
- BZOJ 1044: [HAOI2008]木棍分割(二分答案 + dp)
第一问可以二分答案,然后贪心来判断. 第二问dp, dp[i][j] = sigma(dp[k][j - 1]) (1 <= k <i, sum[i] - sum[k] <= ans ...
- [BZOJ 1044] [HAOI2008] 木棍分割 【二分 + DP】
题目链接:BZOJ 1044 第一问是一个十分显然的二分,贪心Check(),很容易就能求出最小的最大长度 Len . 第二问求方案总数,使用 DP 求解. 使用前缀和,令 Sum[i] 为前 i 根 ...
- BZOJ 1044: [HAOI2008]木棍分割
Description 求 \(n\) 根木棍长度为 \(L\) ,分成 \(m\) 份,使最长长度最短,并求出方案数. Sol 二分+DP. 二分很简单啊,然后就是方案数的求法. 状态就是 \(f[ ...
- 【bzoj1044】[HAOI2008]木棍分割 二分+dp
题目描述 有n根木棍, 第i根木棍的长度为Li,n根木棍依次连结了一起, 总共有n-1个连接处. 现在允许你最多砍断m个连接处, 砍完后n根木棍被分成了很多段,要求满足总长度最大的一段长度最小, 并且 ...
- Luogu P2511 [HAOI2008]木棍分割 二分+DP
思路:二分+DP 提交:3次 错因:二分写萎了,$cnt$记录段数但没有初始化成$1$,$m$切的次数没有$+1$ 思路: 先二分答案,不提: 然后有个很$naive$的$DP$: 设$f[i][j] ...
- 【BZOJ】1044: [HAOI2008]木棍分割 二分+区间DP
链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1044 Description 有n根木棍, 第i根木棍的长度为Li,n根木棍依次连结了一起, ...
- bzoj 1044 [HAOI2008]木棍分割(二分+贪心,DP+优化)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1044 [题意] n根木棍拼到一起,最多可以切m刀,问切成后最大段的最小值及其方案数. ...
- bzoj 1044: [HAOI2008]木棍分割【二分+dp】
对于第一问二分然后贪心判断即可 对于第二问,设f[i][j]为已经到j为止砍了i段,转移的话从$$ f[i][j]=\sigema f[k][j-1] (s[j]-s[k-1]<=ans) 这里 ...
- BZOJ 1044: [HAOI2008]木棍分割 DP 前缀和优化
题目链接 咳咳咳,第一次没大看题解做DP 以前的我应该是这样的 哇咔咔,这tm咋做,不管了,先看个题解,再写代码 终于看懂了,卧槽咋写啊,算了还是抄吧 第一问类似于noip的那个跳房子,随便做 这里重 ...
- bzoj 1044 [HAOI2008]木棍分割——前缀和优化dp
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1044 前缀和优化. 但开成long long会T.(仔细一看不用开long long) #i ...
随机推荐
- 娓娓道来c指针 (4)解析c的声明语句
(4)解析c的声明语句 在继续探索c指针之前.有必要来解析下c语言中复杂的声明语法. 仅仅须要记住两则:一个原则,一个规则. 原则:先看标示符. 规则:运算符优先级是规则. 举例说明 1.最简单的 i ...
- 关于Javascript表单验证
//验证字符串非空 var Validator = { VerityLib: { IsNotEmpty: function (input) { if ...
- OFBiz实战(1):整合Groovy+FreeMaker
这是OFBiz实战系列的第一篇文件,该系列的目的是整合Groovy+FreeMaker开发一个图书管理系统,阐述在此过程中碰到的一系列问题,以及如何解决这些问题.第一篇文章说明如何使用Groovy+F ...
- PHP-WebService中Endpoint、Disco、WSDL都是做什么的?
Endpoint: http://webservice.webxml.com.cn/WebServices/WeatherWS.asmx web服务的URI地址,你访问之后,就会出现web服务的相 ...
- STS(Spring Tool Suite)使用maven添加jar包
打开:http://mvnrepository.com/ 搜索:hibernate 或者:http://search.maven.org 搜索:hibernate-core 两种方式都可以添加jar包 ...
- Redis集群的安装测试(伪分布模式 - 主从复制)
想跑一下Redis集群,但是没有那么多服务器,所以使用伪分布式模式,模拟一下,记录一下安装过程. 软件: redis-3.0.3.tar.gz 集群正常工作至少需要3个主节点(本示例创建6个节点,3主 ...
- 摘:通过ICursor对Table进行操作(添加、修改、删除)
通过ICursor对Table进行操作(添加.修改.删除) 连接上数据表的目的就是对其进行包括浏览.添加.修改.删除等基本操作. 浏览功能,之前文章中一提到,就是将Itable转换为DataTable ...
- 《开源框架那点事儿23》:採用TinyDB组件方式开发
採用TinyDB组件方式开发 步骤 Icon 前文介绍四则运算的流程编程开发时,说过流程编排在开发反复功能时.能够利用已有的组件库高速开发.对于开发者而言仅仅须要简单配置流程就能够完毕工作了.开发增删 ...
- 使用while循环和伪列的存储过程
使用while循环和伪列的存储过程如下: USE [JointFrame2] GO /****** Object: StoredProcedure [dbo].[Proc_enterprise_uni ...
- Linux安装Scala步骤
1.到官方下载tgz的安装包. http://www.scala-lang.org/download/ 注意:在最下面的Other Resources中 2.下载后将压缩包放在/usr/local目录 ...