The Circumference of the Circle


Time Limit: 2 Seconds      Memory Limit: 65536 KB

To calculate the circumference of a circle seems to be an easy task - provided you know its diameter. But what if you don't?

You are given the cartesian coordinates of three non-collinear points in the plane.
Your job is to calculate the circumference of the unique circle that intersects all three points.

Input Specification

The input file will contain one or more test cases. Each test case consists of one line containing six real numbers x1,y1, x2,y2,x3,y3, representing the coordinates of the three points. The diameter of the circle determined by the three points will never exceed a million. Input is terminated by end of file.

Output Specification

For each test case, print one line containing one real number telling the circumference of the circle determined by the three points. The circumference is to be printed accurately rounded to two decimals. The value of pi is approximately 3.141592653589793.

Sample Input

0.0 -0.5 0.5 0.0 0.0 0.5
0.0 0.0 0.0 1.0 1.0 1.0
5.0 5.0 5.0 7.0 4.0 6.0
0.0 0.0 -1.0 7.0 7.0 7.0
50.0 50.0 50.0 70.0 40.0 60.0
0.0 0.0 10.0 0.0 20.0 1.0
0.0 -500000.0 500000.0 0.0 0.0 500000.0

Sample Output

3.14
4.44
6.28
31.42
62.83
632.24
3141592.65

  

  计算几何,求三角形外心

  题意是给你三个点,让你求穿过这三个点的圆的周长。很显然,这个圆是这三个点构成的三角形的外接圆,只要求出这个外接圆的圆心,就能确定半径r,进而求得外接圆的周长。外接圆的圆心就是三角形的外心,外心的求法是三角新任意两边的垂直平分线线的交点(外心到三角形任意一个顶点的距离相等)。

  那么这个题的重心就转移到了求三角形的外心。我是用解析几何的解法做的,因为知道两点的坐标,可以求出任意两条边的斜截式(y=kx+b)的斜率k和截距b,根据垂直的两条直线k1*k2=-1,求出垂直平分线的斜率,然后在根据边的中点可以写出任意两条边的垂直平分线的斜截式。最后联立三角形两条边的垂直平分线的方程,求得交点,就是三角形的外心。

  需要注意的是,有一条边斜率是0的情况,这条边的垂直平分线的斜率是不存在的(因为是垂直的),所以需要拿出来特殊考虑。

  用解析几何做可能会伤精度,但是应付这道题是够了,有时间把其他做法贴上来。

  代码

 #include <stdio.h>
#include <math.h>
#define PI 3.141592653589793
typedef struct { //定义点
double x,y;
} Point;
double dis(Point a,Point b) //两点距离
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
Point getWai(Point a,Point b,Point c) //解析几何方法,求三角形abc的外心
{
Point w;
Point cen1,cen2; //边ab和边ac的中点
cen1.x = (a.x+b.x)/;
cen1.y = (a.y+b.y)/;
cen2.x = (a.x+c.x)/;
cen2.y = (a.y+c.y)/;
if(a.y==b.y){ //ab的垂线垂直,不存在斜率k的情况
double k2 = -1.0/((a.y-c.y)/(a.x-c.x));
double b2 = cen2.y - k2*cen2.x;
w.x = cen1.x;
w.y = cen1.x*k2 + b2;
return w;
}
else if(a.y==c.y){ //ac的垂线垂直
double k1 = -1.0/((a.y-b.y)/(a.x-b.x));
double b1 = cen1.y - k1*cen1.x;
w.x = cen2.x;
w.y = cen2.x*k1 + b1;
return w;
}
else { //不存在垂线垂直的情况
double k1 = -1.0/((a.y-b.y)/(a.x-b.x));
double b1 = cen1.y - k1*cen1.x;
double k2 = -1.0/((a.y-c.y)/(a.x-c.x));
double b2 = cen2.y - k2*cen2.x;
w.x = (b2-b1)/(k1-k2);
w.y = k1*w.x+b1;
return w;
}
}
int main()
{
Point a,b,c; //三角形的三点
while(scanf("%lf%lf%lf%lf%lf%lf",&a.x,&a.y,&b.x,&b.y,&c.x,&c.y)!=EOF){
Point w = getWai(a,b,c);
double r = dis(w,a);
printf("%.2lf\n",*PI*r);
}
return ;
}

Freecode : www.cnblogs.com/yym2013

poj 1090:The Circumference of the Circle(计算几何,求三角形外心)的更多相关文章

  1. ZOJ Problem Set - 1090——The Circumference of the Circle

      ZOJ Problem Set - 1090 The Circumference of the Circle Time Limit: 2 Seconds      Memory Limit: 65 ...

  2. ZOJ 1090 The Circumference of the Circle

    原题链接 题目大意:已知三角形的三个顶点坐标,求其外接圆的周长. 解法:刚看到这道题时,马上拿出草稿纸画图,想推导出重心坐标,然后求出半径,再求周长.可是这个过程太复杂了,写到一半就没有兴致了,还是求 ...

  3. POJ 2242 The Circumference of the Circle

    做题回顾:用到海伦公式,还有注意数据类型,最好统一 p=(a+b+c)/2; s=sqrt(p*(p-a)*(p-b)*(p-c));//三角形面积,海伦公式 r=a*b*c/(4*s);//这是外接 ...

  4. POJ 2986 A Triangle and a Circle 圆与三角形的公共面积

    计算几何模板 #include<stdio.h> #include<string.h> #include<stdlib.h> #include<math.h& ...

  5. F - The Circumference of the Circle

    Description To calculate the circumference of a circle seems to be an easy task - provided you know ...

  6. UVa 11437:Triangle Fun(计算几何综合应用,求直线交点,向量运算,求三角形面积)

    Problem ATriangle Fun Input: Standard Input Output: Standard Output In the picture below you can see ...

  7. POJ 2251 Dungeon Master --- 三维BFS(用BFS求最短路)

    POJ 2251 题目大意: 给出一三维空间的地牢,要求求出由字符'S'到字符'E'的最短路径,移动方向可以是上,下,左,右,前,后,六个方向,每移动一次就耗费一分钟,要求输出最快的走出时间.不同L层 ...

  8. hdu 2105:The Center of Gravity(计算几何,求三角形重心)

    The Center of Gravity Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  9. 【POJ 2195】 Going Home(KM算法求最小权匹配)

    [POJ 2195] Going Home(KM算法求最小权匹配) Going Home Time Limit: 1000MS   Memory Limit: 65536K Total Submiss ...

随机推荐

  1. 查看sqlserver 2008中性能低下的语句

    经常使用这个语句来查看性能低下的sql语句: SELECT creation_time N'语句编译时间' ,last_execution_time N'上次执行时间' ,total_physical ...

  2. Oracle url编码与解码

      Oracle url编码与解码 CreateTime--2018年3月30日17:26:36 Author:Marydon 一.url编码 实现方式:utl_url.escape() 说明:utl ...

  3. linux sort 、uniq 命令

    以文件的每行为单位,从左往右依次按ascii码进行比较 sort sort.txt #默认为升序 -u:去除重复行 sort -u sort.txt -r:降序排列 sort -r sort.txt ...

  4. 关于为什么要在项目中使用FTP文件服务器

    传统的上传一般做法是http上传,后台接收文件流,然后写入到服务器本地硬盘的某个位置. 如果我们想把文件单独存放在别的服务器上,那就可以借助ftp服务器了. 上传的流程则变为,http上传,后台接收文 ...

  5. JSP,PHP,Python,Ruby,Perl概要及各自特点

    JSP,PHP,Python,Ruby,Perl概要及各自特点 博客分类: JSP PHP Python Ruby Perl概要及各自特点 javascript  互联网技术日新月异,编程的语言层出不 ...

  6. 如何配置 Oracle VirtualBox 中的客户机与物理机网络

    当你在 Oracle VirtualBox 虚拟机软件 中安装了各种操作系统时,你可能需要实现物理机与虚拟机之间的相互访问. 在这篇文章中,我们将会以最简单明了的方式来说明如何配置客户机与 Linux ...

  7. 这些小工具让你的Android 开发更高效

    在做Android 开发过程中,会遇到一些小的问题.尽管自己动手也能解决.可是有了一些小工具,解决这些问题就得心应手了,今天就为大家推荐一下Android 开发遇到的小工具,来让你的开发更高效. Vy ...

  8. Swift2.0-异常处理(Exception handler)

    Swift2.0-异常处理(Exception handler) 前言 关于我们为什么要使用异常处理,请看百度百科为我们作出的描述,想要更详细的资料请点这里 异常处理,英文名为exceptional ...

  9. sphinx相关文章

    sphinx配置文件详解http://yanue.net/post-129.html Sphinx+Scws 搭建千万级准实时搜索&应用场景详解 http://blog.csdn.net/pi ...

  10. 从P1到P7——我在淘宝这7年 - 子柳撰写

    http://kb.cnblogs.com/page/132752/来自博客园的整理版本,作者是子柳,博客地址:http://blog.sina.com.cn/calvinzhaoc (一) 2011 ...