数论 + 容斥 - HDU 1695 GCD
problem's Link
mean
给定五个数a,b,c,d,k,从1~a中选一个数x,1~b中选一个数y,使得gcd(x,y)=k.
求满足条件的pair(x,y)数.
analyse
由于b,d,k都是1e5数量级的,普通枚举必定超时.
首先可以把b,d都同时除以k,问题就转化成了求1~b/k和1~d/k中的gcd(i,j)=k的对数.
证明如下:
令Ai∈{1,2,3...b},Bi∈{1,2,3...d}.
如果有:GCD(Ai,Bi)=k
则有:GCD(Ai/k,Bi/k)=1
而对于不能够被k整除的数,不可能有GCD(Ai,Bi)=k.
也就是说,除以K所剔除掉的数都是不满足条件的数,对最终答案没有影响.
这样就大大优化了时间复杂度.
然后就是对1e5以内的数进行质因数分解,使用质因数来构造容斥表.
再枚举1~b/k之间的每一个数,利用容斥原理算出1~d/k中有多少个数与之互质即可.
time complexity
O(N*logN)
code
/*
* this code is made by crazyacking
* Verdict: Accepted
* Submission Date: 2015-10-08-21.45
* Time: 0MS
* Memory: 137KB
*/
#include <queue>
#include <cstdio>
#include <set>
#include <string>
#include <stack>
#include <cmath>
#include <climits>
#include <map>
#include <cstdlib>
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
#define max(a,b) (a>b?a:b)
using namespace std;
typedef long long(LL);
typedef unsigned long long(ULL);
const double eps(1e-); const int NN=;
bool v[NN];
int p[NN];
void makePrime()
{
int num=-,i,j;
for(i=; i<NN; ++i)
{
if(!v[i]) { p[++num]=i; }
for(j=; j<=num && i*p[j]<NN; ++j)
{
v[i*p[j]]=true;
if(i%p[j]==) { break; }
}
}
} struct node
{
int fac;
bool ti;
node() {}
node(int a,bool b):fac(a),ti(b) {}
};
vector<node> pa[NN]; void pre()
{
int i,j,a,cnt,si;
for(i=; i<=; ++i)
{
a=i;
cnt=;
for(j=; j<=; ++j)
{
if(!(a%p[j]))
{
pa[i].push_back(node(p[j],false));
si=pa[i].size();
for(int k=; k<si-; ++k)
{
pa[i].push_back(node(pa[i][si-].fac*pa[i][k].fac,!pa[i][k].ti));
}
while(!(a%p[j]))
a/=p[j];
}
if(p[j]>a || a<=) break;
}
}
} int main()
{
makePrime();
pre();
ios_base::sync_with_stdio(false);
cin.tie();
int t;
scanf("%d",&t);
for(int Cas=; Cas<=t; ++Cas)
{
int a,b,c,d,k,si;
scanf("%d %d %d %d %d",&a,&b,&c,&d,&k);
if(k==)
{
printf("Case %d: 0\n",Cas);
continue;
}
a=b/k;
b=d/k;
if(a>b) swap(a,b);
LL ans=b;
if(a==) ans=;
for(int i=; i<=a; ++i)
{
si=pa[i].size();
for(int j=; j<si; ++j)
{
if(!(pa[i][j].ti))
{
ans+=((b-i+)-b/pa[i][j].fac+(i-)/pa[i][j].fac);
}
else
{
ans-=((b-i+)-b/pa[i][j].fac+(i-)/pa[i][j].fac);
}
}
}
printf("Case %d: %I64d\n", Cas, ans);
}
return ;
}
数论 + 容斥 - HDU 1695 GCD的更多相关文章
- 数论 + 容斥 - HDU 4059 The Boss on Mars
The Boss on Mars Problem's Link Mean: 给定一个整数n,求1~n中所有与n互质的数的四次方的和.(1<=n<=1e8) analyse: 看似简单,倘若 ...
- POJ 1150 The Last Non-zero Digit 数论+容斥
POJ 1150 The Last Non-zero Digit 数论+容斥 题目地址: id=1150" rel="nofollow" style="colo ...
- HDU 1695 GCD 容斥
GCD 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=1695 Description Given 5 integers: a, b, c, d, k ...
- hdu 1695 GCD 欧拉函数 + 容斥
http://acm.hdu.edu.cn/showproblem.php?pid=1695 要求[L1, R1]和[L2, R2]中GCD是K的个数.那么只需要求[L1, R1 / K] 和 [L ...
- HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- hdu 1695 GCD 容斥+欧拉函数
题目链接 求 $ x\in[1, a] , y \in [1, b] $ 内 \(gcd(x, y) = k\)的(x, y)的对数. 问题等价于$ x\in[1, a/k] , y \in [1, ...
- HDU 1695 GCD(容斥定理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
- HDU - 2204 Eddy's爱好 (数论+容斥)
题意:求\(1 - N(1\le N \le 1e18)\)中,能表示成\(M^k(M>0,k>1)\)的数的个数 分析:正整数p可以表示成\(p = m^k = m^{r*k'}\)的形 ...
- ●HDU 1695 GCD
题链: http://acm.hdu.edu.cn/showproblem.php?pid=1695 题解: 容斥. 莫比乌斯反演,入门题. 问题化简:求满足x∈(1~n)和y∈(1~m),且gcd( ...
随机推荐
- (剑指Offer)面试题42:翻转单词顺序
题目: 输入一个英文句子,翻转句子中单词的顺序,但单词内字符的顺序不变.为简单起见,标点符号和普通字母一样处理. 例如输入字符串“I am a student.”,则输出"student. ...
- ShareSDK for Android 2.3.10已经公布
ShareSDK for Android 2.3.10已经公布,本次更新内容包含: 1.加入自己定义分享标签功能 新版本号SDK下载页面地址: http://share.sharesdk.cn/Dow ...
- sed 命令编辑文本
1.sed 概述 sed 是一个非交互式文本编辑器.它能够对文本文件和标准输入进行编辑,标准输入能够是来自键盘输入.文件重定向.字符串.变量.甚至来自于管道文本. 2.sed工作流程简述 sed在处理 ...
- ubuntu12.04下helloworld驱动从失败到成功过程
最近在看linux的设备驱动程序,写一个简单的helloworld程序都花了我好久的时间,具体过程如下: 编写helloworld.c 编写Makefile 注意,makefile中的命令那里是一个t ...
- shareSDK(分享第三方库)的 使用
首先,下载第三方库,可以去官网下载,官网的地址我忘记了,但下面有一个我之前下的和我写的例子,其实官方的例子也写我们只是告诉大家用时需要把哪些代码复制出来就可以用了. 1.导入如下框架和第三方库 新浪微 ...
- Android调用系统拍照裁剪和选图功能
最近项目中用到修改用户头像的功能,基本上都是模板代码,现在简单记录一下. 调用系统拍照 private fun openCamera() { //调用相机拍照 // 创建File对象,用于存储拍照后的 ...
- VMware - "Determining IP Information for eth0...Failed
Linux ifup eth0 出现错误: Dertermining IP information for eth0....failed - no link present check cable D ...
- 页面刷新 vuex 数据重新被初始化
1.原因 vuex里用来存储的也只是一个全局变量,当页面刷新,该全局变量自然不存在了. 2.解决 使用localStorage存储一份 (1)storage.js /** * vuex localSt ...
- Tomcat 改服务器编码(Java 修改字符串编码格式)
对于客户端发来的汉字,我们一般需要转码: ------------------------------------------------------------------------------- ...
- Percona Toolkit工具集介绍
部署mysql工具是一个非常重要的部分,所以工具的可靠性和很好的设计非常重要.percona toolkit是一个有30多个mysql工具的工具箱.兼容mysql,percona server,mar ...