前段时间在准备AM437x启动相关的一些事情,对MLO、SPL等事情也是有些糊涂,于是分享下面这篇文章

转自http://blog.csdn.net/psvoldemort/article/details/41861959

参考文件

1,AM335x ARM Cortex-A8 Microprocessors (MPUs) Technical Reference Manual.pdf;

2,am3359.pdf;

目录

  • 1.am335x的cpu上电后,会跳到哪个地址去执行?
  • 1.1.第一级 bootloader:
  • 1.2.第二级 bootloader:
  • 1.3.第三级 bootloader:
  • 2.第二级 bootloader:MLO(SPL)做了哪些事情?
  • 2.1.SPL内存重映射
  • 2.2.保存启动参数 bl    save_boot_params
  • 2.3.设置 CPU 为 SVC32 模式
  • 2.4.CPU的初始化
  • 2.5.执行 s_init() 函数,实现 CPU 的初始化
  • 2.6.使能第二级缓冲区
  • 2.7.关闭看门狗(WDT)
  • 2.8.给外设设置好 PLL 和 时钟频率等
  • 2.9.使能 32-KHz 频率的实时时钟
  • 2.10.使能UART0
  • 2.11.初始化 定时器
  • 2.12.初始化控制台,通过UART可以查看相关信息
  • 2.13.配置 DDR
  • 2.14.设置 internal RAM 内存空间的栈指针,调用 board_init_f()函数
  • 2.15.代码重定向
  • 2.16.清空 bss 段
  • 2.17.调用函数 board_init_r,用以完成 MLO(SPI)阶段的所有初始化,并跳转到 uboot.img 阶段
  • 3.第三级 bootloader:uboot.img 做了哪些事情?

1.am335x的cpu上电后,会跳到哪个地址去执行?

答:芯片到uboot启动流程 :Internal-ROM → MLO(SPL)→ uboot.img

AM335x 中bootloader被分成了 3 个部分

1.1.第一级 bootloader:

引导加载程序,板子上电后会自动执行这些代码,如选择哪种方式启动(NAND,SDcard,UART。。。),然后跳转转到第二级 bootloader。这些代码应该是存放在 176KB 的 ROM 中。

1.2.第二级 bootloader:

MLO(SPL),用以硬件初始化:关闭看门狗,关闭中断,设置 CPU 时钟频率、速度等操作。然后会跳转到第三级bootloader。MLO文件应该会被映射到 64 KB的 Internal SRAM 中。

1.3.第三级 bootloader:

uboot.img,C代码的入口。

其中第一级 bootloader 是板子固化的,第二级和第三级是通过编译 uboot 所得的。

2.第二级 bootloader:MLO(SPL)做了哪些事情?

MLO(SPL)内存分布如下:

2.1.SPL内存重映射

< PATH : /arch/arm/cpu/armv7/omap-common/u-boot-spl.lds >
MEMORY { .sram : ORIGIN = CONFIG_SPL_TEXT_BASE,\
LENGTH = CONFIG_SPL_MAX_SIZE }
MEMORY { .sdram : ORIGIN = CONFIG_SPL_BSS_START_ADDR, \
LENGTH = CONFIG_SPL_BSS_MAX_SIZE } OUTPUT_FORMAT("elf32-littlearm", "elf32-littlearm", "elf32-littlearm")
OUTPUT_ARCH(arm)
ENTRY(_start)
SECTIONS
{
.text :
{
__start = .;
arch/arm/cpu/armv7/start.o (.text)
*(.text*)
} >.sram . = ALIGN();
.rodata : { *(SORT_BY_ALIGNMENT(.rodata*)) } >.sram . = ALIGN();
.data : { *(SORT_BY_ALIGNMENT(.data*)) } >.sram
. = ALIGN();
__image_copy_end = .;
_end = .; .bss :
{
. = ALIGN();
__bss_start = .;
*(.bss*)
. = ALIGN();
__bss_end__ = .;
} >.sdram
}
<PATH : /include/configs/am335x_evm.h>
#define CONFIG_SPL_TEXT_BASE 0x402F0400
#define CONFIG_SPL_MAX_SIZE (46 * 1024)
#define CONFIG_SPL_STACK LOW_LEVEL_SRAM_STACK #define CONFIG_SPL_BSS_START_ADDR 0x80000000
#define CONFIG_SPL_BSS_MAX_SIZE 0x80000 /* 512 KB */ <span style="font-size:16px;color:#003399;"><strong></strong></span>

2.2.保存启动参数 bl    save_boot_params

<PATH : /arch/arm/cpu/armv7/start.S>
/*
* the actual reset code
*/ reset:
bl save_boot_params
<PATH : /arch/arm/cpu/armv7/omap-common/lowlevel_init.S>
.global save_boot_params
save_boot_params:
/*
* See if the rom code passed pointer is valid:
* It is not valid if it is not in non-secure SRAM
* This may happen if you are booting with the help of
* debugger
*/
ldr r2, =NON_SECURE_SRAM_START
cmp r2, r0
bgt 1f
ldr r2, =NON_SECURE_SRAM_END
cmp r2, r0
blt 1f /*
* store the boot params passed from rom code or saved
* and passed by SPL
*/
cmp r0, #
beq 1f
ldr r1, =boot_params
str r0, [r1]
/*《PATH: /arch/arm/include/asm/arch-ti81xx/omap.h》
* Non-secure SRAM Addresses
* Non-secure RAM starts at 0x40300000 for GP devices. But we keep SRAM_BASE
* at 0x40304000(EMU base) so that our code works for both EMU and GP
*/
#define NON_SECURE_SRAM_START 0x40304000
#define NON_SECURE_SRAM_END 0x4030E000
#define LOW_LEVEL_SRAM_STACK 0x4030B7FC
问题:这些参数是保存在哪里的?大概有哪些参数?

答:这些参数保存的内存地址为 64 KB 的 OCM RAM 中:

注:Dowloaded Image 区域:是用来保存 MLO(SPL) 文件的,其最大可达到 109 KB

2.3.设置 CPU 为 SVC32 模式

    <PATH :/arch/arm/cpu/armv7/start.S>
/*
* set the cpu to SVC32 mode
*/
mrs r0, cpsr
bic r0, r0, #0x1f
orr r0, r0, #0xd3
msr cpsr,r0
  • CPSR:程序状态寄存器(current program status register)(当前程序状态寄存器),在任何处理器模式下被访问。它包含了条件标志位、中断禁止位、当前处理器模式标志以及其他的一些控制和状态位。

CPSR在用户级编程时用于存储条件码。

  • SPSR:程序状态保存寄存器(saved program statusregister),每一种处理器模式下都有一个状态寄存器SPSR,SPSR用于保存CPSR的状态,以便异常返回后恢复异常发生时的工作状态。当特定的异常中断发生时,这个寄存器用于存放当前程序状态寄存器的内容。在异常中断退出时,可以用SPSR来恢复CPSR。由于用户模式和系统模式不是异常中断模式,所以他没有SPSR。当用户在用户模式或系统模式访问SPSR,将产生不可预知的后果。

详解:http://blog.chinaunix.net/uid-28458801-id-3487199.html

2.4.CPU的初始化

《PATH : /arch/arm/cpu/armv7/start.S》
/* the mask ROM code should have PLL and others stable */
#ifndef CONFIG_SKIP_LOWLEVEL_INIT
bl cpu_init_crit
#endif

<PATH : /arch/arm/cpu/armv7/omap-common/lowlevel_init.S>
.globl lowlevel_init
lowlevel_init:
/*
* Setup a temporary stack
*/
ldr sp, =LOW_LEVEL_SRAM_STACK /*
* Save the old lr(passed in ip) and the current lr to stack
*/
push {ip, lr} /*
* go setup pll, mux, memory
*/
bl s_init
pop {ip, pc}

问题:CPU的初始化有哪些内容?

答:@b1@ 首先要设置堆栈区,因为将会调用 C函数来实现CPU的初始化

问题:这个堆栈在什么位置,其内存大小是多少?

答:

《PATH :/arch/arm/include/asm/arch-ti81xx/omap.h》
#define LOW_LEVEL_SRAM_STACK 0x4030B7FC<strong></strong>


2.5.执行 s_init() 函数,实现 CPU 的初始化

<PATH : /board/ti/am335x/evm.c>
/*
* early system init of muxing and clocks.
*/
void s_init(void)
{
/* Can be removed as A8 comes up with L2 enabled */
l2_cache_enable(); /* WDT1 is already running when the bootloader gets control
* Disable it to avoid "random" resets
*/
__raw_writel(0xAAAA, WDT_WSPR);
while(__raw_readl(WDT_WWPS) != 0x0);
__raw_writel(0x5555, WDT_WSPR);
while(__raw_readl(WDT_WWPS) != 0x0); #ifdef CONFIG_SPL_BUILD
/* Setup the PLLs and the clocks for the peripherals */
pll_init(); /* Enable RTC32K clock */
rtc32k_enable(); /* UART softreset */
u32 regVal;
u32 uart_base = DEFAULT_UART_BASE; enable_uart0_pin_mux();
/* IA Motor Control Board has default console on UART3*/
/* XXX: This is before we've probed / set board_id */
if (board_id == IA_BOARD) {
uart_base = UART3_BASE;
} regVal = __raw_readl(uart_base + UART_SYSCFG_OFFSET);
regVal |= UART_RESET;
__raw_writel(regVal, (uart_base + UART_SYSCFG_OFFSET) );
while ((__raw_readl(uart_base + UART_SYSSTS_OFFSET) &
UART_CLK_RUNNING_MASK) != UART_CLK_RUNNING_MASK); /* Disable smart idle */
regVal = __raw_readl((uart_base + UART_SYSCFG_OFFSET));
regVal |= UART_SMART_IDLE_EN;
__raw_writel(regVal, (uart_base + UART_SYSCFG_OFFSET)); /* Initialize the Timer */
init_timer(); preloader_console_init(); printf("\nlocation /board/ti/am335x\n"); //@@
/*@@*/
// led();
/*@@*/ config_am335x_ddr(); #endif
}

2.6.使能第二级缓冲区

/* Can be removed as A8 comes up with L2 enabled */
l2_cache_enable(); <PATH : /arch/arm/cpu/armv7/ti81xx/cache.S>
l2_cache_enable:
push {r0, r1, r2, lr}
mrc , , r3, cr1, cr0,
orr r3, r3, #
mcr , , r3, cr1, cr0,
pop {r1, r2, r3, pc}

2.7.关闭看门狗(WDT)

/* WDT1 is already running when the bootloader gets control
* Disable it to avoid "random" resets
*/
__raw_writel(0xAAAA, WDT_WSPR);
while(__raw_readl(WDT_WWPS) != 0x0);
__raw_writel(0x5555, WDT_WSPR);
while(__raw_readl(WDT_WWPS) != 0x0);
<PATH : /arch/arm/include/asm/arch-ti81xx/cpu.h>
#define WDT_WSPR (WDT_BASE + 0x048) <PATH : /arch/arm/include/asm/arch-ti81xx/hardware.h>
/* Watchdog Timer */
#ifdef CONFIG_AM335X
#define WDT_BASE 0x44E35000
#else
#define WDT_BASE 0x480C2000
#endif


2.8.给外设设置好 PLL 和 时钟频率等

/* Setup the PLLs and the clocks for the peripherals */
pll_init(); <PATH : /board/ti/am335x/pll.c>
/*
* Configure the PLL/PRCM for necessary peripherals
*/
void pll_init()
{
mpu_pll_config(MPUPLL_M_500);
core_pll_config();
per_pll_config();
ddr_pll_config();
/* Enable the required interconnect clocks */
interface_clocks_enable();
/* Enable power domain transition */
power_domain_transition_enable();
/* Enable the required peripherals */
per_clocks_enable();
}


2.9.使能 32-KHz 频率的实时时钟

/* Enable RTC32K clock */
rtc32k_enable(); 《PATH : /board/ti/am335x/evm.c》
static void rtc32k_enable(void)
{
/* Unlock the rtc's registers */
__raw_writel(0x83e70b13, (AM335X_RTC_BASE + RTC_KICK0_REG));
__raw_writel(0x95a4f1e0, (AM335X_RTC_BASE + RTC_KICK1_REG)); /* Enable the RTC 32K OSC */
__raw_writel(0x48, (AM335X_RTC_BASE + RTC_OSC_REG));
} <PATH : /arch/arm/include/asm/arch-ti81xx/hardware.h>
/* RTC base address */
#define AM335X_RTC_BASE 0x44E3E000 <PATH : /board/ti/am335x/evm.c>
#define RTC_KICK0_REG 0x6c
#define RTC_KICK1_REG 0x70
#define RTC_OSC_REG 0x54

2.10.使能UART0

  /* UART softreset */
u32 regVal;
u32 uart_base = DEFAULT_UART_BASE; enable_uart0_pin_mux();
/* IA Motor Control Board has default console on UART3*/
/* XXX: This is before we've probed / set board_id */
if (board_id == IA_BOARD) {
uart_base = UART3_BASE;
} regVal = __raw_readl(uart_base + UART_SYSCFG_OFFSET);
regVal |= UART_RESET;
__raw_writel(regVal, (uart_base + UART_SYSCFG_OFFSET) );
while ((__raw_readl(uart_base + UART_SYSSTS_OFFSET) &
UART_CLK_RUNNING_MASK) != UART_CLK_RUNNING_MASK); /* Disable smart idle */
regVal = __raw_readl((uart_base + UART_SYSCFG_OFFSET));
regVal |= UART_SMART_IDLE_EN;
__raw_writel(regVal, (uart_base + UART_SYSCFG_OFFSET)); <PATH : /arch/arm/include/asm/arch-ti81xx/cpu.h>
#ifdef CONFIG_AM335X
#define DEFAULT_UART_BASE UART0_BASE
#endif <PATH : /arch/arm/include/asm/arch-ti81xx/hardware.h>
#ifdef CONFIG_AM335X
#define UART0_BASE 0x44E09000
#else
#define UART0_BASE 0x48020000
#endif

2.11.初始化 定时器

/* Initialize the Timer */
init_timer(); <PATH : /board/ti/am335x/evm.c>
static void init_timer(void)
{
/* Reset the Timer */
__raw_writel(0x2, (DM_TIMER2_BASE + TSICR_REG)); /* Wait until the reset is done */
while (__raw_readl(DM_TIMER2_BASE + TIOCP_CFG_REG) & ); /* Start the Timer */
__raw_writel(0x1, (DM_TIMER2_BASE + TCLR_REG));
} <PATH : /arch/arm/include/asm/arch-ti81xx/hardware.h>
/* DM Timer base addresses */
#define DM_TIMER0_BASE 0x4802C000
#define DM_TIMER1_BASE 0x4802E000
#define DM_TIMER2_BASE 0x48040000
#define DM_TIMER3_BASE 0x48042000
#define DM_TIMER4_BASE 0x48044000
#define DM_TIMER5_BASE 0x48046000
#define DM_TIMER6_BASE 0x48048000
#define DM_TIMER7_BASE 0x4804A000

2.12.初始化控制台,通过UART可以查看相关信息

preloader_console_init();

《PATH : /arch/arm/cpu/armv7/omap-common/spl.c》
/* This requires UART clocks to be enabled */
void preloader_console_init(void)
{
const char *u_boot_rev = U_BOOT_VERSION;
char rev_string_buffer[]; gd = &gdata;
gd->bd = &bdata;
gd->flags |= GD_FLG_RELOC;
gd->baudrate = CONFIG_BAUDRATE; serial_init(); /* serial communications setup */ /* Avoid a second "U-Boot" coming from this string */
u_boot_rev = &u_boot_rev[]; printf("\nU-Boot SPL %s (%s - %s)\n", u_boot_rev, U_BOOT_DATE,
U_BOOT_TIME);
omap_rev_string(rev_string_buffer);
printf("Texas Instruments %s\n", rev_string_buffer);
}

2.13.配置 DDR

   config_am335x_ddr();

《PATH :》
/* void DDR2_EMIF_Config(void); */
static void config_am335x_ddr(void)
{
int data_macro_0 = ;
int data_macro_1 = ; enable_ddr_clocks(); config_vtp(); Cmd_Macro_Config(); Data_Macro_Config(data_macro_0);
Data_Macro_Config(data_macro_1); __raw_writel(PHY_RANK0_DELAY, DATA0_RANK0_DELAYS_0);
__raw_writel(PHY_RANK0_DELAY, DATA1_RANK0_DELAYS_0); __raw_writel(DDR_IOCTRL_VALUE, DDR_CMD0_IOCTRL);
__raw_writel(DDR_IOCTRL_VALUE, DDR_CMD1_IOCTRL);
__raw_writel(DDR_IOCTRL_VALUE, DDR_CMD2_IOCTRL);
__raw_writel(DDR_IOCTRL_VALUE, DDR_DATA0_IOCTRL);
__raw_writel(DDR_IOCTRL_VALUE, DDR_DATA1_IOCTRL); __raw_writel(__raw_readl(DDR_IO_CTRL) & 0xefffffff, DDR_IO_CTRL);
__raw_writel(__raw_readl(DDR_CKE_CTRL) | 0x00000001, DDR_CKE_CTRL); config_emif_ddr2();
} 《PATH : /arm/include/asm/arch-ti81xx/cpu.h》
#define DATA0_RANK0_DELAYS_0 (DDR_PHY_BASE_ADDR + 0x134)
#define DATA1_RANK0_DELAYS_0 (DDR_PHY_BASE_ADDR + 0x1D8) /* DDR offsets */
#define DDR_PHY_BASE_ADDR 0x44E12000
#define DDR_IO_CTRL 0x44E10E04
#define DDR_CKE_CTRL 0x44E1131C
#define CONTROL_BASE_ADDR 0x44E10000

2.14.设置 internal RAM 内存空间的栈指针,调用 board_init_f()函数

/* Set stackpointer in internal RAM to call board_init_f */
call_board_init_f:
ldr sp, =(CONFIG_SYS_INIT_SP_ADDR)
bic sp, sp, # /* 8-byte alignment for ABI compliance */
ldr r0,=0x00000000
bl board_init_f
#define CONFIG_SYS_INIT_SP_ADDR     (CONFIG_SYS_INIT_RAM_ADDR + \
CONFIG_SYS_INIT_RAM_SIZE - \
GENERATED_GBL_DATA_SIZE) #define CONFIG_SYS_INIT_RAM_ADDR SRAM0_START
#define CONFIG_SYS_INIT_RAM_SIZE SRAM0_SIZE #ifdef CONFIG_AM335X
#define SRAM0_START 0x402F0400
#else
#define SRAM0_START 0x40300000
#endif #if defined(CONFIG_AM335X) || defined(CONFIG_TI814X)
#define SRAM0_SIZE (0x1B400) /* 109 KB */
#define SRAM_GPMC_STACK_SIZE (0x40)
#endif #define GENERATED_GBL_DATA_SIZE (128) /* (sizeof(struct global_data) + 15) & ~15 */ 
void board_init_f(ulong dummy)
{
/*
* We call relocate_code() with relocation target same as the
* CONFIG_SYS_SPL_TEXT_BASE. This will result in relocation getting
* skipped. Instead, only .bss initialization will happen. That's
* all we need
*/
debug(">>board_init_f()\n");
relocate_code(CONFIG_SPL_STACK, &gdata, CONFIG_SPL_TEXT_BASE);
} #define CONFIG_SPL_TEXT_BASE 0x402F0400
#define CONFIG_SPL_MAX_SIZE (46 * 1024)
#define CONFIG_SPL_STACK LOW_LEVEL_SRAM_STACK #define LOW_LEVEL_SRAM_STACK 0x4030B7FC 
/*
* void relocate_code (addr_sp, gd, addr_moni)
*
* This "function" does not return, instead it continues in RAM
* after relocating the monitor code.
*
*/
.globl relocate_code
relocate_code:
mov r4, r0 /* save addr_sp */
mov r5, r1 /* save addr of gd */
mov r6, r2 /* save addr of destination 0x402F0400*/</path>

2.15.代码重定位

代码重定向,它首先检测自己(MLO)是否已经在内存中:

如果是直接跳到下面的堆栈初始化代码 clear_bss。

如果不是就将自己从Nor Flash中拷贝到内存中。

Nor Flash 和Nand Flash 本质区别就在于是否进行代码拷贝,也就是下面代码所表述:无论
是Nor Flash 还是Nand Flash,核心思想就是将 uboot 代码搬运到内存中去运行,但是没有拷
贝bss 后面这段代码,只拷贝bss 前面的代码,bss 代码是放置全局变量的。Bss 段代码是为
了清零,拷贝过去再清零重复操作。

    /* Set up the stack                         */
stack_setup:
mov sp, r4 adr r0, _start
cmp r0, r6
moveq r9, # /* no relocation. relocation offset(r9) = 0 */
beq clear_bss /* skip relocation */
mov r1, r6 /* r1 <- scratch for copy_loop */
ldr r3, _image_copy_end_ofs
add r2, r0, r3 /* r2 <- source end address */ copy_loop: /* 自拷贝 */
ldmia r0!, {r9-r10} /* copy from source address [r0] */
stmia r1!, {r9-r10} /* copy to target address [r1] */
cmp r0, r2 /* until source end address [r2] */
blo copy_loop
@a6@ 清空 bss 段

2.16.清空 bss 段

clear_bss:

    ldr r0, _bss_start_ofs
ldr r1, _bss_end_ofs
mov r4, r6 /* reloc addr */
add r0, r0, r4
add r1, r1, r4 mov r2, #0x00000000 /* clear */ clbss_l:str r2, [r0] /* clear loop... */
add r0, r0, #
cmp r0, r1
bne clbss_l /*
* These are defined in the board-specific linker script.
*/
.globl _bss_start_ofs
_bss_start_ofs:
.word __bss_start - _start /* __bss_start = 0x80000000 */

2.17.调用函数 board_init_r,用以完成 MLO(SPI)阶段的所有初始化,并跳转到 uboot.img 阶段

/*
* We are done. Do not return, instead branch to second part of board
* initialization, now running from RAM.
*/
jump_2_ram:
/*
* If I-cache is enabled invalidate it
*/
#ifndef CONFIG_SYS_ICACHE_OFF
mcr p15, , r0, c7, c5, @ invalidate icache
mcr p15, , r0, c7, c10, @ DSB
mcr p15, , r0, c7, c5, @ ISB
#endif
ldr r0, _board_init_r_ofs
adr r1, _start
add lr, r0, r1
add lr, lr, r9
/* setup parameters for board_init_r */
mov r0, r5 /* gd_t */
mov r1, r6 /* dest_addr */
/* jump to it ... */
mov pc, lr _board_init_r_ofs:
.word board_init_r - _start
《PATH : /arch/arm/cpu/armv7/omap-common/spl.c 》
void board_init_r(gd_t *id, ulong dummy)
{
u32 boot_device;
debug(">>spl:board_init_r()\n"); timer_init();
i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE); #ifdef CONFIG_SPL_BOARD_INIT
spl_board_init();
#endif boot_device = omap_boot_device();
debug("boot device - %d\n", boot_device);
switch (boot_device) {
#ifdef CONFIG_SPL_MMC_SUPPORT
case BOOT_DEVICE_MMC1:
case BOOT_DEVICE_MMC2:
spl_mmc_load_image();
break;
#endif
#ifdef CONFIG_SPL_NAND_SUPPORT
case BOOT_DEVICE_NAND:
spl_nand_load_image();
break;
#endif
#ifdef CONFIG_SPL_YMODEM_SUPPORT
case BOOT_DEVICE_UART:
spl_ymodem_load_image();
break;
#endif
default:
printf("SPL: Un-supported Boot Device - %d!!!\n", boot_device);
hang();
break;
} switch (spl_image.os) {
case IH_OS_U_BOOT:
debug("Jumping to U-Boot\n");
jump_to_image_no_args();
break;
default:
puts("Unsupported OS image.. Jumping nevertheless..\n");
jump_to_image_no_args();
}
}

3,第三级 bootloader:uboot.img 做了哪些事情?

uboot.img 内存分布如下:

访问 /arch/arm/lib/board.c 中 的 board_init_f() 函数

在 uboot.img 运行过程中,有两个非常重要的结构体:gd_t 和 bd_t 。

其中 gd_t :global_data 数据结构的定义,位于:/arch/arm/include/asm/global_data.h 中。

其成员主要是一些全局的系统初始化参数。

其中 bd_t :bd_info 数据结构的定义,位于:/arch/arm/include/asm/u-boot.h 中。

其成员是开发板的相关参数。

/*
* The following data structure is placed in some memory which is
* available very early after boot (like DPRAM on MPC8xx/MPC82xx, or
* some locked parts of the data cache) to allow for a minimum set of
* global variables during system initialization (until we have set
* up the memory controller so that we can use RAM).
*
* Keep it *SMALL* and remember to set GENERATED_GBL_DATA_SIZE > sizeof(gd_t)
*/ typedef struct global_data {
bd_t *bd;
unsigned long flags;
unsigned long baudrate;
unsigned long have_console; /* serial_init() was called */
unsigned long env_addr; /* Address of Environment struct */
unsigned long env_valid; /* Checksum of Environment valid? */
unsigned long fb_base; /* base address of frame buffer */
#ifdef CONFIG_FSL_ESDHC
unsigned long sdhc_clk;
#endif
#ifdef CONFIG_AT91FAMILY
/* "static data" needed by at91's clock.c */
unsigned long cpu_clk_rate_hz;
unsigned long main_clk_rate_hz;
unsigned long mck_rate_hz;
unsigned long plla_rate_hz;
unsigned long pllb_rate_hz;
unsigned long at91_pllb_usb_init;
#endif
#ifdef CONFIG_ARM
/* "static data" needed by most of timer.c on ARM platforms */
unsigned long timer_rate_hz;
unsigned long tbl;
unsigned long tbu;
unsigned long long timer_reset_value;
unsigned long lastinc;
#endif
#ifdef CONFIG_IXP425
unsigned long timestamp;
#endif
unsigned long relocaddr; /* Start address of U-Boot in RAM */
phys_size_t ram_size; /* RAM size */
unsigned long mon_len; /* monitor len */
unsigned long irq_sp; /* irq stack pointer */
unsigned long start_addr_sp; /* start_addr_stackpointer */
unsigned long reloc_off;
#if !(defined(CONFIG_SYS_ICACHE_OFF) && defined(CONFIG_SYS_DCACHE_OFF))
unsigned long tlb_addr;
#endif
void **jt; /* jump table */
char env_buf[]; /* buffer for getenv() before reloc. */
} gd_t; #define DECLARE_GLOBAL_DATA_PTR register volatile gd_t *gd asm ("r8") typedef struct bd_info {
int bi_baudrate; /* serial console baudrate */
unsigned long bi_ip_addr; /* IP Address */
ulong bi_arch_number; /* unique id for this board */
ulong bi_boot_params; /* where this board expects params */
struct /* RAM configuration */
{
ulong start;
ulong size;
} bi_dram[CONFIG_NR_DRAM_BANKS];
} bd_t;

其中 DECLARE_GLOBAL_DATA_PTR 宏定义在系统初始化过程中会被频繁调用,

的作用是,声明gd这么一个全局的指针,这个指针指向gd_t结构体类型,并且这个gd指针是保存在ARM的r8这个寄存器里面的。

uboot.img 第一个运行的文件还是 start.o,其在运行访问的 board_init_f() 函数定义在 /arch/arm/lib/board.c 中:

void board_init_f(ulong bootflag)
{
bd_t *bd;
init_fnc_t **init_fnc_ptr;
gd_t *id;
ulong addr, addr_sp; /* Pointer is writable since we allocated a register for it */
gd = (gd_t *) ((CONFIG_SYS_INIT_SP_ADDR) & ~0x07);
/* compiler optimization barrier needed for GCC >= 3.4 */
__asm__ __volatile__("": : :"memory"); memset((void *)gd, , sizeof(gd_t)); ...
}
#define CONFIG_SYS_INIT_RAM_ADDR    SRAM0_START
#define CONFIG_SYS_INIT_RAM_SIZE SRAM0_SIZE
#define CONFIG_SYS_INIT_SP_ADDR (CONFIG_SYS_INIT_RAM_ADDR + \
CONFIG_SYS_INIT_RAM_SIZE - \
GENERATED_GBL_DATA_SIZE) #define SRAM0_START 0x402F0400 #define SRAM0_SIZE (0x1B400) /* 109 KB */ #define GENERATED_GBL_DATA_SIZE (128) /* (sizeof(struct global_data) + 15) & ~15 */

因此,系统初始化参数将会被保存在 (保存 MLO(SPL)文件的内存空间的)末尾 2 KB 处。

通过计算的 gb 指针指向的内存空间地址为 gb = 0x4030B000

gb_t 结构体中某些元素的值是来自于 uboot.img's header,这个header的数据保存在内存的0x807FFFCO,大小为 64字节

/*
* Legacy format image header,
* all data in network byte order (aka natural aka bigendian).
*/
typedef struct image_header {
uint32_t ih_magic; /* Image Header Magic Number */
uint32_t ih_hcrc; /* Image Header CRC Checksum */
uint32_t ih_time; /* Image Creation Timestamp */
uint32_t ih_size; /* Image Data Size */
uint32_t ih_load; /* Data Load Address */
uint32_t ih_ep; /* Entry Point Address */
uint32_t ih_dcrc; /* Image Data CRC Checksum */
uint8_t ih_os; /* Operating System */
uint8_t ih_arch; /* CPU architecture */
uint8_t ih_type; /* Image Type */
uint8_t ih_comp; /* Compression Type */
uint8_t ih_name[IH_NMLEN]; /* Image Name */
} image_header_t;
/*
* 8MB into the SDRAM to allow for SPL's bss at the beginning of SDRAM.
* 64 bytes before this address should be set aside for u-boot.img's
* header. That is 0x807FFFC0--0x80800000 should not be used for any
* other needs.
*/
#define CONFIG_SYS_TEXT_BASE 0x80800000</path>
void board_init_f(ulong bootflag)
{
bd_t *bd;
init_fnc_t **init_fnc_ptr;
gd_t *id;
ulong addr, addr_sp; /* Pointer is writable since we allocated a register for it */
gd = (gd_t *) ((CONFIG_SYS_INIT_SP_ADDR) & ~0x07);
/* compiler optimization barrier needed for GCC >= 3.4 */
__asm__ __volatile__("": : :"memory"); memset((void *)gd, , sizeof(gd_t)); ...
}

[TI-Sitara]启动流程的更多相关文章

  1. 转:AM335x启动流程(BootRom->MLO->Uboot)

    http://blog.chinaunix.net/uid-28458801-id-3486399.html 参考文件: 1,AM335x ARM Cortex-A8 Microprocessors ...

  2. am335x uboot启动流程分析

    基本指令含义 .globl _start .globl指示告诉汇编器,_start这个符号要被链接器用到,所以要在目标文件的符号表中标记它是一个全局符号 b,bl b是不带返回的跳转  bl带返回的跳 ...

  3. MyCat源码分析系列之——配置信息和启动流程

    更多MyCat源码分析,请戳MyCat源码分析系列 MyCat配置信息 除了一些默认的配置参数,大多数的MyCat配置信息是通过读取若干.xml/.properties文件获取的,主要包括: 1)se ...

  4. Android进阶系列之源码分析Activity的启动流程

    美女镇楼,辟邪! 源码,是一个程序猿前进路上一个大的而又不得不去翻越障碍,我讨厌源码,看着一大堆.5000多行,要看完得啥时候去了啊.不过做安卓的总有这一天,自从踏上这条不归路,我就认命了.好吧,我慢 ...

  5. Spring Boot启动流程详解(一)

    环境 本文基于Spring Boot版本1.3.3, 使用了spring-boot-starter-web. 配置完成后,编写了代码如下: @SpringBootApplication public ...

  6. linux启动流程及自定义gurb

    linux 启动流程 POST BIOS(boot sequence) 所选择的启动设备次序的MBR中是否有引导程序, ----> MBR(bootloader) 提供内核列表 -------& ...

  7. linux启动流程

    看了深入理解linux内核一书的最后对linux启动流程的介绍,下面就把我能理解的写一下吧: bios(硬件加电自检POST,寻找第一个启动设备) the boot loader(可以从硬盘启动也可以 ...

  8. webapp启动流程

    webapp启动流程 看了这个教程,其实所有的webapp大致都是这个流程了.

  9. Tomcat源码分析之—具体启动流程分析

    从Tomcat启动调用栈可知,Bootstrap类的main方法为整个Tomcat的入口,在init初始化Bootstrap类的时候为设置Catalina的工作路径也就是Catalina_HOME信息 ...

随机推荐

  1. JVisualVM简介与内存泄漏实战分析

    JVisualVM简介与内存泄漏实战分析 学习了:https://blog.csdn.net/kl28978113/article/details/53817827

  2. Android常用到的一些事件

    1:查看是否有存储卡插入 String status=Environment.getExternalStorageState(); if(status.equals(Enviroment.MEDIA_ ...

  3. Linux回环接口(loop-back/loopback)

    回环接口(loop-back/loopback) Moakap整理 Loopback接口是一个虚拟网络接口,在不同的领域,其含义也大不一样. 1. TCP/IP协议栈中的loopback接口 在TCP ...

  4. ant design pro (五)新增业务组件

    一.概述 参看地址:https://pro.ant.design/docs/new-component-cn 对于一些可能被多处引用的功能模块,建议提炼成业务组件统一管理.这些组件一般有以下特征: 只 ...

  5. js 判断进入可视区域

      js 判断进入可视区域 CreateTime--2018年4月14日08:17:41 Author:Marydon 1.使用场景 图片懒加载时候需要用到,其他情况暂时没有遇到,欢迎留言补充! 2. ...

  6. linux sort 、uniq 命令

    以文件的每行为单位,从左往右依次按ascii码进行比较 sort sort.txt #默认为升序 -u:去除重复行 sort -u sort.txt -r:降序排列 sort -r sort.txt ...

  7. linux内核学习推荐书籍

    <UNIX环境高级编程>,推荐指数:★★★★★ <UNIX环境高级编程>是 Unix/ Linux 程序员案头必备的一本书籍.可以说,Linux 程序员如果没有读过这本书,就好 ...

  8. phpredis中文手册——《redis中文手册》 php版(转)

    redis中文手册:http://readthedocs.org/docs/redis/en/latest/ 本文是参考<redis中文手册>,将示例代码用php来实现,注意php-red ...

  9. js处理url

    需求:用js获得url的电话号码和状态 针对url地址:http://www.deikang.com/index.php?tel=15811296111&status=1&id=100 ...

  10. 转 Android开发学习笔记:浅谈WebView

    原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://liangruijun.blog.51cto.com/3061169/647456 ...