Bayesian optimisation for smart hyperparameter search

Fitting a single classifier does not take long, fitting hundreds takes a while. To find the best hyperparameters you need to fit a lot of classifiers. What to do?

This post explores the inner workings of an algorithm you can use to reduce the number of hyperparameter sets you need to try before finding the best set. The algorithm goes under the name of bayesian optimisation. If you are looking for a production ready implementation check out: MOE, metric optimisation engine developed by Yelp.

Gaussian processe regression is a useful tool in general and is used heavily here. Check out my post on Gaussian processes with george for a short introduction.

This post starts with an example where we know the true form of the scoring function. Followed by pitting random grid search against Bayesian optimisation to find the best hyper-parameter for a real classifier.

As usual first some setup and importing:

%matplotlib inline
import random

import numpy as np
np.random.seed(9) from scipy.stats import randint as sp_randint import matplotlib.pyplot as plt import seaborn as sns
sns.set_style('whitegrid')
sns.set_context("talk")

By George!

Bayesian optimisation uses gaussian processes to fit a regression model to the previously evaluated points in hyper-parameter space. This model is then used to suggest the next (best) point in hyper-parameter space to evaluate the model at.

To choose the best point we need to define a criterion, in this case we use "expected improvement". As we only know the score to with a certain precision we do not want to simply choose the point with the best score. Instead we pick the point which promises the largest expected improvement. This allows us to incorporate the uncertainty about our estimation of the scoring function into the procedure. It leads to a mixture of exploitation and exploration of the parameter space.

Below we setup a toy scoring function (−xsinx), sample a two points from it, and fit our gaussian process model to it.

import george
from george.kernels import ExpSquaredKernel score_func = lambda x: -x*np.sin(x)
x = np.arange(0, 10, 0.1)
# Generate some fake, noisy data. These represent
# the points in hyper-parameter space for which
# we already trained our classifier and evaluated its score
xp = 10 * np.sort(np.random.rand(2))
yerr = 0.2 * np.ones_like(xp)
yp = score_func(xp) + yerr * np.random.randn(len(xp))
# Set up a Gaussian process
kernel = ExpSquaredKernel(1)
gp = george.GP(kernel) gp.compute(xp, yerr) mu, cov = gp.predict(yp, x)
std = np.sqrt(np.diag(cov)) def basic_plot():
fig, ax = plt.subplots()
ax.plot(x, mu, label="GP median")
ax.fill_between(x, mu-std, mu+std, alpha=0.5)
ax.plot(x, score_func(x), '--', label=" True score function (unknown)")
# explicit zorder to draw points and errorbars on top of everything
ax.errorbar(xp, yp, yerr=yerr, fmt='ok', zorder=3, label="samples")
ax.set_ylim(-9,6)
ax.set_ylabel("score")
ax.set_xlabel('hyper-parameter X')
ax.legend(loc='best')
return fig,ax
basic_plot()
(<matplotlib.figure.Figure at 0x10ab63e90>,
<matplotlib.axes._subplots.AxesSubplot at 0x10ab6f590>)
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAoIAAAHLCAYAAABcT/ksAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdwnPeZ4Pnv2zk3cs6pmaMYxaBABUqWLMnxJuy4bm5ctzPj27qp/eOq9ubG693aMDNXd3uznr3b2hl77bEly5JsS7JEZYo5Z4JsEgRA5Ax0o3N43/ujSUo0QQLdaBAN4PlUsSh2v+/v/b16gcaDX3geRdM0hBBCCCHE0qOb7w4IIYQQQoj5IYGgEEIIIcQSJYGgEEIIIcQSJYGgEEIIIcQSJYGgEEIIIcQSJYGgEEIIIcQSZZjvDnyZx+OpAv5fYCfgB/7a6/X+3fz2SgghhBBiccqZEUGPx6MAvwYuAwXAM8D3PR7P1nntmBBCCCHEIpVLI4JbgHLgf/N6vRrQ6vF4tgEj89stIYQQQojFKWdGBIENpEYD/8bj8fR7PB4vsNXr9Y7Nc7+EEEIIIRalXAoEC4DHgWGgGvgO8Hcej2fHfHZKCCGEEGKxyqWp4Sgw5vV6/+Otfx/1eDxvAl8FDs1ft4QQQgghFqdcCgSvAgaPx6Pzer3qrddm1L/Tp09rc9ctIYQQQoiFYePGjUo6x+dSIPgREAL+yuPx/IDU5pGXgD0zObmpqQmz2TyH3RMPQzQapa2tTZ7nIiHPc3GR57m4yPNcXG4/z3TlTCDo9XojHo/nMeA/A0OAD/ie1+s9MZPzzWYzFotlDnsoHiZ5nouLPM/FRZ7n4iLPc2nLmUAQwOv13gD2znc/hBBCCCGWglzaNSyEEEIIIR4iCQSFEEIIIZYoCQSFEEIIIZYoCQSFEEIIIZYoCQSFEEIIIZYoCQSFEEIIIZYoCQSFEEIIIZYoCQSFEEIIIZYoCQSFEEIIIZYoCQSFEEIIIZYoCQSFEEIIIZYoCQSFEEIIIZYoCQSFEEIIIZYoCQSFEEIIIZYoCQSFEEIIIZYoCQSFEEIIIZYoCQSFEEIIIZYoCQSFEEIIIZYoCQSFEEIIIZYoCQSFEEIIIZYoCQSFEEIIIZYoCQSFEEIIIZYow3x3QAghFjJN0+76W1GUu/4WQohcJiOCQggxSz/84Q/R6/Xo9Xp++MMfznd3hBBixiQQFEKIDGmaxve//32+973v3Xnte9/7Ht///vfvjBAKIUQuk6lhIYTI0Pe//31+8IMf3PP67df+9b/+1w+7S0IIkRYZERRCiClEElE6x3s42n2aG2M373n/zTffnDIIvO0HP/gBb7755lx2UQghZk1GBIUQ4pZIPMKxnrPs7zjKleE2NFLTuzvKN7Gn+FF8/iCRaBRVVfnud787bXvf/e53yS8qx2w2YTYZ7/xttVgoLCzAZrPN9S0JIcQDSSAohFjyVFVlcHCINy/s48DE8bve02k62vvGOTLix2QyozdYAUhq00+oJDUdfaE81EASNZkkkQiiqgmS8TjJ+GUMSgK71Zj6YzFSXlrAck8zRqNxTu5TCCF+lwSCQoglKRKJcOrsRTp7x/AFE2C0Y3GtxMAZio01VBuXkWcowao4p0wF850/+0v+07/9Fw+8xnf+7C/R6XTodDowGDGZ79MXIJKAnmuTHDz9EYUuI1Vl+axfsxy73Z6FuxVCiKlJICiEWDJUVeXq1esc8V4i4rfgKKjC5Kwl3/nFMc+6/wSDMv2I3OYdT/Py7/8pv/rZ30/5/su//6ds3vH0Xa8NxDsoNdSiKFOPJlrtTqx2JyrQNhLl3BsHcNt01FcWsHXzegwG+cgWQmSXfKoIIRa9aDTK/kMnuT4wRJuxkz7tOpsLnqdgiiG6mQSBt33tD/4c4J5g8JXf/zNe+YM/u+u1oXgXx4Jv49IVscb2GEWGyge2bTKZKSirB+D6cJhLr+6juaaAHVs3YjbfZ2hRCCHSJIGgEGLRSiaTHDp6itaOYYYcE3gNJ0loMQBuxi5RYWpKq71QJM7IRJjJUJzJUIzJUAyl8llWPB6j9bP/BsDqJ76LvvpZ3j/aidmox+0wU15oZ9zeA4BfHeFQ4A3qTWtYbd2FTtFPe12zxYrZ0kSPP8Y//uJj6sqd7H70EdlsIoSYNQkEhRCLjqZpnDpzgbNXulEcRbTaLjMY6wTAgIllli00mNfOqK1oLEHXYICb/X6GJ8JTXqt+3fPUrX0OSJWWC0UThGNJAIbGw1zvnkCnFJJXthO1/BJRwzgdsQsE1HE22Z7DpLPMqC9Gkwl3aSMj8QQ/emM/TZUu9jy2Db1++mBSCCGmIoGgEGJRuX6jgwPHL6NZSnEUNxFTI0wGxgCoMnpYZd2JRffgDRiJpErPUCr46x8N8uUiIXqdgsNmxGkz3fqT+m+9XkcskSQeV4klksTiSaKxJMPjYUb9EVQNxvrt0L8ZQ7UXY3knE/FREmp8xoHgnT7oDeSXNtAfjPCPr77HE4+uobG+Nu3/V0KIhedcfysVrlKKbQVZqWkugaAQYlFIJBLs++QQ3aMa7sIvpnxNOgubbV9hIjlInXnVA9tQNY2OPj8X20YIRxN3XtfrFCpLHNSWuSgvsqHXpZeLPxpPMjgaYmA0SP9okFD3MrSwg0jIxcfaMMvrkjRUuNDr02vXZLZgKm7mo2PtXLjcxnNP7ZD1g0IsYvFknL859F+Iqwn+YvufsLV6w6zblEBQCLHg9fT2s++zUxjcNbgL7w2E8gzF5BmK73u+pmn0jwQ5d30YXyC1hlBRoLzQTm25i8piB0ZD5oWYzEY9NWVOasqcaJrGiC/ClQ47vaEgQeKcujLIpRsjLKstoLkmD0OaAaGroJzJRJwfv/4RW9Y1sG71ioz7KoTIXe3jXcTV1C+pTYV1WWlTAkEhxIKlqiqfHTyGtztIXnEzCS2OpmlpTZeM+iKcuzbE0PgX6/+qS52sbSrCaTdlvc+KolCcZ6V4fRUTk1FaO0fp6p8kEkty7vowN3on2LKqnOI8a1rtGgxGnCVNnLgySsfNT3jh2d2SbkaIRcY7cgOAIlsBRbaCrLQpnxJCiAVpYsLHr947gGatIK+4gJga4UjwVxToK1ht3TVtMJhMqpy7Psy1rok7rxXnWVnXUkzRDIIwVVWZHB9CrwUpdtswGnWEIgnC0dSfhKpDZ3Lgzi+6b1/ynGa2r65gTWOMK51j3OiZIOz28llHO03WNaxpKsKQ5kikw12IPxbjx6+9xyvP76IgPy+t84UQuevqcCoQ9BQ1ZK1NCQSFEAtOe2cXHxy4iKukCUVRiKohDgd+hV8dYSI5RLXJQ76h7L7n+wJRjlzoZyIQBcBlN7G2uZjKYvsDA8hkMoF/uBuXXUdJvp0nHl9GeVnplOeEw2GGhkc4cfYKwwEd7sLK+7btsJnYtKIMa0UvbVxD0+B6m5Heo9VsWVlGSUF6aWKMJhOGomZ+8e4Rdm9qYsWylrTOF0Lkptq8KkZD46wozt73tASCQogF5cSp85y+Noy7tBGAiBrkcOAtJtUxQGGj7en7BoGapnGj18eZq0Mk1dRW4JX1BaxqLEKne/AIon9sgDKXyte/+RhW6/QjhlarldqaamprqhkcHGL/kbOMBg24iyruGxB63KsYmryKXx3B1HiekNfIJ6fiNFfnsb6lOK3NJIqi4C5p4MDZPrp7h3j6iUezssNQCDF/vrX6Bb61+oWstpn56mchhHiIVFXl3Q/2c74jgLuwCoCwOsnBwBtMqmMo6Nhk20u1admU58fiSQ6f7+Nk6yBJVcNqNvDEI9WsaS5+YBAYi4QJj7Tx1NZ6Xnr+iRkFgb+rtLSEb738DC89uRJ9qAv/2MCUxxkVM9sdL2HXuVF0GuaWsyg2H9e7J/jkVPddO5lnylVQRu+klX/65XtEo9G0zxdCLG4SCAohcl4kEuFnb7zPcMSF3VV453UdenToUNCx2f4clabmKc8f90d4/2gn3UMBACqLHezdVkvpA6ZcNU1jYugmVa4Q3/n23qzk6asoL+PbrzzDk5tr8Q22oX05QeEtFp2d7faXMSs20CdwLfMCGqO+CB8cu8mYP5L2dS1WOzhq+cnr+5icnJz1fQghFo+cCwQ9Hk+px+MZ8ng8z893X4QQ829sfIL//voH4KjFbLk7cDPrbDzqeIVt9q9Sbmyc8vz+0SAfn+wiFEmg0yk8sqyEnesqMJvuvzImFgkTH2/jG3sfYc/jj2a9ckdzYz2/99VdREavE4vdO0pn17vZ7niJfH0ZjxV8lR1rK9HrFMLRBB+f6KJrwJ/2NfV6A9aiZn721mcMDQ1n4zaEEItAzgWCwD8ABcC9vyoLIZaUgcEhfvH2QRwlLej1UwduFp2dEmPNlO919Pn4/EwPiaSGxaTnqc01NNfkP3CtXCjox6mM8M++9TzFRYX3PW623G4X3/n287iUYYL+8Xvf1xezy/FNbDoX1aVOntpcg81iIKlqHL7Qz8W2kSlHFB9Ep9PhLG3mzX0naO/sytatCCEWsJwKBD0ez/8MBIDu+e6LEGJ+3ezq4dcfnsRd1pz2JgdN07jcPsqxSwNoWmpX8NNbailwPbiUW8A3Qk1enFde2IMuzeohmdDr9bzylT2srDXjG+255/0v33e+y8LTW2opcqfu4VL7KIcv9JFU1bSuqSgK7tJGPjx0lYuXr87uBoQQD8XV4TZev/QOlwaz/z2bM4Ggx+NpAf4C+Ofz3RchxPy6dr2d9w5cwlXyxXSvpmn0xW5MOwqmqhonrwxyoW0ESOUG3LO5BrvV+MDz/GP9rKl3zMvu2u2bN/DM9hb8Qw++P6vZwBObqqmvcAHQPRjg4Nk+Esn0gkEAV3ENhy/0c/Tk2Yz7LYR4OE70nOONy+/x8wu/yXrbOREIejweA/AT4M+9Xu+9cyRCiCXj4uWrfHKiHXdx3V2ve6MnOBF6lzOhj1C15JTnJpMqh873cqPHB0B1qYPHN1ZhNj54jZ9v+Ca71leyddO6rNxDJhrqanjlmc34Bu8fDGqaRmf8AuuWu1jVmJq27h8NcuBsL4lEBsFgQTkX2gMcOnpqVn0XQsytqyO3E0lPvRZ6NnIlj+BfAue8Xu+HX3otrV/JJS3C4nD7OcrzXBzSfZ6nz13i7PVxXAXlJBJfpErpjl/havQYAEktTjKhoip3B0tJVePIxQEGRkMANFe7WdtUiKapDwySfEM3eHbnKqqrKolE0t+Rm00ul5PnH1vD25+cwV3adM/7pyMf0J9oY0Dfweaar6CgcfHGGINjIT473c2OteVp10S2OvK50DlCJHKIHdseeeCx8v25uMjzXBiiiRgd46k1vQ3umvt+TmX6HJV0FxvPBY/HcwUo54sNIi4gBPwbr9f719Odf/r06fm/CSHErFy+2kb7sIbDXXLX6z7dANfMh9AUDWeyCE90FzruHuFTVY3W7jCjk6mRwroSE7Ul5mmv6RvqYPvaakqK525TSCZGx8Y5eKYDd8ndv/0P6zvpMJ8EoCq2morEMnpGYtwYSP0AcFp1rKmzYdCnP7UdnByjwhlhw5rls78BIUTWdIX6eLXvPQD+vO73sBseXGlo48aNaX0A5MSIoNfrveuTx+PxdAB/5vV635tpG01NTZjN03/wi9wWjUZpa2uT57lIzPR5njl3iUmtiIbm0rteD6o+zoZOoKHhUPLZ5voqJuXuDR+qqnHs8uCdIHBFfT4r66cvxu4f7uL5l3ZRX1udwZ3NvebmZt797NxdwWAJJcQjfnoSXnpNl6hxN7GhpAq328cZ7wiTYZXWnji71pVjmmY6/B4lJQT9o4yMB9m9Y/OUh8j35+Iiz3NhuOHtgz4otRexee2m+x53+3mmKycCwWwwm81YLA/eESgWDnmei8uDnufpsxe50DFJfnHlPe8ZVSM2vZuw6meb4yVsesdd76eCwH56h4NAqlzc6qaiaTd7+Ed7eXJbM8s9UyegzgX1dbW88oyZtz8+faecHsA6+xNMTA4RUMc5G/mIJ1x/gKe2EKPBwPHLA4xPRjlwrp8nHqlOOxh0F5TSNTHG4eNneHL39vseJ9+fi4s8z9y2o2EzTqsDvU43J88pJzaL/C6v11ufzmigEGJhOnP+Eqe8I7gKyqd836ZzscvxDR51vIJd77rrPVXTOHapn+7BVKWM5XUzDALHBti8sjSng8DbKivKeHHPRnxDHXdeMygmNtufQ4ces85OTE2tF2qodLNtdTkKMD4Z5eC5XpIZ7Ca2OwtoH1L4ZP+RbN2GEGIWKpyl7G15nKebds9J+zkZCAohFr9zFy5zonUIZ/7UQeBtesWAW19812uapnHi8gA3B1JBoKc2n7XN0weBkxPDrGl0sWHtqtl1/iGqrCjjiS0t+Ed777zm0hex0/ENdju+iV3vvvN6XbmLR1akpteHxsMcvtCPqqa/hNruyqd9BA4cPjH7GxBC5DQJBIUQD935S1c4emkQV0FFZudfH6GjL1VmraUmj/UtxdMGgcHABM3lRrZv3pDRNeeTp6WRdc2FBHwjd17LN5SiKPd+hDdV5bGmqQiA3uEAJ1oH0q5AAqmRwSs9UY6cOJN5x4UQOU8CQSHEQ3XFe52jF/pwF94bBMa12LRBy7Wuca50jgFQX+Fig6dk2iAwHo1QbAnyxK6tmXd8nm3dtI6q/CThUHDaY1fUF+CpzQego8/PueuZ1RZ25hVzsX2Sk6cvZHS+ECL3SSAohHho2ju72H+yA1fhvRtDVE3lePAdToR+S1ybOh9W9+Akp68OAVBWaGPzirJpg0BVVVED3bzw7GOz7v9827tnF1Z1iEQ89sDjFEVhfUsxdeWpdZVXO8e50jGW0TWd+aWcuT7K+YutGZ0vhMhtEggKIR6Knt4+Pjh0GXdxzZTvX40cYyTRQ3/8BsPxe8uND4+HOHKxH4B8p5kdayvR6aZPlzU5dINvfvUJ9Po006nkIEVR+MaLe4hNdN4zchpVQ1yLnLzzuqIobFlZRkWRHYBz14dp7/VldF1nfjnHLvZzxZt+agohRGZGQ+P86Tv/iv909B/wRfxzdh0JBIUQc25oaJi3Pz6Lu7h+yveH4z1ci6YSJTeY1lJhuruqhi8Q5cDZXlRVw24xsntD1YwqaPiGbvKVJzdgt9tnfxM5wmg08s0XH8c/+EVQFlYn+Xjyp7RGjtAV+2LkTqdTeHRtBcV5VgBOtA4wOBbK6LrOwkoOneumu7d/djcghJgR78gNRkJjnOg5h81onbPrSCAohJhT/slJfvPRKdylDVO+H1MjnAl9AIBLV8RK64673g9FEuw/00MsoWIy6nlsYxVW8/QpUCcnhtmyppLqqnunoRc6l8vJC3s24h9OlZ2y6pwUGVL3eSlyiKj6RbBn0OvYtb4Sp82EpsGhc734gw+eWr4fd1E1Z7zD9PT2zf4mhBAPdHU4VV+4saAWo944Z9eRQFAIMWcCgQCfHW3FVdp037V816KnCGsBdOh5xP4seuWLIC+RVDlwtodQJIFep7B7fSUuu2na60bCQWoKtAWVJiZdVZUVrF9WQtA/DsAa624MmIhrES6GD951rMmoZ/eGSkxGHbGEyudne4jGkhld11VUy3ufX2R4eGT6g4UQGfOOpgLBlqLGaY6cHQkEhRBzIhqN8vo7n+MoaXngho7llq00mtex2roLl/6Lmr/arYTR45OpjSPb15RTlDf99EgymcAYHeDZPTtnfxM5bssj6yi0BInHYlh1TlZYU9VAeuJXGU8M3HWs02Zi57pKdAoEQnEOne8lmUGOQQB3SQNvvHcEn2/u1i0JsZRF4hFuTqRyhy4rmno2JVskEBRCZF0ikeDVtz7EWtiITvfgjxm9YmC1dTf15jV3vX7pxijdgwEA1jUXU1XinNG1Q6PtfPOlPdPuJl4sXtz7GNGJDjRNo860GqcuFUyPJHrvObYk38bmlWVAKuH0yQxzDCqKgqu0mdfe/oxwODy7GxBC3KPL13fne1NGBIUQC4qqqrz+m49QHLXo9ZmVM+8a8HOpfRRIVctYVpc/o/N8Iz3sfWwDZrM5o+suRAaDgZeffRT/cCc6Rcd625M85vg9mi0bpzy+vsLNyvoCIJVjsDXDtDKKomAvbOLnb31EPB7PuP9CiHu1FDXwjy//LX/1+P+Ky+yY/oRZkEBQCJE1mqbx699+StRQitE0/Vq+qYz5Ixy7lJrWLHJb2LyidEaje6Ggn5V1LmqqqzK67kJWXFzEtnW1TE4MU2AoJ89Q/MDjVzcVUV2aGmG90DZyp15zunR6Pca8el596wOSyczWHAohpmY32VhZ0jLn15FAUAiRNfs+Psh4wo3ZYrvvMZPJMRLa1LtWQ5EEB86m1q7ZLAZ2rKtEr5/+Y0pNJrGqI+zcvinjvi9061avoMKdIBaZfqpWURS2riqj0GUB4NilfiYmp07iPR2DwYhqq+aNtz/KaJpZCDG/JBAUQmTF54eO0zNhxGq7/1q+hBbnWPBtPp38GWOJu/PRJZIqB8/1Eo6mdgjvWlc5ozQxAMHRdl55/vElsy7wfp57ahdqsHtGAZlBr2PHukqsZj2JpMbBc71E45mN6plMZoJKMe/s+0yCQSEWGAkEhRCzdvL0Bby9MeyuB6/law0fIaj6CKsBdHwR5GmaxsnWQcb8EQC2rS4n/9Zo1XR8o33s2bEGq3XuEq4uFHq9nlee241vqOOu17+cV/DLbBZDqkKLohAIxzlyoQ81w53EFqudoZCNT/Yfyeh8IcT8kEBQCDErl1q9nPKO4Mh78Lq0kUQv7bFzALSYH7lrHdu1rgk6+1OpSL68fm064VAQT6WVxvraDHu/+OTludm2toagf5SoGuJ08AM+9P+YsBqY8viiPCubVpQCMDAa4vz14YyvbXPk0T6sceT4mYzbEGKp6/UPEElktlQjExIICiEy1tbeyaEzN3EXVjzwuIQW52zoIyBVPcRj2XznvcGxEGevDQFQVeK4s6N1OqqqYooP8PiurRn2fvFav3YVeaYgalJlINFJkjhXIkfve3xDpZvm6jwArt4cvxOUZ8LhLuJC+yTnLlzOuA0hlrL/cPDv+c5bf8EnNw49lOtJICiEyEhv3wAfHb6Cq7hm2mMHEu0EVR8KChtsT6FT9AAEw3EOn+9D08BlN7F1VfmM1/lNDnfw8nO7l/y6wPv56t7HSIz34zGngu6uWCu+5P2rgWzwlFCSf6sm8eWBO9P0mXAVlHL0Uj/eazcybkOIpWgi4mcwMIyqqZQ5Sx7KNSUQFEKkbXRsPFU/uKR+RsdXGT1ssb/ASssO8gypD7dEUuXQ+dQGBaNBx851lRgNM/tImpwYZsfGBhyOuc2vtZCZTCae2bWOwkARNp0bSK3RvB+dTuHRtRXYLAaSamrzSCSayPj67sIqPj1xnZtdPRm3IcRSc22kHQCdoqOpoO6hXFMCQSFEWgKBAL985wDu0vSy3ZcbG2iybABSm0NOXRlkzJ9aB7NtdfmMaggDJOIxSuwxVq9cnl7Hl6C62mo8FTaadan/74OJDiYSQ/c93mIysHNdJXqdQiiS4PAsNo8AuIvreG//eQaHMl93KMRS4h1JjaLX51VjNmSWizVdEggKIWYsGo3y2q8/xVHSPKsp2evdE3T03doc0lhIZfHMR/bCEzd5/unFX0c4W57YvY2KqAW3rogG01rMuvvneAQocFnuKkM3m80jAK6SBt58/xgTE75ZtSPEUuC9NSLomeP6wl8mgaAQYkZu1w82FzRMWz/4QYbHQ5zxpkalKosdrGwonPG5vtE+nt6xFlOGVUuWIp1Ox0t7d7E+spU1tsew6qYPuuvKXbTUfLF5pGsg880jiqLgLm3iF2/vJxgMZtyOEIudpmkU2wtwW1xzXl/4yyQQFEJMK5lM8tpbH6Bzzqx+sKolmUzeW8M2HE1w6NbmEKfNxNZVZTMeWYxGQjSUmqivm35zirhbfn4em1dWE/DPvK7w+pYSivNSm0eOXx7AF8g8nYWiKNiLm/n5Wx8TjT68tBhCLCSKovAvtv0x//XF/8DWqvUP7boSCAohHkjTNN58+yOSlkoMxpmNxF2PnubTyZ/hjZ5AI7XGTFU1Dp3vIxJLYtAr7FxXgcmon3Ef1EAvTz2+PeP7WOoe2bAGp86HOsOawLc3j3y58kg8kXk9YZ1Oh6WwkVd/9SGJROabUIRY7BRFmdWsS7okEBRC3Jemabz9/qcElGKM5plV+ggkx/FGTqChEiOCQmrE7+y1IUYmUnVwt6wsx+0wz7gfvpGbvPj0tof64bgYvfjsLiZHOqY/8Bar2cCjaytRFJgMxTnROjSrEnJ6vQHFXssvfvUBqqpm3I4QInvkU1UIcV8ffHKIkYgTi9U+o+M1TeNc+FNUklgUB8tMqWTPXQOTXOuaAGBZbT41ZTOrHAIQCvpZ21hEcXFR+jcg7mK323l0QyOTE8OMJfoJJqffwFGcZ2WDJ5Xyp28kRNdwbFZ9MJpMxE0VvPGbD6UusRA5QAJBIcSU9h88Tve4AavdNeNzumKtjCRSeePWWB/DqJgIRJKcupraeVqSb2Vt84NL0X2ZpmmY4kNs37oxvc6L+1qzajk39Ic4EHidq5FjMzqnuTqPuvLU10HnUIyB0alrF8+UyWIlqBTzq3c/kWBQiHkmgaAQ4h6Hjp7C2xfD7sqf8TmqpnI1chyAcmMjFaZGYvEkrV1hkqqWmmZcU4FON/O0M/7hDl58ZqdUD8my3StT1UZ64l4CyYlpj1cUhU0rSnE7UmtEj18eJBCOz6oPZqudiWQe7+77TIJBseRdHW7j4xsH6fH1P/RrSyAohLjLkRNnuNwVxpk385E7SGXC3+n8OpXGFtZYH0PTNE5eGSIc01AU2LG2Aot5+h3Ht4UCE6xfVk5enjvdWxDTeKplF06jAw2Na9GTMzrHoNexfXUZBh3EEiqHzvWSSM5unZ/F6mAoZOeDTx5OTVUhctWBzuP811M/50dnf/HQry2BoBDijpOnL3CxfTLtIPA2m87FJvterDoHlzvG6BtJTSGuby6i6FYqkplQVRVLcowtj6zLqB/iwUx6I19btReA7thVgsmZ5Ql0WI0sq049x/HJKKeuDM56NM/xAdqmAAAgAElEQVTqcNM9YeCTz+9f/k6Ixe52RZGWwoeXP/A2CQSFEACcOXeJM9fHcOaXzrqtvpEgF9tGACjNM9BQOfN1hgCTwx18da9MCc+lPQ07cJudaKjciJ6Z8XmFTgMr6lNLBjr6/NzonX3FELszn/Yhjc8PHZ91W0IsNMFYiG5/akr4YVYUuU0CQSEE5y+2cuLKEM78slm3FQjFOHqhD4A8h4nmCktaAV3AP8bm1dU4nTPfWSzSZzKY+NbqF3imajeVkbq0zl1Rl09FUWon+ekrQ4z6wrPuj91ViLcvzoHDJ2bdlhALyfXRVEonBYXmwvqHfn0JBIVY4i61ejl6sR9XQUXa58a16F1Tg4mkysHzfcQSKiZjak2ZPo3NIWoyiVPnY+P6NWn3RaRvT+NO/vjRb1OXbyYem3laGEVR2La6HIfViKrdThQ++yTRDncRV3tjMjIolpTb9YWrXGXYTQ+uBT4XJBAUYgk7f+kKh8714CqsTPtcTdM4HnyXI8FfEUiOpzaHtA4yMZkqIbZ9dQV2qzGtNv3Dnbz47K60+yJmZ++enUR9nWmdYzLq2bGuAr1OIRRJcORCP6o6+92/DncR3r44+w9KMCiWhvXlK3lp+TM83jA/lZMkEBRiiTpz/hJHLw5kFAQC9MavMZLoYTjRjT85yvXuCTr7U5sO1jQVUV40syTUtwX8Y2xbX4fdnt55YvYMBgNP7ViHb7QvrfPynRY2rUitKR0cC3H++nBW+uNwF3F9IMFnB2eW51CIhaylqIHfW/MSX/HsmZfrSyAoxBJ08vQFTrQO4yooz+j8uBblYvgAAKWGOgyhCs54hwCoLHawor4grfbUZBKX3s/6NSsz6o+Yvfq6GmqK9MRi0fTOq3DTUpMHwNWb49zsn9kO5OnYXYW0DST59IAEg0LMJQkEhVhijp08x+lr4xkHgQBXwkeJaiF06GnR7+DI+T40DZw2I1tXlaW923dypJMXntmZcX/E7KmaSvFyN8P+C2mfu76lhOL8VFqZ45cHGJ+MZKVPdlchNwaTfPzZYUk6LcQckUBQiCXk8LHTnL/hx1WQeYoYX3KY9lgqWGg2P8KZCwHC0SQGvcLOdZWYjPq02gv4Rtm2vl6mhOfZ/3PsR/ztkf+PyaJBfKO9aZ2r0yk8uqYCq9lAUtU4eK6PaDyZlX7ZXYV0jOl578PPJRgUYg5IICjEEvH5oeNcuhnCmV8yq3acugJWWLbj1hXhb69mxJca/dm6qhy3w5xWW2oyicswybrVK2bVJzF7myvXAnB14gbu/GDaU8RWs4Gd6yrQKQrBcJwjF/pQsxS42R15DIYdvPXOx6jq7KqZCCHuJoGgEIucpmn89sP9XB/QMq4Y8mU6RU+L5REqfXtp7w0AsLKhkOrS9PP+yZRw7thStZ4iW2ptp7/QT9zXlXYbhW4rj9zaPDIwGrqTVDwbLFYHfq2Q1371AYnE7FPVCDHfxsM+/veP/4afnH2DQDQ4b/2QQFCIRSyZTPLG2x8yEHRgc+Zlrd2h8RBnrqZ2iFYU2VndWJh2GzIlnFv0Oj17mx8H4GDXCbZtbU57ihigsdJNU1Xqa621Y4yugcms9dFssREzVfCzN94nlkbeQyFykXfkBtdG23m/bT8mfXqptrJJAkEhFql4PM7P33ifkFKK1ebIWruhSJxDX9ocsm11edqbQ9RkErdRpoRzzZMNj2I1WIgn47TFb1JXYiQWTX/jx4ZlJRTlWQA4dqk/a5tHAEwmM4qzjp++vo9gcP5GUYSYrWu3Ekk35FVjMpjmrR8SCAqxCAWDQX7yi/fRHLUYzZastZtMqqmNALEkBr0uo80hAIHRTr7ytEwJ5xqbyco3V32Ff77pD3mu5QmefvxREv7utNvR6xR2rK28s3nkwNleItHsTecaDEbMhU389M1PGBrKTu5CIR4272gqEGwpapzXfkggKMQiMzo2zj+9+THmwiYMhtlPN2iayrHAO3RHvRxvHWDMnxrd2bY6/c0hAAHfCNvXN8iUcI563vMkjzdsx6Q3otfreXr3enwj6U8RpzaPVN6pPHLofB/JLFQeuU2n0+EsaeaNfSe5dr09a+0K8TDEknHax1PrcD1FDfPal5wKBD0ezw6Px3Pc4/FMeDyeNo/H89357pMQC8m16+28/u4RHCUt6HTZ+fa+GbvMQKKd0+F9dPl7AFjVWEhVSfrTzWoySZ4xyJpVy7PSNzH3aqqrqC81ZTRFXOi2sHllGQDDE2FOXxnMagoYRVHIK23g05MdnDh1PmvtCjHXOsa7SKqpFEstEgimeDyefOBt4P/yer15wDeAf+/xeJ6c354JsTAcOXGGT0924C5tTHvN3v3E1DCXI0cASIyWoQXdVJc6WdWQ/uYQgMBoBy9ILeEF56nHt5Oc7Mno3Lpy151KMzd6fVzvnshm1wBwFVZy9oaffR8flFyDYkFoKWzg/977V/wvW/9HCqzZ28iXiZwJBIEa4B2v1/sagNfrPQt8BsxPFWYhFghVVXn7/U+5dDOScd3g+2mNHCGuRdCSeuJdyyhwmTOqHAIwOTHMjo1NWK3WrPZRzL3bU8T+DHYRQ6r2dGVxagT5jHeIgdHsb/Jw5hXTF7Dy+q8/IB6PZ719IbJJURQqXGXsqN00313JnUDQ6/We93q9f3T737dGCHcC5+avV0Lktkgkwj/98j1GY3k4XOnV953OeGKQztglABK9jVh1Dnauq8SgT/9jI5lMUGAJs2rFsqz2UcytWCLG/o6jBGJBqqsqqS02EE8z0TSkfuhtW12O225C0+DQ+T4mg9lP/2KxOogaK/jxa+8zPJy9HIZCLGaG+e7AVDwejxt4Bzjl9Xrfmck50Wj6H04i99x+jvI8p9fXP8C+/WewFTai1+uznmQ3GouiRB0kVQ1tuJ7t60sxGZS0rnP7WP9gGy9/Yw+RSPbSiIi5lVCT/MuP/i1jkQl+f9VLPNO4m0e3rOfMhV+QKEu/TrUCbF9TxieneojFVfaf6eGJjZWYTenvOn/whXSY8ut59d2jbFtTzeqV8svH/cjn7eKS6XNUcm09hcfjqQfeBa4D3/J6vdPe2enTp3PrJoSYQ5qmcelKG+0DUVxF1XN2jas9EYb8MRRThOUlBRS7M9uBHPSPsKLKREPd3PRVzJ33Bg9wcfIaBUY3/1PN11EUhaHhUY5eGsBVWJVRmxPBBBc6w2gauGx61tZZ0emys6b1dwX9oxSYA2zduCprm6eEyHUbN25M6xsqp0YEPR7PBuB94Kder/dfpnNuU1MTZnP6qSxEbolGo7S1tcnzvI9YLMY7HxwkYqyiacXcLTBu7RhjyBcAdKyoqLyz2D9dkUgYJtt4es+35HkuQNYKJxcPXGMs7kNXaqbRVQPAIyt0DIYcmK22tNssAczWSU60DuEPJekcgS0ri7O2wenui5UQi4Q4f7WHl/buxOHIXmL1xUA+b+fHZDSAw2TP+tf87eeZrpwJBD0eTymwD/gbr9f7N+mebzabsViylzhXzC95nvfq6e3nvU9PYimox5WF/ID3097r43LHOAC1ZU5WN2X+Qzrm6+HRTavleS5QK8pbaMyv5cb4TT7rOsqKjc0A7HlsO6/95lP0jsx2qDdW5ROOJrl4Y5TuoQBOu4m1zbOvgz0Vg8OFanPwy/eOsWtTMyuXe+bkOguZfH8+XH+5/28ZC0/wz9Z9nd31W+e7O7mzWQT4Y6AI+D88Hs/kl/78m/numBDzSdM0Dh8/zTv7L+EoaclKkuj76R8JcqJ1AIDifCtbVma2QxjAPzbA7i3LMJnmr3SSmL2nm1Lpfk72nmc87ANSyZxf2LMV33BXxu2ubCikvsIFpEag23qyn1bmNp1Oh7u0iUMXhvjVbz+RXcVi3oTiYbp8fUzGgjjNuTFCnTMjgl6v998B/26++yFELhkfn+Ddjw4TNRTjnqP1gLeN+sIc6TuCplTgstnYta4SfQY7hAHisRiV+RrNjfVcvnw5yz0VD9P2mkc423+Z3fVbcVuc9N16vbi4iNWNBVwbDGRUy1pRFDatKCMUSTA4FuLUlUHsFiPlRXNXccaZV8xkPMY/vvY+T+9cR31dzZxdS4iptI12opHa1tBSWD/PvUnJpRFBIcQtt0cBX3v3KDpXAza7a06vFwjHOdB5HH1NK9a1B9m2viCjGsK3RX2d7N0jtYQXA7PBxF88+idsrFiNTrn7R8aObY9giA5knMQ5VZO4AteX0sqM++d2Z7nBaMJZ0sK+I9fZ9/FBksnknF5PiC/zjtwAoNJVhsOcG2U2JRAUIseMj0/w01++x5XeJO6S+rlZRP8l0ViSz852QPlVAAqNZRTY3Bm35xvt5dndGzAYcmbCQcwRRVF48Zkd+Ic7M27DZNSze0MVFpOeRFLlszM9c5Jj8He5CysZCDr40Wvv0d5xc86vJwTAtdFUXWxP4fyWlfsyCQSFyBGqqnL46Cle/e0x9A9hFBAgkVQ5cK6XSP4VFFMURdOzwfl4xu1FIyGayi3UVGeWWkQsPPn5eWxYXk5wMvM1fg6rkd0bqjAadKlfTE73EIpkNy/mVEwWK7aiZj481s5b73xMOBye82uKpU7BoDPQUtQ43x25Q35lFyIHXGtr5+DJKyjWMvKK6x7KNZOqxuHzfYxGhjE3pUZEWiwbseszGw3UNA0t2MeTLzyXzW6KBWDzxrW039xHMulEp89sSUGBy8KudZXsP9NDMBJn/+luntxcg3kWSxRmylVQTiiZ5Me//JR1y8rZumn9nI/Ei6XpX+3+HrFkPKdqYsuIoBDzaGLCxy9+9QGfnurBWtCIxfpw1oyoqsbRi/30jQTR5w+h6DSsipNmyyMZt+kb7uIre7ZI4t5FLpyMcH2s867XFEXhq3t3MznSMau2SwpsPLqmAkUBXzDG52d6SCTUWbU5Uzq9HndpI629SX782m/p6s6srrIQ0zHpjZgNuZNNQT6xhZgHiUSCDz45xM/fPUrCWoMrv+ShXVvTNE60DtA9OAmAx/IIj9pfYb3tSQxKZqlpwqFJVjcWUFIyN7ngRG440nOaH3b8nL878SOS6t2bLGw2G7s3t+AfG5zVNSpLHGxZWQbAqC/CwfO9JNWHN3pitTkxFzTx24NeXn3rA4aGhh/atYWYDxIICvEQJRIJPj90nH947QP6Q07yiuse6hSUpmmcvjpER58fgJaaPFY3FVFsrKbEWJtRm6qqYooPsWNb5qOJYmGoz6smicpE1M+5gdZ73l+xrIWKvCSx2Oxq19ZXuFnvSf1SMTAa4tilftSHPJXmLqxAtdXwxkfnefPtj5mY8D3U6wvxsEggKMRDkEwmOXTkJP/w6j7aR004ixsxmR5+SacLbSNc704t6m+odLPBUzLrQHRyuJ2Xn9sta6qWgHJHCVWW1GjdZ+1Hpjzmuad2EffNfhfustoCVt4qbdg1MDkvwaCiKOQVVRE2VvCzt4/w7r79BAKBh9oHIeaaBIJCzKFkMsnhY6f4h1f3cX1Yj7OkCbPFOi99udw+SmvHGAA1ZU42rSidfRA4PsSuTc1Sw3UJWeNqAeB03wUmIv573jcYDOx9fBMTI92zvtbqpiJaalI1tW/2z08wCKnKJPml9YyrRfz3tw7yxjsfMzg49ND7IRauroleTvVewB/NvV8kJBAUYg4Eg0H2fXyQ//bz97k2oOAobsRssc1bfy63j3KhbQSA8iIba1bY0M0yCIzFopS7E1K7dYnxOOqxGMwkNZUDncenPKaqspzlNU7CoeCsrqUoChs8JTkRDALo9QbyS+uJGit546OLvPrWh1xra8+pHaAiN33eeYy/PvRf+Pef/+f57so9JH2MEFnU3dPL8TOtDE4kcBVV45znzROapnHpxiiX2kcBKC2w0bQizKeBX9NgXstKy6PolPTTc2iaRtx3k+e+LalilhqTzsjumi1E1BgrS1rue9xjO7bQ9fpvUS0Ns9pJfjsYBLjWNcHN/knQYOvq8ln/MjObPuUXV6IBn53u48gpL021RWzasAaz+eEv+RC579pIKpF0S1HuJJK+TQJBIWYpFotx+twlrncOEkxaceVXkV86/+vlNE3j/PURrnSmpoMriuxsXVPM/uDP0FDxJYdRMpwU8A938dJTW6R6yBL1+6tfxmKxPPAYRVF45bnd/NOvDuAunV3y3HuCwYHUjvf5DAZvc+YVAUW0DUc4/9onlOQZWbeykabGua8KJBaGeDLOjfEuADw5lEj6NvkUFyIDqqrivdbG5evdDI1HsbrLMbvrybwwW3ZpmsYZ7xDXulIbQ6pKHGxfU4E3eoywNomCjrXWxzP6QRUO+FjTVEh5WWm2uy0WGafTye7NzRw8148zf3ZfL1MFgxqwdVU5et38B1wmswVTWQNx4JPTvew/foXqUhcb1y6nuLhovrsn5lHHeDcJNVUpxyMjgkIsXJqm0dXdw8XWG/SOBFAsRTicleTlWDykaRqnrgzS1pNKd1FT5mTbqnJCmo+26GkAGs3rcOoL0m5bTSaxaKNs37o3q30Wi9eKZS10dvczFApjmuVGqd8NBrsGJonFk+xYW4nRkDtL3l15xUAxI7Ekv/zgPGZ9jNICK+tXtVBRUS4jhUuM99a0cKEtn0Jb/jz35l4SCArxAIlEAu+1NrztfQxPhNGMLpzuUpzFZfPdtSmpqsbxywN09qd2c9ZXuNi8sgydotAaPIxKEotix2PZklH7gZF2/ugbe+QHmUjLs0/u5Mev/RbN3DTrr53bwaBBr6O1Y4yB0RCfnepm94ZKzKbc+pGm0+vJK64EwKdpvH3gOgb1LMX5NhpqSvE0N8qawiWgNq+S3XVbcZoeTuWodOXWd40Q80zTNEZHR7l0pY2B0UnG/TEMtiLszgqcOV40I55Icuh8HwOjIQCaqtw8svyLFDGrrbvRoaPUWI9RSb+8kW+kh72712G1zk/6G5G7JsI+8qz3Xxih0+l4ee9OXnv3CO6S2U+NKYrC2uZiLCYDZ7xDjPojfHSim8c3VmG3ZlYdZ64pioK7oBQoJQScuDbJgdOf4LbrKXRb8TTWUFdbjT7DWs0id60pW86asuXz3Y37kkBQLGmapuHz+Wj13qB/2MeoL0xcs+AqKEVvzcO9QGKeUCTO52d6mQikKjosrytgbXPRXaMvVp2DR+yZTemGAz5W1rmoq63OSn/F4jAR8fPD4z/mwuBV/s9n/5IqV/l9j83Pz2P7+nqOXR7GmZed36o8tfmYTXqOX+pnMhTjoxNdPLahijxn7o+y2exObHYnAONJjY9P9ZE4eBmX3YjbYaakwIWnuY68vDwZgRdzSgJBsaTEYjFudnXTfrOfiUCUiUCUuGrCmVeC0VSBYwGu6R6fjPD5mV7C0QQKsHF5Kc3VeVlrP5lMYGWMndufzVqbYnFwmRx0+/rRNI3P2o/wh+u+9sDj165azs3uTxmLRbNWWaeu3IXZqOfQ+dT3wMcnu9i1vpKS/PnL25kuRVFwugvAnVq3GwDGBqOcunYGIxGcNhNOu4k8p5Xa6grKSkswmdIf1RdiKhIIikUrEAhws6uHnv4RAqEY/lCMYETFaM3H4SpEsSg4H5wBI+f1jwY5dK6PRFJFr1N4dG0FlcXZrfIRGmnnO996RkYlxD10Oh2P1W/lrdZ9HOg8zu+teQm97sFTm88/vTu1XrCwOWtfU+VFdp54pJrPz/QSjSf57FQ3jywvpbEqe78QPWwmk5mCW+sLASaB8fE4l7o6SEYuYDUr2CzG1B+zgeIiNxVlJRQUFEhaJ5EW+WoRC5qmafj9fnr7B+kbGCYQihMMxwmEYyQ0IyZbHjZ7IYpJwWyC3J8wmrkbPROcvDKIpoHFpGfX+ioK3V9EtrerHczmh61vuJuvPLFRFrSL+3qsfjtvte7DF53k/MAVNlSseuDxer2el5/bxevvHsZVkr2caoVuK3s21/D52R4CoTgnWgcZn4yywVOCLgfSy2SDwWDEnZ/akQygAUEgENPobg9x+NJl1FgIox4sJgMWsx6LMfW31WzE7XaQn+fG5XRgt9ulIooAJBAUC4Cqqvh8PgaHRugfHCEYjhGMJAhHEoQicTS9BZPVhc1egKJXUBzgXMSlb5OqyumrQ9y4lR7GZTexe30lDtvdU0W98Wt0RC+y1vYYLn36c97BwARrmguorqqc/mCxZJU5ivEUNeIducGBzmPTBoIABfl5PLbZw/4z3bgK7r+uMF0uu4lnttRy+EJq09T17gl8gRg71lZgNi3eTRiKomCx2rFY796VqgIhIJQEdTJJ20iEWPQmyXgULRlDTUYZHx3hzNV+rBYTRr0eg0HBaNBj0Osw6HXo9WAxm7FazNisFiwWMxazCaPRiMFgwGg0YjQa0ev1s6ogsxiF4mH+/sRP8BQ28njDNhyya1iIqSWTSfx+PyOjY3T39NPqbaOta4SEqiMcSRCJq2CwYLY4sNrdqQ8bC5gssNRWyQTDcQ6d72PMHwGgrNDG9jUVmI13/5CLa1Euhg8Q1UK0ho+w1fFiWteJx2LkGfxs3/xU1vouFq9dtVvomxykyF4443OWeZroGximY2wSq82Ztb6YjHp2r6/i/PVhrt4cZ2g8xAfHb7JrXeWC2EQyV3R6PVabHavti2AkkUgQ17kw55WgMxhIAkkgCqkoUgUtppEMJEgk4iTjIRLJBGoyCVrqj6omUTQ19W8F9IqCogOdokMHKHoFnaKgU1IBa2p0VkNRdHdeuz1pcbtKjE5RQOHO6wqpYxRSr9+mfOmYO8d98Y+7aRrKAwLV+02czGRG5X5H9Mb6OeE/x4mec2jdCmZd9r7+GmoraW6qz0pbEgiKOReLxZiYmGBoeJShkXHCkTjhaJJwLEE4miAW10BvwWixYTI7iJhqiJpKMBgM2BywcJZ8z62B0SBHLvQTjScBWNlQyKrGwilLbF0JHyOqhdChZ7V1V1rXSdUR7uTlbz8n6wLFjOyu38rjDdsxTLM+8Hc9vmsrA2/tI5GwYDBkL+2LTqew3lNCntPMidZBguE4H524yaYVZdSVu7J2naVAURQMBmPq+WR5TbV2689tyWw3/rvUbF5gep2xNgCcugICaiWBLF4/0d4tgaDIHclkkomJCfoHhhi8FeiFIgnCsQSRaIJ4UoditGC2OLFY81IjembQm8HxOwMBiURifm4ih2maxpXOMS5cH0EDjAYdW1eVU1Uy9fz3RGKY9th5AFosm7Dr01sw7x+6wf/w4m5ZcC5mzKTPLIhTFIWvv/AkP/rF+ziKW7L+i0d9hRuX3cTBc32EowmOXuxnYDTIxmWlOVWJRCxOY4l+AAoM2Vv+MBfkk17MiKqqjI+P093bz+DwBOFIgmAkTjiaIBJTUYxWzFYXVlt+6sPcAkYL5GZq14UjHE1w/PIA/SNBANwOEzvXVuK0Tz0prmka58OfAhp2nZtm88a0rucb6eHpnavJy8uVqslisTOZTLz8zHbe/OAU7pLsjHB8WaHbyjNbazl6sZ/BsRAdfX6GJ8JsX11O4UJJFCoWHE1TGUsMAFCgl0BQLCDJZJLh4WE6u/oZHfcTiCQIhuOEIkkUoxWLzY3FWohiSG3KkKnbudM14OfklUFi8dR8Qm2Zk80ryjA8cCRDo8rkYTI8yhrrY+iVmX+LB/xjrGsupLG+dpY9FyI9JSXF7NhQz+ELg7gKsl+822o28PjGKq52jnO+LZVd4KMTXaxpKmJ5XYEsgRBZ51fHSBADZERQ5LBwOExnVw9dPYNMBmNM3gr4MNpwOAswmkrBAhZL1peGiAeIxZOcujLIzYFJIDUVvHFZCXXlrml/YCmKjkbzOqqNHky6mY92xCJhSu1htm3ePqu+C5Gp1SuXMTQyRueID6sj+yPSiqKwvL6AkgIbRy72EQjFOX99hIHREFtWluVsaTqxMDl0eTxq/xrjyQEcuvz57s4DSSC4RMRiMTpvdtPR1Y8vEGUyFCMcA5M9H7ujEMWsYDYvrjx7C9HAaJBjlwYIR1NrJUsLbBn9kEonCFRVFUI9fOWbz6V1DSF+V1JN8vGNQxzoPMYfrf8GLUXp1RV+Ytc23nz7IwJRMybz3Pz6Wei28OzWOk5fHaSjz8/gWIjfHu5gTVMRLTX5iybnoJhfesVAsbGKYmPVfHdlWhIILlITExNcvdbBwIgP32SEyYiKyZaP3ZmqqGG1gKyOyR3haILz14fp6PMDoNcprG0upqVmbuuMappGYLiNP/zak1LsXsyaTtGx7/p+eicHONB5PO1AUFEUXv7Kk/z09fdQDQ3o5uhr8vaGq/JCO6evDhGNJzl7bZjOfj+bV5ZR4JI5ELF0SCC4SPj9fi5duU7/sI8xX4SoasSRV4LJVIYxDwrmu4NiSqqq0dYzwYW2EeKJ1FrAApeZravKcTvmfnzWP9zB157dht2em4lOxcKiKAq76rbw6sXfcLj7FH+0/usY09xRrNfr+dZLe/jJLz/EUZL9ncRfVlvuoqzQztlrQ3T0+RmfjPLhsZu01OazurFIdhaLJUECwQUqGo3SevUanT0jjPkjhOMGHPklmEwV2ItAfqznvuGJMKeuDDIxGQVSoxSrG4tors5La3rqWuQkFp2DauOytH5o+kf/f/buO76t+77//escbHCAm+IUJVE62ssalmVZHpL3tuPE8chobcdp2tQ/N6nTJr+kN8l1m3VTJ3WbtGkTZzbLie3ESx6JbMmStfeRqElxiwMksYFz7h8gaQ3KgiSSBwA/z4f4AHCw3tQhgA++5zuOs3r5TMrKSs87uxBns2LiEn6x8zkC0SBbWnaxtHrBeT+Gx+PhrptW8Ks/rMdXPnLL0A3H5bRx6ewKJlX6eHdPK33BGPrRbhpb+5g7tYSJFfnDztUpRLaQQjBDmKZJS2sbO/c0cKI7SHcgjie/HI+3Ak+RHObNJIFQjJ0HTwwdBgaoq8hn/rRSPK7ze0n6Ex3sDa/HxMTwxKlzzWDVKHUAACAASURBVEnpfr1dbSybU0n95Lrzej4hzqUkp4iZZVPZ3b6fPx/ZcEGFIEBJcRGrL5/FK+sPUFBSM8Ipz1Re5OWGZXXsPtzF3sOdBCNx3tnVyr4j3cybVkpFsVdGF4uUGGYCVcmcrjZSCKaxRCLBgYOH2dfQSHtXkLiaQ35hGWpeCUUjtyKTGCOhSJw9hztpaPRjDCz27st1smh6OWVF5z8Jj2kabAu+jomJV/VR7Zye0v0Cvd3Mmuhl3pyZ5/2cQqRiZd2l7G7fz3F/C3Ejcd4rjgyqn1yH39/HJr2dvMKyEU55JptNZW59CXUV+Ww/0MHx9n56+iP8actxyou8zJ9WKv0HxTmt7f81CTOG5l5KlXOq1XHOSQrBNBOLxdi1Zx8Hj7XT0R1G9RSTl19Brhy9y1iRWIK9h7vYf6ybhJEsAF0OG7MmF5/3YeCTHY7upDuRnLB0vucq7Mq5+2KFggEq8yOsuGzZBT2nEKlYWr2AspxippfWoyoX18/ukgVzCAQ3ojd3kpOf+lrGFyM/x8mK+VV0dAfZdqCDEz1h2rqCvPzOUWrK85g5qUgKQjGsuBmjJ9GOOdbr2V0EKQTTQDweZ9eefRw43Ep7TwR3/gQ83ip8Iz+vqhhDoUicA4097D/WPTQQxGFXmVFXxLTawovqiB40+tgTWgdAtUOjzHHuSaBj0Si5dHDjtddd8PMKkQqPw83Msmkj9nhXLF9C5I23OdrVgzf3/JZMvBilhV5WLa6lqaOfbftP0BeM0tjWR2NbH+VFXmZMKmJCkRwyFu/pSbQNFYHF9kqL06RGCkGLJBIJ9uoH2HewiRM9YRw5ZXhyqimcYHUycbF6+iLsO9rF0Za+oUPAdpuCVlvI9LoinI6L7zsSN6N41XzCZj+zPSvOfftYFAJHuevuG+RDS2SkVVdexh9e+RPtoX7cnuHX2R4NiqJQXZZHZUkuh5v97D3SRV8wRltXkLauIIV5LmZMKqKmLE/mIBR0xpsB8Kr5uNXMGLYpheAYMk2TxuNNbNl5gLauIKqnlJzcKvJHv+uLGGWmadJ8IoB+tJu2ruDQdoddZUq1jxkTi3Cf50CQ95NvK+bKvA/RZ3Sd880mHo9h9B/lvruux26Xl7zITIqicNO1K3n2+TX4wyou99gubqmqClOqC5hU5aOpvZ+9R7ro9Ifp7ouwbkcLHlcHkyvzmVzlI9c7/FrgIvt1xVsAKLJlRmsgSCE4Jnp6etiweRfH2/uIkkN+4QTySuWbYzboC0Y50tzL4eZeAuHY0PZcj4NptYVMrvKN2lxkqmLDZ3v/zqOJRJyE/wj33X0dDocsoSUym6Io3H7zNfzvsy8TiVbidI79WkiqolBTnkd1WS4d3SH2Humi+USAUCTO7sNd7D7cRXmRlylVPqrLcrHZZC7C8SRsBgAoTvP1hU8mheAoicfjbN2+G/1wK/6Qgq+4Ck9RiUzzkgVi8QTH2vo53OSnoyd0ynWlhR6mTyyksjTX8rnHjESCaPch7r/7OpxOaaEQ1jgR6OLtY5u4pGoO1fkX/+Goqir33H4tP/v1i8SVWuwOa/62FUWhrMhLWZGX3kCUg009HG7qJRJLDB02djpUasryqC7Po7zIi00OHWe9q/I+TMjox5ZB5VXmJM0AQ4d+d+ynpTOEO38CrryJFMpULxkvEkvQ3NHP8fZ+Wk4Ehkb/QnJC2rqKfCZV5lOYlx4jCY1EglBnAw984DpcLllBWljDNE2+9Ma3aA900h8NcN+8O0bkcW02Gx+68zp+8dtXiHqrLWkZPFl+jpMF08qYW19Kc0c/B5v8tJwIEI0ZHGzyc7DJj8OuUlWaS015HhXFXmkpzGIedez6sI4EKQRHQCgUYsOm7Rxu6iZseskvrMBXLt/8Ml0gFKNpoPhr7w5ivlf7oSpQWZrL5EofFSU5o95JPGqE2BfeyHT3pTjV9//QMwyDYGcD99+1Grc7PQpTMT4pisJltYv43d6XeevYu9w797aLnk5mkMPh4MN3X8///u4VosYEnG7rj7fY1ORh45ryPAKhGEdbe2ls66erN0wsbnCkpZcjLb3YbQplhV7Ki71MKMrBl+uUQVzCMlIIXiDTNNnfcIgdew7R7o+RW1iNq7AAaXvJXJHoe4d02roC9AVjp1yvKgrlxV6qB77Vu5xjN3P8jtCfOR7bR1v8CNfk3X/WWesTiTjhzoPcd+cqvN6x7UwvxHAur13M7/a+TGewG/3EQWaUjtwEuzabjQ/dcR2//v0rBEKluDzpM0ozx+Ng5qRiZk4qJhCK0djeR2NbPyd6QsQTycFlzScCQAdup43yYi/lhV5KCjzk50hhKMaOFILnqbe3l3c27eRYq5+E3Ueer4ZCaXTJOKZpEgzH6fSHOOFPThY7uObvyRx2lcqSHKrLcqkoycFhH/tlg1pjhzke2wfAZNfcsxaBsWgUM3CUB++5Xg4Hi7RRW1BFja+SRn8zbx19d0QLQUj2Gbz7tmv53Quv0R0Ejzd9isFBOR4H0ycWMX1iEcFwnJbOAG2dAVo7g0RiCcLRBEdb+jja0gck33eK8t2U+NwU+zwU5rvxuGxSHIpRkVaFoKZpC4DvATOBA8AndF3fYG2q5Jx/O3fvZW9DM539Br6SarzFYzPDvbh4pmkSjibo6YvQ1Rum0x+m0x8iHE2ccVtFgWKfh/IiLxOKvBQXeCzt4B01QmwNrgGgyFbBZOe8YW8XCQdxxVq55+4bZIoYkXYur13Mz3f+nvWNW/jYgnuw20b2b1RVVe64ZRXPvfg6HYEE3pz8EX38keR125lS5WNKlQ/TNOnpj9DaGaStM8gJf4hY3CAWN4aOTgxyOlR8uS4KBn58uU7yc5w4HVIgpoP+RA8xM4LPVjpi3R/GStp8Ymia5gaeB74M/BfwIPCcpmmTdV0PWJGpta2dd7fupvlEEJunFG9uLUXp92VTnCQSS9AXiNIbiNLTH6GnL/kTiZ1Z9EHycG9hvouSAg8TiryUFnpHbbqX82WaJttCbxAxg9iws9C7GmWYN5hQsI9CWw+333k9qpoe2YU42fKJi+mLBri8djG2C1x3+FwUReHWG67m5dfeorF77JajuxiKolCY56Ywz82MuiJM06Q3EKXTH+aEP0SnP4y/L4IJRGMGHd0hOrpPnanAYVfJ9TjI9TrJ8zrI9Tjwuh143Xa8brslRzHGoyPRnTREtlBsq2RF3gesjnNe0qYQBK4CErquf2/g8v9omvYYcCPwq7EK4ff72bhlF8fbegkmXBQUV8icf2lksHUvEIoRCMXoD8XoC0aTP4HYWQu+QbleB8U+NyU+D8U+NwV5LmxpWjyZmLiUZL+DWZ7LybUVnnGbQF83lfkRbly9SloFRNoqyynmwfl3jfrzKIrC9atWsG7jFrY3NOMrzpxJfSGZ35frwpfrYnKVD4B43MAfGPhS2x/F3x+hpz9CZOCIRixu0N0XoXuYri2QXNXI63bgcdlxO224nDbcTjsupw2HTSEYiOPqj+JxmzgdNmyqIu8lF2BwRZECe+atEJFOheB0YM9p2/SB7aOqr6+P7Tv3cbi5i96QQn5xJa7CYhn4McZM0yQSTdAfSpA4ESASMwlG4oQicYLhGIFQ8vTkqVvOxmFXk4dQ8gZ+Bt5c06W1LxWqojLPezU1zhkU2s5ce7C3q43p1W6uXHHl2IcTIo1dtmQhhb4DvLmxAV/ZJKvjXBS7XaXY56HYd+qo6HA0Tn8w+UW4P/jel+L+UGyoSASIJ5KtjL2B6Nmf5HDj0FlVAYfDhsOu4rCp2G0qDruK3Z48b7cp2NT3Tm02BZtNxaYqqIqSPB34GSwqVTV59EUduI2iKKhKsvBVlOR1igoKycuZVogmzDg9iXYgs1YUGZROhWAOEDxtWxBIaejjV9d+B7fDjdvuwm1zku/K4wMzbxr2ttFolAMHD3G4sYOu3jDBqI28ogk4PFXkecA0kxNCi4uXSBhEYgki0cHTBOGB08FO0uFInPDA5femaDn9T+FMg990Bw+H5HkHznsduIbtN2MQjxsj/SuOunxKSSTee2M3TRN/xxGWz5/IrBnTCIfDFqZ7f5FI5JRTkdkyaX9OmliD2+Xkhdc2k1dWn3XdJuwqFOQ6KMg9c8WghGESHvwSHYkTiiQIReJD77snn57+vdowkzMoRIbpQz2WBt++FUVBGbo8UCgmzw6cJq8//X7JshIGrzxp88nXcvKdUyk/h6tRDW8n5qTkZ8vWrTG2xQ+dfI8UHvV8bwk5zgRz53RTWvjeF4QLfV2mUyEYgDMW3vACfancWe9K/sebA5VEkc1HYYsbf2+Avv4QsYRJNG4SjMc47m0mT62kyF6F08wBBbq7e0bwV8k+pmkST0AsYRJPmO+dxs1TtsXip55PofHurFx2BadDweVQcdkVXE4Vt0PB7VRxO1TstpO/OSaABEY0TO/7fPHNdIaRoL/9AJcvmgZGjN27d1sdKSUNDQ1WRxAjKJP25/xppby27i3cRVOw28ffMotuBdxuBma3UEh+7Cc/+k3TxDAG3teN5Ht3PJFsRUwYyZ94gqHzCQMMwyRhJk8NAxIDj2GYA49ncsqcqxdq8DHMUx5sBB54FNjzT+AAjLCHPr8NiJ3rLhfNH4A163Yxt+7ipwlLp0JwL/Cp07ZpwE9TufMk23wMNUE0Hqaj+Tjff+xrfJ+v8eXv/JrqiQvwDnwb7Ig30h3eSjdtHGMrHiWXQtsESmw11DpmjuxvlIYSCYNo3CAaSxCNnXQ+bhAbOE1uT5xyGhuhljSnQ8XlSPZTcTlseFzJ/ipupw2304bdBuFgHxPKimVt3NNEw0GUUDMPP/rhjJkoOhKJ0NDQQH19vUxpkwVGan+29neQ78rF6xibSaAXLFjAcy/+id5EDt68gjF5zkwQj8fp6uqitLR4RGcbSBaYyaLQME1Mw8QYKhhNTNPEHLzulALSHLg/Q7cxMU8qCpOXB/4NnL53n4FNQ/WieXLhaJ5ZRr5XY556zVnLzbNc0evsozfWi4M8yuuLz3XzEVHg6Ofu6y45pbvT4OvzfKVTIfg64NI07VMkp5B5ACgDXk7lzrM8y4f+kF9+873asWHvdiZPnTV02WaqFNom0JNox8QgZPYTijdgKiaT7XNH7rcZRacWc4nTCruB01iCWDxBJHbq7YyLaaI7iUKyH4nLoeJ0JIs650kF3mCx5zzpvMthO+cKHPF4nPZYAIfDMe6mQTHMBJuDrzDFtYAi+6l9Avv9J6j0xbnxjlsz8hCXy+XKmOJVnNuF7s/BJef2djTw0CUfZnX9ilFIN7x7776R9e9uZfuBFnwlNWP2vJnAbrePu/fbkVUCLBrTZ/QpBnm5I7NoQNrseV3Xo5qm3QD8B/D/kpxH8FZd10Pvf8/3mKbJb37yXZ796dND23709Jfp9Xdy1/2fSi4S7phImWPiUOfOrngLXYkWqh3Thn3M3kQnhpkYsZFAyUOs5sBcUYmhOaOiA+eTBZwxdP7UlrqRLeYg2UnXOVDMOQcKO4d9sLA7efupl512NeM69Ka7feENNMX20xxrYFXeg+TYkvOM+dsPs2R2NYsWZsYXFSHORlEUfO7kHH/rGjeNaSGoKAqXLVlIbVULf3j9XTxFk8bloWIhTpc2hSCArus7geUXev/Ti8BBg9vufuCvh7bZFDvF9kqK7aeO8DHNZF8IY+Bnd+Qd2owGcimmDI0iYwqq4SKRMIgnjIE+FcbA5eT5WNw4+2ncGPHmYkUBh32gULOfVLDZTy/mBq9/b7tMFZAe2mNH2R95F4BJzjnk2HxEwkEINPHBmy+nuOjMqWOEyETLaxfxTuMW9rQfoDvkp9DjG9Pnr66q4KP3XMfv/vAGvaECcuRQsRjn0qoQvBjf+++fse63ZxaBg5796dO0hwuonr58oO/Be30SzMGOr6Z5WidXE9fsVlQv9NNJP+s4yDsk/GXEG6dhRkduLVeHXR36GSzgHCef2tWhAu70os9uk9a5TBY2AmwOJntA+GylzPJcTm9XM3WlDq695aaMPBQsxNksmDALt91FOB7hncYt3DDtqjHP4HK5uOeO65LzDe4/gq90oryHinErKwpB0zTZ9NK/n/N27774NAW1i8/jBa8Q2bUcNa8bW+lxbIWtKDYDW0EHxrFZ2B027LbkPEqD8yudPueSw5Y8P1To2QbP24a22e0qqrwJjUumabI5+DIRM4QdBwvd1xJsP8yqy+dQP7nO6nhCjDin3cmiqnm8dXQj6xo3W1IIQvJQ8fKllzB1Ugd/XPMOCU8FHm+uJVmEsFJWFIKQbFE716whDruNRTPKUFV1YFJLBia2HJjUcmACzKGJLwcu29TJ2GyLMZQobYkGDCVO/VWzx+T3EtlNURQmOefSk2hnamIhpUaIm+9ZLQMrRFZbXruIA52HmVU2FcM0LF2btayslI/cezNvrd/EzoZD+MomSeugSEnECLIvvIFieyUVjinYlMwsqTIz9WkUReFjf/V5vvvk/3nf2/3l3/xfptUWXcQz2ZnM2Tvst8eO0hlvZoprIU5VpsoQqSkxqrgsuoLVly5gWv1kq+MIMeoWVMxiYcXstCm4FEVhxWWLmT2jhxdefZuIrRhvrvQdFO/vRLyJw9EdHInu4ibfJ6yOc8GypvPR4uWrueO+T571+jvu+yRLLr92VDPo4XfRIxt5te9/0MMbiZlZPLOxuGimadLTfoTq/CCfuPd2KQLFuKEq6dmvubCwgPs/cCNzJrrpbT9IPD76EwOLzNWVGFhf2FaGXcncEehZ0SI46K77k/NRnz5y+M77/oo77/+rUX1u0zQotE+gJ9FGzIywN7yeg5FtTHVdwmTXvIxtMhajo7+3Cy9+7rlxKSXFF9NKLYQYSYqisHTRfObPmcGaP73D0baQDCYRw+qMJwvB02cfyTRZU510d7RgU+KsWn0DHofJz36YHDzyoQcf5bKrrqOr/RiqzYXLk4s3Z+Q7BCuKymzP5dS7FrA/vIkj0Z1EzRANkc1Mcsn8byIpGOgjHDnKlfNmM2vGMvlwESJNuVwubrp2Jd3dPbzy5ga6w07yiyqsjiXSRMyM0pPoAKQQTBt3rZpBaWkpTqeTRx+8iR//4LtA8tudaZqEw2H6+/tpbT/BsaY2uvvC+AMJHN4icvN8I/aB7FZzmOtdSb17IfvDG8m3lWR0k7EYGZFQgFh/C3m1CV5re5PJ9iJmoVkdSwhxDoWFBXzwjus4eqyRN9btIKoWkOsrPvcdRVbrjrcyuIhckU0KwbRQUlJyytqXJxd2iqLg9Xrxer2UlZUxd2DAbzwe58jRYzQcbuJET4ieQILcwgqcrosfselV85jvveas1xtmAlWxXfTziPQWjYQJ+48ze0o5tSsX8IXXv0HCSLD2yEaunXIFdlvWvASFOG+ReJQX9DWsO7aJx5c/TGX+hHPfySITa2v4SE01+w8c5N3tB+iLe/EVlVsdS1ikwFbKIu/19CW6caljs2b2aBnXn0J2u536KZOpn5LspB8Khdi2cy+NLcc50RPBkVNCTt7Iz3pvmgZ/6v8lRbYJzHBfijPD/4jEmQL9vZihdqZPKmPZDdcRNWP8w6v/QigexufO5+8uf0SKQDHuOVQ7Lzf8iZ5wL+saN3P3rJusjvS+FEVBm1aPNq2eo8caWb95L11BG77iSunmMc44VQ/Vzuw4qiOfRCfxeDwsW7KQZUAikUDf38D+wy20dQUw7fnkFZSMyIu9MabjT7TjT7TTFNvPTPdyJjpnyRtJFujtbsejBlik1TBvzo2oqophGDz11vdo6W/Hptp4/LKHKfbKknFCqKrKpdULeanhTdYdS/9C8GQTa2uYWFtDW1s7azfsoL0nSk5hNQ6n0+poQpwXKQTPwmazMXOGxswZGqZpcuRoI7v3HaK1M0gUD/mF5Re89FeVYyohdx/7w+8SNcNsC73G0ehu5nmuosBeNsK/iRht8ViUvs4mSvJtXHepxqS6iadc3xro4EDnEQA+vuCDTC+dYkFKIdLTZbWLeKnhTY73tnCsp4nagiqrI52X8vIy7r51FaFQiA2btnPo+HGiSt6INRwIMdqkEEyBoihMqqtlUl0tpmnS2tbO9t37aesM0BdWyC+qwO5I/VugTbGjuZdQ45zBrtCfaY410J1oxZ/okEIwQ5imib+rFY8apq6qkKVXr8TrHX7t6cq8cv559ROsa9zM6voVY5xUiPQ2rWQSxZ5COkPdrGvclHGF4CCPx8OVKy5lpWly5OgxNu88QHt3FHd+OW5PjtXxhDgrKQTPk6IoVEwop2JCspNwb28v23buo6m9je6+GM7cspSnp/GqeSzJuYn22FEao/uodc4czejiIpmmSaCvByPcSUVJDitXalRXpTZarCy3hNtnXDfKCYXIPKqisqxmIS/sf40j3cetjnPRkg0HE5lUN5FoNMqOXXs5dOw4Hf4I7vwJeLxSFGY60zSzqrVXCsGLlJ+fzxXLlwAQjUbZs28/RxpbaO8JEsODr7Ac1fb+o4PLHBMpc0x839sIa5imSW93Bzajj7JCL4vn11I/ZekFdwsQQpzphmlXceWkZdT4MnsajtM5nU4WLZzHooUQi8XYuXsfB48ep6MnjOopJC+/KKsKivHANE1e7fsRuaqPGe5lFNrTd6R7qqQQHEFOp5P5c2czf27yj6W9vYOdew7Q1hmgJxDD5i4gz3d+L/wjkV2EzQBTXZfI6iRjJBwOEuxpI9elUFrkYeWKeqqqUh8VGEvEcNhk7kghUlWak/3z8jkcDhbOn8PC+XNIJBIcOdqIfvAYJ3pC9AUN3Pll0lqYAfqNboKGn6DhZ5ZyudVxRoRUFqNEURTKy8soL0/2+Rt84e8/eIwuf5ieQBy7p5Dc/IKzFhhhI8Cu0FriRGmK7mee92pK7JnZfyadRaMRAj3tuO1xivPdTKspYubqs/f5ez/BWIh/ev3/Y2nNAu6Ycb182xdCnMFmszFlch1TJtcBEA6H2asfoLGlFX9/FH9/DJs7nzxfsRx9SDODy8rZcZKvZscXGCkEx8jpL/zByawPHmmmpz9CT1+YmOkit6AUpzM5MbZNsVPrnMGh6Hb6jC7e6v81dc7ZzHRfjlN1vc+zibMxEgl6ezsxI33k5zjw5booK89n5sql5OfnX9RjxxNxvvn29znc08gR/3EWVsymrrBmhJILIbKV2+1mwbw5LJiXvByPx2lubuHAoUa6e0P0BmMEwwlUVx65eQXnNThRjKz31heuQFGyo0iXQtAip09mbZomfr+fffsP09HdRm9/lFAwSo1ST5l3InsS6+g1TnAkuouwEeDS3Fst/g3Sm2mahIIBwoEeVCNCXo6DXI+Dgjw3K+dOobJiArZz9N08H4Zp8PS7P2Zn2z4A/mLhB6UIFEJcELvdTm1tDbW1772HxONx2ts7OHysiW5/N33BGMFwjFDEQLG7cXry8HhzpQVxlHUmkoVgUYavL3wyKQTThKIoFBQUcOmSBUPbTNOkt7eXw0cbmd62ii29u9kT30tNsIauYCMuTz6enLxx+8I3TZNIOEgo0IcZC+J0QI7bgcdtJ8ftoFIrprZ6Kvn5+aN6iNY0TX687be8dXQjAHfOvJ5r61eO2vMJka1M06TR38y21t3coq2WrhUnsdvtVFZWUFlZccr2RCKB3++npbWd1o4uguEYkWiCcDRBOJIgEkuA6kSxuXC6vbjcbmyyqtEFiRphIkYQgOIs6qZ1Xn8NmqZVAhqwAcjXdb11VFIJIFkc+nw+5s/1MR+4kZUEoyE8Dje9vb20tLbT1NpBKBwjFIknf6IJojFQ7S5sDg9ujxeH05VRb6imaRKNhAkFYsSiIUhEUDBwOW14nDbcLjsuh4rH7aCoIo/KCTMoKirC4bBmgEYgGuTdpm0AXDlpGR+cLa21QlyIRn8zf/fyVwCYVaYxpUhmUzgXm81GUVERRUVFzBrmesMwCAQC+P299Ph76fb3EwpHicbiBKJhEr3HMTxhooqNWNwgFjdImAqKagfFBqodu92B3eHAbndgs9tRVVtGfaaMFKfq5ibfI/gTHeTbSqyOM2JSKgQ1TcsB/hv4AGAC04BvaZpWDNyh63rH6EUUJ/M6k+sS+3w+fD4f07WpAPSG++gJ91JbUEU8Hqe3txe/v5fObj+9fd2Eo3GiUYNoPJF8oRsmsUTyRR+PJwAbqCooNhTVhokNm82WfMGrCoqioigDp+rAG4BpYprJwg1MTMPAMAwMI4GRSIBiYCYMMA0gDkYCVVGw2RVsqorDpmC32bDbFZz25ClqgpDRxKxKH+XlFfjy88jJycHlSt9iNteVwxeveow/7H+d++fdmbY5hUh3Nb5KynNLaevvYH3jZikER4CqquTl5ZGXl0d19amtWOFwmN27dzNr1izcbvfQ9ng8TjQaJRKJEI1GCYXCBIIhQqEIoUiIaCyKkYCEaZBImBimiWEkPwsSpolpmCQME8MwAZLXkbydaQycomCaJubA/QzTACW5DZOBz5bk/UwUkhuTBcjApYFzg5cUFEXBNEFRBrYMXXXye3Ly/MA93nukM963h38fN5M3x0/LaTc/2/u+ecaWkfiMyCseuSOBqbYIfg2oBqYDm0n+Zk8APwa+Ddw3YonEBfnRtl+z7tgmbptxLXfOvHHoG+KkSee+r2maxONx4vE4sViMWCxGPB4nHIkSi8UxTYN4wsBIJIgnEgOFX/KPWVVVVCX5AlRUFYfdjtNhx+l0YLPZsNvt2O12nE4nDofjnIexz/bGlO5Kc4r56IIPWB1DiIymKArLahbyu70vs/7YZu6be4d8sbLA4Pv2hcycMNoGP39M0xz6Ofny6bc5/X5nu36450h1+7myjoaR/HxMtRC8DbhT1/X9mqYBoOv6Xk3THgFeGbE04oIEokH0EwdJmAa/3fMS649t4aFFH2Z2uZbS/RVFweFw4HA48Hg8o5xWmPe3MQAAIABJREFUCCHOblnNJfxu78t0BLs42HWU+uI6qyOJNDL4xUC+IIycVNsW84HeYbYbgMyca7Ecp5dvXP8Fbp2+GlVRaelv5/9589s8vfGZUf1GMh4ZpsHG49vk/1WIUVJXUE15bikA6xs3W5xGiOyXaiH4CvCPmqYNtSBqmlZC8pDxq6MRTJwft93F/fPu5MnVTzC5sBYAj90t35pGUCwR4982/IhvvP09fr7z91IMCjEKFEXh5mnXcM/sW7hmSnas3CAy37GeJrpCPVbHGBWpHhr+G+BZoAPwAi+R7DO4F/jY6EQTF2JSYQ1fXfVZXjv0FpdPXGJ1nKzRF+nnG29/j70dDQD4w30DXZil0BZipF03VaZfEunlB1t+wd6OBm6fcR0fnnu71XFGVKqFYLeu60s1TbsamDlwvz3Aq7quS7NImrGptvedxy6aiOGUtXBT1tzXxj//+d9o7U8Ojr971o18YNbN0toqhBDjQDQe5UDnEQAmFmTP/IGDUi0Ed2madpeu668Dr49mIDG6drfv51/X/4APz72dK+qWombJEjmj6X+2/C+t/R3YVBuPLn6AK+qWWh1JCCHEGGnoOkLciAMwo3SqxWlGXqpVgCxsmCV+tv1ZesK9PL3xGT6/5usc6DxsdaS098klH6GuoJovrPy0FIFCCDHO7Ok4AMCE3FKKPAUWpxl5qbYI/gx4RdO0nwOHgNDJV+q6/v2RDiZGx6eX/QXPbP8NG49vo6HrCP+45mtcMXEpH1lwN3muXKvjpaVCj49/vvZz0noqhAVM08Qf7qXA47M6ihin9g4UgjOzsDUQUi8EPwgEgbOtnSWFYIYoyy3h75Y/wq62ffzPll/S2NvCjra92FVZexKSHzrD9f2TIlCIsbejdS//tfnnxIw4/3bzV+R1KCwxsaCG7lAvM8umWR1lVKT06a/ret0o5xBjbHb5dL523T/y6sG15Lty8TgyZxWP0WCYBi/uf4Ntrbv53IpPnXMFFCHE6PO584YGaTV0HmFayWSLE4nx6MH5d/Hg/LuydsqwlJuBNE3LAz5CctSwDdCBn+q63jZK2cQos6k2rp965Vmv7wh0UuwpzPqiqCfk5982PsP21j0AvNTwJjdOu9riVEKIWl8VFXlltPS1807jFikEhaWydaaIlD7hNU2bTbLw+yxQDkwAHgd2a5o2c/TiCavEjQRfefMpHn/py7x5eD1xI2F1pBFnGAZrDq7l8Ze/MlQEXla7iJV1l1qcTAgB7609DPDO8a1Z2yIjhJVSber5V2ANMEXX9bt0Xb8NmAS8CHxrtMIJ6+xq20dLfztNfa08vfEZ/voPX+CP+18nEo9aHW3EvNu8ne9v+hl9kX48djefWvpRPn3px8lxpt9C60KMV5dWXwLAiYG1h4UQIyvVQnAZ8KSu67HBDbquR4EnAVkDKAvNr5jFk6ufYEn1fBQUOoPd/HDrr/jaW/9udbQRs7hqHlOL6lheu4hvXv8FrqhbmrVN/0JkqokFVVTkljGpoIZwPGx1HCGyTqp9BNuBKpJLyp2skuRoYpGFphRN5O+WP0JTbyu/3/sKa49u4JrJy62OdUGGGw2sKipfvOoxnHaZJlOIdKUoCk9e+wReh8fqKGKc2XB8K8f9LcybMJP64jqr44yaVAvBHwPf1zTtb4ANA9uWAd8GfjoawUT6qMqfwCeXPsg9c26m0D38XF47WvdSV1BNvjtvjNOdnWma7G7X+eP+N6jxVXLv3NvOuI0UgUKkPykChRX+dPgdNjXvoNHfzN9e9pdWxxk1qRaCXyE5QORZkiOGAWLA08Dfj0IukYZKvEXDbg/Hwnzz7e8TNWLMLtNYVDmXRVVzKfYWjnHCpFAszNvH3uXF/W/Q2NsCwL4TB7lr5g1S+AkhhDgnwzTYe6IBgJll2TmR9KBU5xGMAA9pmvYZYBoQBhp0XZfDwoIjPU2YmCSMBNtb97C9dQ8/2PILZpVN4/9e+bdj2u8umojxyHNPEI5HhrZNKZzIDdOuQlVt73NPIYQQIqnR30wgmixxsnF94ZOlVAhqmuYBvk6y+Pv2wLY9mqa9Anx2YOCIGKeml07he7f+M5uadvBu83a2tewmHI+Q58wdtgjsjfQTiAaZkFt6QUViIBqkua+N8pySMw5FO20O6ovq2NtxgKU1C7lx6lVMLZ4kg0CEEEKkbG9HsjUwz5VLdX6FxWlGV6qHhr9Dsk/gL07a9lngX4BvAH8zwrlEhvE43KyoW8KKuiXEEjF2tx8gxzl8v551xzbx31v+F4fNQaE7nwK3jwJ3PssnLmJB6awzbv9O4xa2tuymPXCCpt5WesK9APz10o+xom7JGbf/y0s+RJ4rV9ZOFiLLHOk+ztqjGyj0+LhZW2V1HJHF9gysLzyjpD7rGxJSLQRvB67VdX3L4AZd11/QNK0deIERKAQ1Tfs88BCQD2wDPqXr+u6LfVwx9hw2B/Mrzj7P+OHuRgBiiRjtgU7aA50AyVFZpWfefn/nYd44vO6M7W2BjmEfvzJ/wvmHFkKkvbeOvcvz+hrKcoq5ado1Wf8BLaxz54zrqS+qozKv3Ooooy7VQlDlvUEiJ4sCF71IraZpHwUeAFYCjcATwB80TZuk67pMJZ9lHl70YW6YehVtgQ66Q356wr30hHuZXFg77O3rCqpZUj2fUm8xVfnlVOZNoCq/nHxX+oxQFkKMvmU1C3lu3yu0Bzo53H2MyUUTrY4kslRdYQ11hTVWxxgTqRaCzwPf0TTto7qu7wPQNG0q8BTwxxHIUQx8Rdf1IwOP/RTwZZJzFx4fgccXacSm2qgrrKausPqM68LhMyeMvaJuKVfULR2LaEKINDa5sJbSnGI6Ap28c3yrFIJCjIBUC8HHgN8CezRNGxwp7AVeBv46lQfQNM0GDNeEY+i6/s3Ttt0KnNB1XYpAIYQQwHtrDz+371XWN27h3jm3yeFhIS5SSkvM6breBXwAmAN8DPga8CXgO7quD99R60xXAV3D/Gw7+Uaapq0E/h0ZgCKEEOI0l1YvBKCtv4OmvlaL0wiR+VKdPuZ2kiOGbwa2Av8NHAP+XtO0z+m6/tS5HkPX9TWco/DUNO0B4N9IDhT5xfvd9nSRSOTcNxJpb3A/yv7MDrI/s0s67M8qbzkPzr2L+eUzKXEWDtudRKQmHfZnujFMA1VJqY0s7VzoflRM89xjMTRN2wn8WNf1r2ma9iRwm67rMzVNuwX4V13XJ1/Qs5/6HF8g2Qr4AV3X3zyf+27evFkGlAghhBDiouzo3c/6rq1MyalhVellVse5IJdccsl59ZdItY/gVODnA+dvAX4/cH4ncNEzLWqa9jHgb4Fluq7vv5DHqK+vx+VyXWwUYbFIJEJDQ4Pszywh+zO7yP7MLrI/z/TW5m30xPuIugxmzTpzXtt0Nrg/z1eqhWAzsFDTtFJgJvCJge03AofO+1nP9ASQC2zWNG1wmwks1nVdT+UBXC4XbvdFz2Qj0oTsz+wi+zO7yP7MLrI/k0zTZF/nQQDmTJg+bv5PUi0Evw78auD8Bl3X39I07UvAPwAPXmwIXde1c99KCCGEEGJ0tPZ30BnqBmB22fgpS1IdNfzvwFLgg8DVA5tfJtlid16DOoQQQoiRYJgG+08comNgdSIhLsbu9uQBSI/DzaRxMpk0pN4iiK7rW0mOGB68vH5UEgkhhBAp+OLr30I/cZA7ZlzPvXNvszqOyHAtfe0AzCidik0dbjG17JRyISiEEEKkk6lFdegnDvJO4xY+NOdWmVxaXJQH5t/FbdOvJRALWR1lTGXmZDlCCCHGvUtrkpNLt/S3c7SnyeI0Ihvku/OoyCuzOsaYkkJQCCFERppaPIlibyEA7xzfbHEaITKTFIJCCCEykqIoQ0vOrW/cQioLJAghTiV9BIUQQmSsZTULaeg8zLLaSzBMA5syfjr5CzESpBAUQgiRsaaVTObLqz5jdQyRwbqCPbT0tzO1eBJOm8PqOGNOCkEhhBBCjFvrGjfzzLZfU5ZTzHdv/orVccac9BEUQgghxLi1a2Ai6anFkyxOYg0pBIUQQggxLiWMBHvbDwAwaxwtK3cyKQSFEEJkDcM0ZPSwSNnh7kZC8TAAs8ulEBRCCCEyUjgW5gebf8Ennvscjf5mq+OIDDF4WLjYW0h5TonFaawhg0WEEEJkPKfdybtN2+kJ97K+cQu1BVVWRxIZoDKvnEWVcynJKRq3SxRKISiEECLjqYrKpTUL+eP+13mncQv3zL553H6wi9QtqZ7Pkur5VsewlBwaFkIIkRUuq7kEgKa+Vjk8LESKpBAUQgiRFeqL64bWHl7XKGsPC5EKKQSFEEJkBVVRWVa9EAWFrlCP1XGEyAjSR1AIIUTWuHn6Km6ZvppCj8/qKEJkBCkEhRBCZI0iT4HVEUQG0E8c5NWDa5ldprGy7tJxPbBIDg0LIYQQYlzZ1LSDPx/ZwPP7Xh3XRSBIISiEEEKIcWZH214A5kyYYXES60khKIQQQohxozfcx+HuRgDmSSEohaAQQojskzAS7Gzbx0+2/1bWHhan2Nm+DwC7amdG6VSL01hPBosIIYTIOsf8zXz5zX8F4NLqhdQX11kbSKSN7a3Jw8JayWTcdpfFaawnhaAQQoisU1dQzYTcUlr7O1jXuFkKQTHko/M/wKLKuThtTqujpAU5NCyEECLrKIrCZbXJJefWN26Ww8NiiNfpYUn1fOZXzLQ6SlqQQlAIIURWWjaw9nBnsJsDnYctTiNEepJCUAghRFaq9VVRmVcOyNrDQpyN9BEUQgiRlRRF4c6ZNxBNRFlSNd/qOEKkJSkEhRBCZK0r6pZaHUGkif5IALvNLiOFTyOHhoUQQgiR9V7Y/xofe/Zxnt74jNVR0ooUgkIIIYTIejtb95IwErhk2phTSCEohBBCiKzWHw3Q0H0UkGXlTieFoBBCiHEhnohzrKfJ6hjCArvadEzTRFVUZpZNszpOWpHBIkIIIbLe9tY9/Ov6/8Y0Df7ztq9ht8nH33iyoy25vvDU4kl4HR6L06QXaREUQgiR9aryJtAfDRCIhdjWusfqOGKMuWxOcp05clh4GPKVSAghRNYrySlCK5mCfuIg645tYlHVXKsjiTH0kQV388C8O4kZcaujpB1pERRCCDEuLK9dBMC7zTuIxKMWpxFjTVVVXHYZMXw6KQSFEEKMC5fWLERRFCLxCJubd1odR4i0IIeGhRBCjAsF7nzmT5iJaZrku3KtjiNEWpBCUAghxLjx95d/ElWVg2FCDJJCUAghxLghReD48ucjG4gmoiysmEORt8DqOGkp7V4RmqZ9XNO0DqtzCCGEECKzPbfvVb6/6We8oK+xOkraSqtCUNO0ycC3ANPqLEIIIYTIXCeCXRzzJ1eSWVA52+I06SttCkFN02zAM8B/AIrFcYQQQgiRwba17AbAbXcxo6Te4jTpa8z6CA4UennDXGXout4LPAHsBF4E/mKscgkhhBh/Dnc38of9r9EfDfLEik9aHUeMgi3NuwCYWz5DlhR8H2P5P3MV8Mow249omvYB4D5gEbBkDDMJIYQYh04Eu/jzkQ0oKHQGuyn2FlodSYygWCLGzoH1hRfKYeH3NWaFoK7raxjmULSmaW5gE/CXuq4HNU27oMePRCIXF1CkhcH9KPszO8j+zC7ZtD+nF0zB6/AQjIV48+B6bpp6tdWRxlw27c/TJYwEn17ycba17WFGYT3hcNjqSKPuQvejYprWjsvQNG0F8BIwuN6PHfACfmCuruvHz/UYmzdvlsElQgghzsuL7WvZ0atT5iziY7V3Wh1HiBFxySWXnNc4C8sPmuu6vhbIGbysadpK4Ne6rpeez+PU19fjcrlGOp4YY5FIhIaGBtmfWUL2Z3bJtv1pK3ex422d9mgX+TWF1ORXWh1pTGXb/hzvBvfn+bK8EByGwgVMH+NyuXC73aMQR1hB9md2kf2ZXbJlf86tmkmxt5DecB8twQ6mlk22OpIlsmV/iguTdoWgrutvAmVW5xBCCJHdVEXl75Y/woTcUnKcXqvjCGGJtCsEhRBCiLEypWii1RHECAvHwrgd0sKZqrSZUFoIIYQQ4mKEY2H+8vef5fNrvk6jv9nqOBlBCkEhhBBCZIWd7TrRRIwDXYcpcOdbHScjSCEohBBCiKwwuJrItKJJ5LlyLU6TGaQQFEIIMe7FEjE2Ht/Gc/uGWwBLZALTNNnakiwEF8hqIimTwSJCCCHGvbePbeLpjc9gU21cPWk5ua6cc99JpJVj/ia6Qj0ALKyQQjBV0iIohBBi3FtSPR+HzUHCSLC+cYvVccQF6Az2UOjxUejxMbGg2uo4GUMKQSGEEOOe1+FhceVcANYe3WBxGnEhFlbO5j9ueZInVz2BopzXKmvjmhSCQgghBLCibikA+04cpD3QaXEacSEURaHIW2B1jIwihaAQQggBzJswkzxnsm/g20fftTiNEGNDBosIIYQQgF21ce/c2/A43CyqnGd1HCHGhBSCQgghxIBVU1ZYHUGIMSWHhoUQQgiRsXa27eP5fWto6++wOkpGkkJQCCGEEBnr1YNr+fH23/Cfm35udZSMJIWgEEIIITJSNBFja8tuAJZUS7/OCyGFoBBCCDGMcCzMtpY9VscQ72NH614i8QgKCour5lsdJyNJISiEEEKc5kDnYR567gmeXPtduoI9VscRZ7GxaRsAU4snUejxWZwmM0khKIQQQpxmYkE1dkXFNE3+dOQdq+OIYSSMBJubdgByWPhiSCEohBBCnMZpc7C8djEAbx5ej2maFicSp1MVlc9d8Slun3EdS6sXWB0nY0khKIQQQgzjyknLAGjpb2d/5yGL04jTKYpCfXEdH557O+W5pVbHyVhSCAohhBDDmFI0kZr8CgDeOLze4jRCjA5ZWUQIIYQYhqIorK6/gr0dDSyvXWR1HCFGhRSCQgghxFlcP/VKrp96pdUxhBg1cmhYCCGEEBnlRKDL6ghZQwpBIYQQQmSM5t5WPvnCP/KZl78qczyOACkEhRBCCJExNjZtB6An5KfAnW9xmswnhaAQQgiRop6QH8M0rI4xrq07tgmARVXzUFUpYy6W/A8KIYQQ5xBLxPjm29/n0ef/gR2te62OM24d97dwpOc4gIzkHiFSCAohhBDn4LA56An5SZgGrxxca3WcceutY+8CUOjxMbN0qsVpsoMUgkIIIUQKVk1ZAcCW5p10BrstTjM+FbjzKc8tZXnNIjksPELkf1EIIYRIwbKaheQ4vRimweuH3rY6zrh0/dQreerGf+JDc261OkrWkEJQCCGESIHT7mRl3aUAvH5oHQkjYXGi8UlRFJx2p9UxsoYUgkIIIUSKVk9ZgcfuZmHlbCLxqNVxhLhossScEEIIkaKq/An8523/Ii1SImtIi6AQQghxHqQIFNlECkEhhBBCpK1oIsY/vvov/Gb3H+mN9FsdJ+tIISiEEEKItLWleScHuo7wy10vyACdUSCFoBBCCHERoomY1RGy2tsDS8rNLp9GocdncZrsI4NFhBBCiAuwu30/v9r1AjZV5QtX/q3VcbJSMBpiS/NOAJbXLrY4TXaSQlAIIYS4AIFokD0dBwBo7mujMq/c4kTZZ2PTNmJGHLtqZ0n1fKvjZCU5NCyEEEJcgIWVcyh0Jw9Vrjn4lsVpstP+E4cAWFAxi1xnjsVpspMUgkIIIcQFsKs2rp68HIA3Dr1NOBa2OFH2eXjxfXzjus9zz+ybrY6StaQQFEIIIS7Q6voV2FQbgViIN4+8Y3WcrFRbUMXEgmqrY2SttOkjqGnaHcCTQCWwG3hE1/Ud1qYSQgghzq7IU8DymkXsaNuLQ02bj1QhUpYWf7Wapi0AfgDcrOv6Ok3TPgv8CtCsTSaEEEK8vwcX3I3H7sJhc1gdRYjzli6Hhh8Bvq/r+rqBy98CPqRpmmJhJiGEEOKc8l25UgSKjDVmLYKaptmAvGGuMoAFwAuapr0GzAW2An+l67o5VvmEEEIIYb3+SIDf7HmRayYvp9pXYXWcrDeWLYJXAV3D/GwHioBHgc8AVcBm4LmB4lEIIYQQ48Sfj27gD/tf44lXn5SR2GNgzFoEdV1fw1kKT03TdgG/0XV9y8DlLwD/h2QfwT2pPH4kEhmhpMJKg/tR9md2kP2ZXWR/psYwDeJGAmeaHy5Ox/1pmiavNqwFYGnlAkhAOCHFYCoudD+mxWARQAfcJ11WAWXgJyUNDQ0jnUlYSPZndpH9mV1kf57d7r4DrOvahpY7iSuKF1kdJyXptD+Ph9po6msFYKJRzu7duy1OlP3SpRD8IfCMpmk/BbYBXwF0XddT/guor6/H5XKNUjwxViKRCA0NDbI/s4Tsz+wi+/Pcdu4+SFebn12BA/zF8ntx2pxWRzqrdNyfb2/ZDkBNfgWrL7kKRZExo6ka3J/nKy0KQV3Xn9c07VPAj4Bqkn0Ebz+fx3C5XLjd7nPfUGQE2Z/ZRfZndpH9eXY3z1jFSwf/RF80wMbWHayacrnVkc4pXfZnJB7l3Zbk9MGr66/A4/FYnGh8SItCEEDX9Z8CP7U6hxBCCHGhSrxFXFq9gHWNm/nj/te5ZvJyadVKkcvu5FvXf4E3Dq/j8omLrY4zbqTLPIJCCCFEVrhJuwaA470tbG/da3GazFKaU8w9s28h15ljdZRxI21aBIUQQohsMLV4EtOKJxOMhbCr0t4i0psUgkIIIcQIe3z5w/jceaiKFIIivUkhKIQQQoywQo/P6ghCpES+qgghhBDCMhuPb2NP+35MU1aVtYK0CAohhBDCErFEjB9s+QXdIT/3zrmNO2Zeb3WkcUdaBIUQQohRFo5H6Ax2Wx0j7aw9+i7dIT+KorCsZqHVccYlKQSFEEKIUfTnIxv41Auf5/ubfmZ1lLRimAbP73sVgKXVC5iQV2ZxovFJCkEhhBBiFNlUld5IP1tbdnGw66jVcdLG5uadQ+sK3zb9WovTjF9SCAohhBCjaFn1JVTlTQDgN7v/aHGa9PFqw58BmF2mMaVoosVpxi8pBIUQQohRpKoqd868AYBNzTs43N1ocaL08NhlD/Hg/Lu5e9aNVkcZ16QQFEIIIUbZ8tpFVAz0gZNWwSSPw83N2jXMLJtmdZRxTQpBIYQQYpSpqsqdM25gRulUrp+60uo4QgyReQSFEEKIMXBF3VJWTrrU6hhCnEJaBIUQQogxoCiK1RGEOIMUgmlE13Uee+wxLr/8chYsWMCVV17JF7/4RXp6eoZu88ADDzBnzhwWLFjAwoULWbhwIXfeeSevvvrqmGZ94403uPrqqwHYtGnT0HkhhBDibF468Cbrjm3GMAyro4gBUgimiW3btnHvvfcydepUXnzxRbZu3cpPfvITwuEwH//4x0+57RNPPMHWrVvZsmULW7Zs4dFHH+Wxxx6joaHBkuyLFi3i9ddft+S5hRBCZAZ/uJef7fgd317/X/xhv3xmpItx10cwFjc40RMak+cqKfDgsKdWa//TP/0TDz74IJ/85CeHtlVXV/PVr36V73znO/T19ZGXlzfsfVevXk1eXh6HDh2ivr7+lOseeOABli9fzh//+EcaGxtZvnw5H/vYx/jSl75EU1MTV155Jd/4xjdQVZWenh6++tWv8vbbb+N2u/nQhz7Eww8/DEAkEuHLX/4yL730Ej6fj9WrVw89x4YNG/j0pz/NO++8g2EYPPXUU7z88su0tbWRn5/Po48+ygc/+EGOHz/O7bffziOPPMKPfvQjDMPglltu4XOf+9z5/tcKIUTG6w338du9L3H3zBvJdeVYHWfU/WrXHwjHI3gcbukrmUbGVSEYixt84l9eo70rOCbPV1bk5T/+/ppzFoPNzc3s3buX7373u2dcZ7fbeeyxx85630gkwnPPPUc4HGbevHnD3uZ3v/sdzzzzDHa7neuvv56jR4/ygx/8AMMwuP3221m7di0rV67ks5/9LEVFRbz++ut0dnbyiU98gpKSEu68806+/e1vc/DgQdasWUMkEuGhhx4atr/Lc889x5o1a/jJT35CcXExzz//PJ///Oe59dZbAejv76epqYk33niDPXv2cP/993PDDTcwf/789/0/EkKIbBJPxPnMK1+lO+QH0+SjC++xOtKoOt7bwppDbwFwx4zryXflWpxIDJJDw2mgvb0dgPLy8qFt3/zmN1m8eDGLFy9m/vz5/P73vx+67utf//rQdStWrODZZ5/lqaeeOuX+J7vlllsoKyujqKiIqVOnctNNN1FWVsaECROor6+nubmZjo4O1q5dyxNPPIHb7aaqqoqPf/zj/PKXvwTgxRdf5OGHH6agoIDy8nIeeughTNM847lWrVrFD3/4Q4qKimhtbcXpdBKJRPD7/UO3eeihh3A4HMybN4/Jkydz9KgsuSSEGF/sNjurp1wBwMsNf6K5t9XiRKPrJ9ufxTANSrxF3DhN+pSnk3HVIuiwq/zH31+TdoeGi4uLAejo6KCiogKAxx9/nMcffxyAu+6665Si6zOf+Qz33XdfyjkKCgqGzquqesohZkVRMAyDlpYWTNM85ZCvYRhD9z1x4v9v787ja77yx4+/bnKTiMYktISkllI9tpaISKqKhBlLi7TKtDoq1motbRkt3w5SNVQpIQwt3YYa/GxFh+rCULWrNXostWQhthQJEVfu74/PzW0S2UjiJrnv5+ORh3w+n/P5nPe5J+HtnM/5fC5mSTT9/PxyrOvWrVu8//77bN++nWrVqlG/fn37tTJUqlTJ/r3ZbM4xoRRCiLKus2rHDyd+4tKNJP69fwWjnn49/5NKoZS06yQmXwCg5xNdcXd1c3BEIjOnSgTBSAarPVSy7sWoXr06devWZdmyZQwdOvSO4/cjUapSpQpms5mff/4ZNzfjl/Tq1aukpKTYj8fHx9OgQQMAEhMTc7zOtGnTANiyZQvu7u4kJCSwcuXKYo9fCCFKGw+zOy83Dmfm9s/Zm3CQA+eO8ETV+o4DXEbYAAAgAElEQVQOq8g94F6eqe3/wfa4vTxZPdDR4YhsZGq4hJgwYQJffvkls2fP5tKlSwDExcUxadIkjh49mmUUrThUrVqVwMBApkyZws2bN/n9998ZOnQoUVFRAHTt2pU5c+Zw4cIFLly4wLx583K8TkpKCu7u7ri6upKUlMTkyZMBsFgsxRq/EEKURk/VCKJupVqYMHH88ilHh1NsXF1ceapGEC4mSTtKGqcbESypGjduzPLly5k7dy7PP/88V69excvLi+DgYJYsWULDhg2LPYZp06YxceJEwsLCsFgstGnThrFjxwIwePBgkpOTeeaZZ/D09KRz586sW7fOfm7GwpFhw4bxzjvvEBQUxJ/+9Ce6du1KzZo1OXHiBHXr1pUHqgohRCYmk4kBzV4GrNSqWN3R4QgnZCoL92ft2bPH2rBhQ8qVK+foUEQhpaamcvjwYaQ/ywbpz7JF+rNskf4sWzL6MzAw8K5GXGSMVgghhBBFKvlmCjdupTo6DFEAkggKIYQQokgt3L+CYf8dx+ZTOxwdisiH3CMohBBClDAHE3/lATdPaleq6ehQ7trehEP8ePJnAK6kXnNwNCI/MiIohBBClCCrjnzL+5tmEL3jC9IsaY4O565cSb3KnF0LAKhbqRYdHwt1cEQiP5IICiGEECVIwyqPYTKZiL96jsWH1jg6nAKzWq18vOsrrqRexcPswdCQPphdXB0dlsiHJIJCCCFECVL3wUfoWu8vAHyjf+DIhWMOjqhgTiadYc/ZgwD0CehO1QpVHByRKAhJBIUQQogSpnvDZ6jh7Y8VK7O2f8GV1KuODilftSvVZHzYCDrWDSX0kRaODkcUkCSCQgghRAnj5urGkODeuLmYsQLJadcdHVKBqIfq0KdpD3l5QCkiq4aFU4uPj8ff39/RYQghxB1qVazOyJaDqOnzMBU9vR0djiijZESwhFm9ejUBAQEEBATQuHFj6tWrZ99u2rSpo8O7b1JSUujZsycBAQFMmDChWOqYPHkyCxcuBCAhIYGAgABSU4v+Aajz589n0aJFhbpGdHQ0w4YNK6KIiobFYqFXr15cvnzZ0aEIUWY1qdZQkkBRrGREsITp0qULXbp0AWDTpk2MHz+eH3/80cFR3X9aa2JiYti2bRuenp7FUkdSUhIVK1YEwM/Pj19++aXI64iNjWXNmjWsWrWqUNcpidMsZrOZiIgIJk2axJQpUxwdjhDiPjuVFMtvSbGE1Zb7AUszpxwRPJd8Icevoi5fWDm9B3rFihX07NmTHj168OSTT3LmzBnq1avH8ePH7WWGDRvGrFmzAOPdgxMmTKBVq1Y8/fTTTJ48mVu3buVY35o1a2jfvj3NmzfnhRdeYOvWrfZjixYtol27dgQGBhIREUFsbCwAp0+f5tVXX6V58+a0a9eO+fPn28/p1asXo0aNomXLlgwaNAiADRs28OyzzxIUFERERASnTp26I46YmBhee+01UlNTeeqpp9i3bx9hYWFs2rTJXmby5MmMHj0agFGjRjFhwgRefvllAgIC6NatGzExMXnG/vnnn7N27VoWLFjAm2++SVxcHPXq1ePGjRsArF27lk6dOtGsWTNefPFFDhw4AEBcXBzNmjVj3rx5tGzZkhYtWjBp0qRc+3DevHl06dLFnsjl1Ve9evVi+vTphIeH07RpU3r16kV8fDyQ9Wfh6NGjtGjRgq+//tp+zQULFhAWFkZwcDAjR4609/HFixcZMWIEISEhtGnThilTppCWlsYPP/xA+/bt7decPn06LVu2tG9//PHHjBo1ip07d9K5c2c++OADgoODad26dZY+Dg0NZdeuXZw+fTrXz0AIUfQupjh2JD72SgLvb5rB3F0L+O74FofGIgrHKRPBYd+MzfGrqMsXl19++YXhw4fz3XffUaNGjTzLTp48mZMnT7JmzRq+/vprDh06xNy5c+8od+PGDUaPHs306dPZuXMnPXv2ZMyYMQBs3ryZGTNmMH36dHbt2kWjRo3syUafPn2oW7cuW7du5ZNPPmHJkiUsXrzYft0jR46wfv16pk6dyoEDB3j33XeZMGEC27dvJzQ0lFdffRWLxZIllgYNGjB79mx8fHzYu3cvTZo0AfIeFVu9ejVjx45l+/bt1KxZk48++ijP2Pv06UPnzp155ZVXiIqKynKtLVu2MG7cOMaPH8/OnTvp3r07/fr14+LFiwAkJycTHx/Pxo0bmTNnDosWLWLfvn13xJSWlmZPrgtq3bp1zJ49m82bNxvP5Pr44yzHT506Rf/+/Xn77bfp2rWrff/27dtZu3YtS5Ys4aeffuK7774DYMiQIbi4uPDjjz+yZMkSdu7cSXR0NC1atODs2bOcO3cOgG3btpGSksLJkyftn1tYWBhWq5Vjx47h4+PDtm3bGDNmDNOmTSMxMREAFxcX2rZty4oVKwrcRiHEvUtPT+fLX5YxfP14TiXFOiSGhGuJjN80g2tpKTzg5kndB2s5JA5RNJwyESztKleuTEhICF5eXnmWs1qtrFy5kr///e94e3tTqVIlhg4dytKlS3MsX65cORYvXswvv/xC165d7VPS33zzDc899xyPP/44Li4uDB48mDFjxrB7926Sk5MZPnw4bm5u1K5dm/79+7Ny5Ur7NUNDQ/Hy8sLLy4tly5YRHh5OkyZNcHV1pXfv3lgsFnbsuPNdlDmNhualbdu2KKXw8PCgY8eO9hGq3GLPrR6r1crq1at57rnnaNasGS4uLnTr1o06derw/fff28sNGDAANzc3GjduTO3atXMcETt8+DAeHh48/PDDBW5Hly5d8Pf3x8vLi3bt2mW57vnz5+nbty/du3cnPDw8y3m9e/emfPny1KpVi4CAAE6dOsWZM2fYt28f7777LuXLl8fX15c33niDlStX4unpSfPmzdm6dSvJyckkJCQQFhbGjh07uHr1KjExMfYRQldXVwYMGICLiwvt2rWjfPny9hFhgEaNGrFz584Ct1EIce+u3rzGz2d2k2q5SeTG6ew7G5P/SUXofPJF3t84gyupV/E0l+Pd1sOoVbH6fY1BFC2nvEdw5jPjS1T5u/XQQw8VqFxSUhKpqan06tXLPppmtVqxWCykpaXh7u5uL+vp6cm///1v5syZw4ABAzCbzfTt25eBAwdy6dIl6tevn6Vsw4YNWbt2Lb6+vri4/PH/iWrVqtlHmcBIWjOcPXuWnTt3ZrlfzmKxcPbs2bv/ELLx8fGxf282m0lPTwfINfa8XL58mQYNGmTZ5+fnR2Jiov1zrFSpUpb6ckpcz507l6X9BZFxz2L2dgDs37+fFi1asH79egYNGoSbm5v9WPZ40tPTuXz5Mp6enlk+m2rVqnHx4kUsFguhoaH8/PPPVKpUiaZNm9K8eXN27NiBj48PTZs2pXz58gBUqFABV1fXLNfP3N6HHnrIPkIohChePp7evPP06/xzczTXbiYzacssXmncjU6PhRX7vcRWq5Xp2+Zz6UYSHmYPRrcawqMyGljqOWUiWNXr7v5xLu7ydyv7L7uLi0uW+/6SkpIAIzlyc3Nj1apV9lGpGzducPHixSxJIBjTncnJyURHR5Oens7WrVsZPHgwwcHB+Pr6ZknukpOTmTVrFm3btuX8+fPcvn3bnijExcXlmqhWqVKFfv36ZVn9evr0aXx9ffNts6urK2lpf7xz8/fff8/188gsp9hnz57N8OHDsVqtOZ7r5+dnvzcvQ2xsLIGBgXc1Uuni4pIlkcvYl1NfFURoaCgzZ87kueeeY86cOfmuIq5WrRo3btzg999/tyeDcXFxeHt7YzabadWqFXPmzKFy5coEBwcTEhJCdHQ05cqVo02bNgWOKz09vUQuZhGirKpdqQaT/jyKD7fM4cyVeL7ctwyTyUSnx8KKtV6TycTrzV9h8pZ/MSioF/Uq1ynW+sT9IVPDZUCtWrX4/vvvsVqtbN26lf379wNG0tG5c2emTp3KtWvXuH79OmPGjGHUqFF3XOP69esMGDCAn376CRcXFypXrozJZMLHx4fOnTuzatUqjhw5gsViYe7cuRw8eJCAgAAefPBBoqKiSEtL48SJE3z22Wd07tw5xzjDw8NZunQpMTExWK1W+8KRzIlaXm3cuHEj6enpxMTEsHHjRvuxvJKznGI/cOAAbm5uuLu7k5ycnKW8yWSia9eurFq1ij179mCxWFi2bBknTpygXbt2+caZWcboW/Z25NRXBWE2mzGbzURGRjJv3jyOHj2aZ3lfX1+efPJJJk6cyPXr10lMTGTmzJn2VenVq1fH29ubVatWERwcTM2aNTGbzaxbt47Q0IK/KP78+fNUq1atwOWFEIVX5YEHmdD27wT5N6aaVxVa1Qq+L/VW9/YjqmMkjXzVfalPFD9JBEu47CMtJpPpjn1jxoxhw4YNNGvWjK+++ipLIvbuu+9SsWJFnnnmGdq0acP169fvWBwBxmjdhx9+yMSJEwkICGDw4MGMGzeOmjVrEhISwsiRI3nzzTcJCQnh2LFjTJs2DbPZzNy5c9Fa07JlS/r06UP37t2JiIjIsS1BQUGMHj2at99+m8DAQKKjo4mKiqJWrVr5tn3EiBEcP36coKAgJk2axPPPP5/nZ5KxnVvsAB07duTbb7+lf//+Wa7RrFkzIiMjGTt2LEFBQSxdupR58+bZRy4LOvqVMb2csQAD8u6rnNqfUVfm7wMDAwkPD2fMmDF3jDhmN3XqVCwWC23btiU8PJygoCBGjhxpP96mTRtcXV159NFH7Z+Xv79/lvsa82tvxpS1EOL+KudWjhFPDeS9sOF4uT9Q5NfP7T/ZZlennEwss0x3e1N+SbRnzx5rw4YNKVeunKNDEYWUmprK4cOHKSv9GRkZiZ+fHwMHDnR0KMUiI8lcsGBBjivYy1p/Ojvpz9Il7upZqnlVwdXFNcfjufWn5baFlUfWczIplpEtB8mtH6VERn8GBgbeVYeVmLReKfUPYBDwALADeE1rfTLvs4Qo2QYOHMiAAQPo169flgUXZcWGDRsICQnJ9zFGQoj766Yljcgfp+FpLkeXen+h9SMhuLu65Vo+zZLGrxdPcCDxCLvi9nM2+TwAW8/spmXNoPsVtnCAEpEIKqU6A68AgcBFYAYwH2jryLiEKCw/Pz/Cw8NZvHgxL7/8sqPDKVIWi4WFCxfaH4gthCg5DiYe4erNZK7eTGbenkUsOrASX6/KNPN/ghcaPnNH+Vk7v2R77F77tgkT7eu2ppnf4/czbOEAJSIRBB7DuF/RDLgC6cB1h0YkRBEZMGCAo0MoFmazudDvUBZCFI9m/o2Z0v5dvj6yga2xu0m5dYPfks5Qyyfn55o2qvIY22P3Ut3bjyd86/NUjWbyaBgncd8SQaWUK1Ahh0PpwH+AgUAscBtIAJ66X7EJIYQQZU1Nn4cZ9mRfXny8C4fOay5dT+KRXB7+/FSNIIL8m1DR0/s+Rykc7X6OCIYCG3LYfwpjCvgnoBNwDpgOLOEuksGbN28WPkLhcBn9KP1ZNkh/li3Sn6XTn8xetPALtG+npqYCWfvTw8MDT5OH/Zgofe7197JErBpWSq0Flmmtv7BtlwOuAU201ofzO3/Pnj3F0ojcPhtZQSWEEEKIkqi0rhquDmR+FkG67ctS0As8+uijeHh4FGlQVquV3377jUaNGgFw6NAhateuLYlgMbp58ybHjx8vlv4U95/0Z9ki/Vm2SH+WLRn9ebdKSiL4DTBSKbUeOAtMAg5qrXVBL+Dh4VEsz7XatGlTlu/ze0+tKBrF1Z/CMaQ/yxbpz7JF+tO5lZQ3i0QCyzHuE4wHHgHCHRmQ1Wpl3LhxDBkyxL5vyJAhjBs37q7eN1vS7dixg5CQEEeHIYQQQggHKBEjglrrNOBt21eJEBkZyfjx4+/Yn7Hvvffeu98hCSGEEEIUqZIyIliiLF++PMckMMP48eNZvnx5kdY5ZcoUWrZsSYsWLejfvz+xsbEkJSUxYsQIwsLCaNKkCV26dGHvXuOBnytWrGDQoEGMHj2apk2b0r59e3bv3s2IESNo2rQpzz77LL/++isA0dHRvPXWW/Tu3ZuAgAB69OhhP5bdrl276NatG0FBQfTo0YMDBw7Yj33xxReEhoYSHBzM3/72Nw4fzncdjxBCCCFKMEkEs7FarVmmg3MzZMiQIpsi3rZtG+vWreObb75hy5YtVK1alVmzZjF16lRcXFxYv349u3btIjAwkI8++sh+3qZNm2jdujV79uyhcePGRERE0KFDB3bs2EH9+vWZM2eOvez69et58cUX2b17N61bt+b111/n1q1bWeJISEhg0KBBvP766+zYsYO+ffsycOBArly5wunTp5kxYwaLFi2yTyd/8MEHRdJ+IYQQQjiGJIIlgLu7O5cvX2bp0qWcPn2a999/n8mTJ/PWW28xbtw4TCYT8fHxVKhQgcTERPt5/v7+dOjQAZPJRFBQEP7+/vz5z3/Gzc2N4OBgEhIS7GVbtGhBx44dcXV15bXXXiMlJcU+uphh7dq1BAcH07ZtW1xcXOjQoQOPPfYY3377LW5ubty6dYvFixdz5MgRBg8ezIIFC+7bZySEEEKIoieJYDYmk6lA706dNWtWkT1GJjAwkEmTJrF582a6dOlChw4d+N///kdiYiIDBw6kZcuWjB49mqNHj2YZhfT2/uMJ8K6urnh5edm3XVxcSE9Pt29Xr149y7EqVapw6dKlLHEkJCSwZcsWgoKC7F8HDx7k3Llz+Pn5MW/ePA4fPsxLL71EmzZtWLFiRZG0XwghhBCOUSIWi5Q03bp1Y+zYsbneJzh27Fi6detWZPWdO3eORx55hAULFnDjxg0WLlzIG2+8ga+vLy+99BIREREArFq1iqNHj9rPu5tE9Pz58/bvLRYL58+fp2rVqlmmh6tUqUKnTp2YPHmyfV9cXBw+Pj5cvnyZ8uXLM3/+fNLS0li/fj3vvPMOTz/9NJUrVy5E64UQQgjhKDIimIvIyEjGjh17x/5x48YRGRlZpHXt27ePQYMGERsbi6enJxUqVMDb25uUlBT7s51OnDjB/PnzsVgK/IztLDZv3sy2bdu4desWs2fPpmLFigQEBGQp06lTJzZu3Mi2bduwWq3s3r2bLl26cOjQIeLj4+nbty8xMTG4u7vj4+NDuXLl8PT0LHT7hRBCCOEYMiKYC5PJxHvvvYevry+DBw8GjOngjO+LUocOHTh69Cg9e/YkOTmZOnXqEB0dzcWLF5k0aRJTpkyhatWqPP/880RFRXHlyhVMJlOWEcH8ths3bsy8efMYMmQIjRo14pNPPrEfz/izVq1aREVFMXXqVE6dOkWlSpUYPXq0/TmDI0aMYOjQoVy+fBl/f3+ioqKyTEcLIYQQonQpEe8aLqw9e/ZYGzZsWCxPRj9x4gSPPvooAMePH6dOnTpFXkdxi46O5tixY8ycOdPRoeQrNTWVw4cPU1z9Ke4v6c+yRfqzbJH+LFsy+vNu3zUsU8N5sFqtWRZnZN8WQgghhCjNZGo4H3Xq1Mmy+rY0yj5NLIQQQggBkgjmqawkTwV5QLYQQgghnI9MDQshhBBCOClJBIUQQgghnJQkgkIIIYQQTkoSQSGEEEIIJyWJoBBCCCGEk5JEUAghhBDCSUkiKIQQQgjhpCQRFEIIIYRwUpIICiGEEEI4KUkEhRBCCCGclCSCQgghhBBOymS1Wh0dQ6Ht2bOn9DdCCCGEEKKQAgMDTXdTvkwkgkIIIYQQ4u7J1LAQQgghhJOSRFAIIYQQwklJIiiEEEII4aQkERRCCCGEcFKSCAohhBBCOClJBIUQQgghnJQkgkIIIYQQTsrs6AAKQykVAHwMNACOAYO01jscG5W4V0qplsBHgAIuAh9qrT9xbFSisJRSvsBBoI/W+htHxyPujVLqYWAu8DRwFeP3M9qxUYl7pZRqAcwE6gJngfe01v9xbFTibimlmgMrtdb+tu2KwGdAKHAFo18/y+sapXZEUClVDlgDfAp4Y/xAr1ZKPeDQwMQ9sf3wrgama619gO7AJKVUW8dGJorAp0AlQJ5eX0oppUzAKuAwRl+2ByKVUiEODUzcE6WUK0Z/TtRaewP9gS+VUjUcG5koKKWUSSnVF9gAuGU6NA/jP2pVgBeAD5VSwXldq9QmghjZ7m2t9cda69ta68+BRKCTg+MS96YGsEZrvRhAa/0LsBFo4dCoRKEopQYByUCso2MRhRIMVANG2f6+jQGeBI46Nixxj3yAhwA3W5JvBW4Ctx0albgb/wcMAyYAJgCllBfQFRintU7TWu8CFgGv5HWh0pwI1gNisu3Ttv2ilNFa79da987Yto0QPg3sc1xUojCUUo8Bw4HXHB2LKLSmGKOBU5RSZ5VSGgjRWl92cFziHmitLwH/Av4DpAGbgSFa63iHBibuxqda6ybA7kz76gK3tNanMu07Sj55UWlOBB8Armfbdx0o74BYRBFSSnljTPvv1lqvcXQ84u4ppczAvzH+cUlydDyi0CphzMJcAKoDEUC07b5eUcoopVww/r18AfAEOgMzlFJPODQwUWBa63M57H4AuJFtX755UWlOBFMwfoAzKw9cc0AsoogopR4BfsZYLPK8g8MR924MsE9rvSHTPpOjghGFdhO4rLWerLW2aK23AcsxpqFE6fM8EKy1XmHrz/8Ca8lnClGUeNeBctn2lce4PSdXpTkRPIKxujQzxZ3TxaKUUEo1BbYD67TW4Vrrm46OSdyzHsCLSqkkpVQSxj2gi5VSbzs4LnFvfgXMtpGkDKX6qRNOrgbgkW3fbeCWA2IRRecY4K6Uqp5pn8K4rSNXpfkX+UfAQyk1BOMRMr0wVsl869CoxD2xPWJkPTBFaz3F0fGIwtFa18+8rZQ6CQy2jTyI0uc7jNGGcUqp8RiLR8KBdg6NStyrDcBEpVQE8CXQCqM/Qx0ZlCgcrfU1pdTXGE/cGAA0Al4COuZ1XqkdEdRap2E07iXgEjAY6KK1zj4/LkqHfhir2MYqpa5l+nrf0YEJ4ey01qlAG6A5cB5YCAzVWu90ZFzi3mitD2HcH/gG8DsQDbyitd7r0MDEvcr8aK4BGI+TiQOWAX+3rR7OlclqlUd7CSGEEEI4o1I7IiiEEEIIIQpHEkEhhBBCCCcliaAQQgghhJOSRFAIIYQQwklJIiiEEEII4aQkERRCCCGEcFKSCAohhBBCOClJBIUQxUopla6U+ouj4yjLlFKNlVKtivB6C5RS8Uop72z7myml0pRSeb6pQAhRekgiKIQQpd8qoF4RXm8Yxr8P0zN2KKUeAL4CPtVaryvCuoQQDiSJoBBClA2morqQ1joJeA2IyDSaO91Wx/CiqkcI4XjyijkhRLFSSqUDkUBXoAEQA/TTWu9TSv0LqKe1DstUfggwQGvdWCl1CogCXraduxt4TWsdYyv7J4wE5TnAAnwHvKm1vqCUqgX8BozBSF5+0Fr3yCG+CGAI8LWt3E1gltZ6QqYyI4GBQA3gKsY7PIdqrS1KqS8w/lNdH3gE6AycssXVDqgAnAT+obVeZrveKWAC0AcIAA4CPYGhtn1XgJFa6yUFaOcmIGNa+AutdV+lVD1gJvAUkIjxbuDxtngjMN7Nfhzjfe2RWuuoOzrOqHcR8CTGO2mXAy211jtyKiuEKJ1kRFAIcT+8CowGGmMkUvNt+xcCrZRSVTOVfcm2P8P7wFwgECOpWa+UKmc7Nh/wB8JsX17Ammx1/wVojpEQ5qaR7fyngdeBkbaEFKXU34BRGMnToxgjZb2B7pnOfxmYipH47QEWYCSArYCGwGZgnlLKI9M5E4F/As2AisAuIM22/Q3wiVLKtQDtfA7jBfNvA2/YPptvgf0Yn3dfW6z/zFR3IHDO9uf/y+NzGQp4YiS+H0gSKETZY3Z0AEIIpzBJa70BQCkVhTG6BLANOIORqEQrpWoCwcBfbcetwEKt9ae2c/sD8UAnpdR+oBtQVWt9wXb8ZeCSUqoFkGC7RpTW+kQ+8bkAf9NaxwOHlFKNMZLXWRhJVu+M+IFYpdQbGCOUGQ5ljN7Z4lgFrNZan7Ftfwj0Bx4GTtja9ZXW+r+24yuBV7TWb9u2Z9rqf1gpZc6rnVrrn5VSt4GrWutrSqm+wDWt9UhbOMdt8X6tlBqdKebxtingXGmtLymldmCMcm7J5zMUQpRCkggKIe6HzInYFcBFKeWmtb5lm378KxBt+/MnrXVcpvL2BERrfVUppTGSsJsY96z9ppTKXJcroPgjEfwt44BSah3QMlPZjGTutC0JzLAb+D9bnZtsq2UnYCzIeBxjZDBzYvQbWc0FeiilngIeA5pmii3D8Uzf38BIiDNvA3jYzs+rnT9nq7uB0VR1LdM+E+AO1LRtX80vCcS4SA+M6eOfgLlKqce11in5nSeEKD0kERRC3A+3c9iXsbjhK2C0UsofIxH8OFs5S7ZtV9s+M5CKMf2Z/boXgEq27RuZjvUDymXazkgWc6rjNoBSqg/GyOB8jOnYccCcbOVTM75RSrkAGwBf4D8Y07TngO3ZzrmVbTudnOXXzpzK/4TR1uzlMxLsG+RDKVUNo51TgH8Bh4EPMabIhRBlhNwjKIRwKK31EWAfMAjjfrrs96xljKahlPIB6mLc/3YEI6nz1Fr/prX+DfgdY3FJ9VzqSsgoa/vKSFBr2a6dobmtDjAWkEzUWr+htf4S0Bgjgrmt0g0A2gB/0VpP0FqvBh6yHbuXlb0FaWfmVX8xGJ9RXKbyNYFJ3N3f+Z9iTMNH2kZL/w4MUkq1uYc2CCFKKEkEhRAlwVfACODbbFOWJuB1pdQLSqkGwOfAaWCD1voosBpYoJRqoZRqCCzCWL177C7r9wA+VUrVV0r9FWMV8QzbsTigrTI8gbGQpSpZRxYzO4cxmviiUqqmUqoTxohaRj13RWutyb+dyUB9pVRF/lho84VSqoHtQdOfAre01jcLUqdS6jXgz0CE1vqWLY75wI/AZ7ZnCotfM0cAAAE0SURBVAohygBJBIUQjpD9uVWLMRKrr3Io9ynG/Xq7ADegfaaRvN4Yo4lrMO6Vs2CMxKXlUk9uzmM8wmU7MBl4W2u9yHbsDVu9e4H/YozGzeaPkUpr5npso2evYjyUOQZjJC4SY3QtMJf6s1wjh9jza+csjKngT7XW14H2GKOQuzBGWNdjLFbJrS47pVQdjCngD7TWe7Md7g9UxviMhBBlgDxHUAjhcEqppsBGoErmUSul1EmMFcefFGPdEbY6qhVXHUIIUVLJYhEhhMMopSoDrYE3gS8LOnUphBCiaMjUsBDCkSpgTP2aMFbjOkKeU6VCCFGWydSwEEIIIYSTkhFBIYQQQggnJYmgEEIIIYSTkkRQCCGEEMJJSSIohBBCCOGkJBEUQgghhHBSkggKIYQQQjip/w/N2DhG3fAnqwAAAABJRU5ErkJggg==" alt="" />

The dashed green line represents the true value of the scoring function as a function of our hypothetical hyper-parameter X. The black dots (and their errorbars) represent points at which we evaluated our classifier and calculated the score. In blue our regression model trying to predict the value of the score function. The shaded area represents the uncertainty on the median (solid blue line) value of the estimated score function value.

Next let's calculate the expected improvement at every value of the hyper-parameter X. We also build a multistart optimisation routine (next_sample) which uses the expected improvement to suggest which point to sample next.

from scipy.optimize import minimize
from scipy import stats
def expected_improvement(points, gp, samples, bigger_better=False):
# are we trying to maximise a score or minimise an error?
if bigger_better:
best_sample = samples[np.argmax(samples)] mu, cov = gp.predict(samples, points)
sigma = np.sqrt(cov.diagonal()) Z = (mu-best_sample)/sigma ei = ((mu-best_sample) * stats.norm.cdf(Z) + sigma*stats.norm.pdf(Z)) # want to use this as objective function in a minimiser so multiply by -1
return -ei else:
best_sample = samples[np.argmin(samples)] mu, cov = gp.predict(samples, points)
sigma = np.sqrt(cov.diagonal()) Z = (best_sample-mu)/sigma ei = ((best_sample-mu) * stats.norm.cdf(Z) + sigma*stats.norm.pdf(Z)) # want to use this as objective function in a minimiser so multiply by -1
return -ei def next_sample(gp, samples, bounds=(0,10), bigger_better=False):
"""Find point with largest expected improvement"""
best_x = None
best_ei = 0
# EI is zero at most values -> often get trapped
# in a local maximum -> multistarting to increase
# our chances to find the global maximum
for rand_x in np.random.uniform(bounds[0], bounds[1], size=30):
res = minimize(expected_improvement, rand_x,
bounds=[bounds],
method='L-BFGS-B',
args=(gp, samples, bigger_better))
if res.fun < best_ei:
best_ei = res.fun
best_x = res.x[0] return best_x fig, ax = basic_plot()
# expected improvement would need its own y axis, so just multiply by ten
ax.plot(x, 10*np.abs(expected_improvement(x, gp, yp)),
label='expected improvement')
ax.legend(loc='best')
<matplotlib.legend.Legend at 0x10c894e50>
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAoIAAAHLCAYAAABcT/ksAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Wd4HOd18P3/bC/ALnqvRFn2KvYuUYXqUmzLjp3Yacprx05xoseOEttyd2IndoqTJ3njHlnFKrYKRapS7L2CIJcgARC99+27M8+HJSnSBAnsogPnd124AM7O3HMPZ8vZux1F0zSEEEIIIcTMo5voCgghhBBCiIkhgaAQQgghxAwlgaAQQgghxAwlgaAQQgghxAwlgaAQQgghxAwlgaAQQgghxAxlmOgKXMvlcuUB/xdYD/QB/+h2u/9tYmslhBBCCDE9TZoWQZfLpQC/Bs4AKcDdwFMul2vVhFZMCCGEEGKamkwtgiuBbOCLbrdbAypdLtdqoGNiqyWEEEIIMT1NmhZBYCnR1sDvulyuZpfL5QZWud3urgmulxBCCCHEtDSZAsEUYDPQDuQDnwL+zeVyrZvISgkhhBBCTFeTqWs4AHS53e5/uPzv/S6X60XgIWDPxFVLCCGEEGJ6mkyB4DnA4HK5dG63W728bVj1O3r0qDZ21RJCCCGEmBqWLVumxLL/ZAoE3wK8wFdcLtfXiE4eeRjYMpyDS0tLMZvNY1g9MR4CgQAXLlyQ+zlNyP2cXuR+Ti9yP6eXK/czVpMmEHS73X6Xy7UJ+HegDegFPud2uw8N53iz2YzFYhnDGorxJPdzepH7Ob3I/Zxe5H7ObJMmEARwu90Xga0TXQ8hhBBCiJlgMs0aFkIIIYQQ40gCQSGEEEKIGUoCQSGEEEKIGUoCQSGEEEKIGUoCQSGEEEKIGUoCQSGEEEKIGUoCQSGEEEKIGUoCQSGEEEKIGUoCQSGEEEKIGUoCQSGEEEKIGUoCQSGEEEKIGUoCQSGEEEKIGUoCQSGEEEKIGUoCQSGEEEKIGUoCQSGEEEKIGUoCQSGEEEKIGUoCQSGEEEKIGUoCQSGEEEKIGUoCQSGEEEKIGUoCQSGEEEKIGUoCQSGEEEKIGUoCQSGEEEKIGcow0RUQQoipTNO0634rinLdbyGEmMykRVAIIUbohz/8IXq9Hr1ezw9/+MOJro4QQgybBIJCCBEnTdN46qmn+NznPnd12+c+9zmeeuqpqy2EQggxmUnXsBBCxOmpp57ia1/72g3br2z76le/Ot5VEkKImEiLoBBCDMIfDlDb3cD++qNc7Lp0w+MvvvjioEHgFV/72td48cUXx7KKQggxYtIiKIQQl/lDfg40HGdnzX7Otl9AI9q9uy57OVvS19Lb58EfCKCqKo8//viQ5T3++OMkp2VjNpswm4xXf1stFlJTU7DZbGN9SUIIcUsSCAohZjxVVWltbePFU9vZ1XPwusd0mo7qpm72dfRhMpnRG6wARLShO1Qimo4mbxLqQAQ1EiEc9qCqYSKhEJHQGQxKGLvVGP2xGMnOTGGOqwyj0Tgm1ymEEL9NAkEhxIzk9/s5cvw0tY1d9HrCYLRjcczDwDHSjQXkG2eTZMjAqiQOuhTMp/7sS/zLN/7iluf41J99CZ1Oh06nA4MRk/kmdQH8YWg438/uo2+R6jCSl5XMkoVzsNvto3C1QggxOAkEhRAzhqqqnDtXxT53Bf4+CwkpeZgSC0lO/GCfe5x/gkEZukVuxbq7eOTjn+Hlp/9j0Mcf+fhnWLHuruu2tYRqyDQUoiiDtyZa7YlY7YmowIWOACde2IXTpqM4N4VVK5ZgMMhbthBidMm7ihBi2gsEAuzcc5iqljYuGGtp0qpYkXIfKYM00Q0nCLzidz7xWYAbgsFHP/5nPPqJP7tuW1uojgOeV3Do0lho20SaIfeWZZtMZlKyigGoavdR8cx2ygpSWLdqGWbzTZoWhRAiRhIICiGmrUgkwp79R6isaactoQe34TBhLQjApWAFOabSmMrz+kN09Pjo94bo9wbp9wZRcu9h7uYgle/9DwALbn8cff49vLG/FrNRjzPBTHaqnW57AwB9agd7Bl6g2LSQBdYN6BT9kOc1W6yYLaU09AX58XNvU5SdyMa1t8lkEyHEiEkgKISYdjRN48ixUxw/W4+SkEal7QytwVoADJiYbVnJLPOiYZUVCIapax3gUnMf7T2+Qc9VvPg+ihbdC0RTy3kDYXzBCABt3T6q6nvQKakkZa1Hza4gYOimJniKAbWb5bZ7Meksw6qL0WTCmVlCRyjMT17YSWmugy2bVqPXDx1MCiHEYCQQFEJMK1UXa9h18AyaJZOE9FKCqp/+gS4A8owu5lvXY9HdegJGOKLS0BYN/po7PVybJESvU0iwGUm0mS7/RP/W63UEwxFCIZVgOEIwFCEQjNDe7aOzz4+qQVezHZpXYMh3Y8yupSfUSVgNDTsQvFoHvYHkzFk0e/z8+Jlt3L52ISXFhTH/Xwkhpp4TzZXkODJJt6WMSk5zCQSFENNCOBxm+zt7qO/UcKZ+0OVr0llYYbufnkgrReb5tyxD1TRqmvo4faEDXyB8dbtep5CbkUBhloPsNBt6XWxr8QdCEVo7vbR0emju9OCtn43mS8DvdfC21s6cogizchzo9bGVazJbMKWX8daBak6ducC9d66T8YNCTGOhSIjv7vlPQmqYz6/5E1blLx1xmRIICiGmvIbGZra/dwSDswBn6o2BUJIhnSRD+k2P1zSN5g4PJ6ra6R2IjiFUFMhOtVOY7SA3PQGjIf5ETGajnoKsRAqyEtE0jY5eP2dr7DR6PXgIceRsKxUXO5hdmEJZQRKGGANCR0o2/eEQP33+LVYunsXiBXPjrqsQYvKq7q4jpEa/pJamFo1KmRIICiGmLFVVeW/3Adz1HpLSywhrITRNi6m7pLPXz4nzbbR1fzD+Lz8zkUWlaSTaTaNeZ0VRSE+ykr4kj57+AJW1ndQ19+MPRjhR1c7Fxh5Wzs8mPckaU7kGg5HEjFIOne2k5tI7PHDPRlluRohpxt1xEYA0WwpptpRRKVPeJYQQU1JPTy8vb9uFZs0hKT2FoOpnn+dlUvQ5LLBuGDIYjERUTlS1c76u5+q29CQri8vTSRtGEKaqKv3dbeg1D+lOG0ajDq8/jC8Q/QmrOnSmBJzJaTetS1KimTULclhYEuRsbRcXG3rwOd28V1NNqXUhC0vTMMTYEpngTKUvGOSnz27j0fs2kJKcFNPxQojJ61x7NBB0pc0atTIlEBRCTDnVtXXs2HUaR0YpiqIQUL3sHXiZPrWDnkgb+SYXyYasmx7fOxBg36lmegYCADjsJhaVpZObbr9lABmJhOlrr8dh15GRbOf2zbPJzsoc9Bifz0dbeweHjp+lfUCHMzX3pmUn2Ewsn5uFNaeRC5xH06DqgpHG/fmsnJdFRkpsy8QYTSYMaWU899o+Ni4vZe7s8piOF0JMToVJeXR6u5mbPnqvaQkEhRBTyqEjJzl6vh1nZgkAftXD3oGX6Fe7AIVltrtuGgRqmsbFxl6OnWsjokanAs8rTmF+SRo63a1bEPu6WshyqHzoI5uwWoduMbRarRQW5FNYkE9raxs79x2n02PAmZZz04DQ5ZxPW/85+tQOTCUn8bqNvHMkRFl+EkvK02OaTKIoCs6MWew63kR9Yxt33b52VGYYCiEmzmMLHuCxBQ+Mapnxj34WQohxpKoqr+3YycmaAZypeQD41H52D7xAv9qFgo7ltq3km2YPenwwFGHvySYOV7YSUTWsZgO335bPwrL0WwaBQb8PX8cF7lxVzMP33T6sIPC3ZWZm8Ngjd/PwHfPQe+vo62oZdD+jYmZNwsPYdU4UnYa5/DiKrZeq+h7eOVJ/3Uzm4XKkZNHYb+V/f7WNQCAQ8/FCiOlNAkEhxKTn9/t5+oU3aPc7sDtSr27XoUeHDgUdK+z3kmsqG/T47j4/b+yvpb5tAIDc9AS2ri4k8xZdrpqm0dN2iTyHl099dOuorNOXk53FRx+9mztWFNLbegHt2gUKL7Po7KyxP4JZsYE+jGO2G9Do7PWz48Aluvr8MZ/XYrVDQiE/f347/f39I74OIcT0MekCQZfLlelyudpcLtd9E10XIcTE6+ru4WfP74CEQsyW6wM3s87G2oRHWW1/iGxjyaDHN3d6ePtwHV5/GJ1O4bbZGaxfnIPZdPORMUG/j1D3BT689Ta2bF476pk7ykqK+d2HNuDvrCIYvLGVzq53sibhYZL1WWxKeYh1i3LR6xR8gTBvH6qjrqUv5nPq9QasaWU8/dJ7tLW1j8ZlCCGmgUkXCAI/AlKAG78qCyFmlJbWNp57ZTcJGeXo9YMHbhadnQxjwaCP1TT18v6xBsIRDYtJz50rCigrSL7lWDmvp49EpYPff+w+0tNSb7rfSDmdDj710ftwKO14+rpvfFyfzoaEj2DTOcjPTOTOFQXYLAYiqsbeU82cvtAxaIvireh0OhIzy3hx+yGqa+tG61KEEFPYpAoEXS7X/wcMAPUTXRchxMS6VNfAr988jDOrLOZJDpqmcaa6kwMVLWhadFbwXSsLSXHcOpXbQG8HBUkhHn1gC7oYs4fEQ6/X8+j9W5hXaKa3s+GGx6+97mSHhbtWFpLmjF5DRXUne081EVHVmM6pKArOzBLe3HOO02fOjewChBDj4lz7BZ6veJWK1tF/zU6aQNDlcpUDnwc+PdF1EUJMrPNV1WzbVYEj44PuXk3TaApeHLIVTFU1Dp9t5dSFDiC6NuCWFQXYrcZbHtfX1czC4oQJmV27ZsVS7l5TTl/bra/PajZw+/J8inMcANS3DrD7eBPhSGzBIIAjvYC9p5rZf/h43PUWQoyPQw0neOHMNn556jejXvakCARdLpcB+DnwWbfbfWMfiRBixjh95hzvHKrGmV503XZ34BCHvK9xzPsWqhYZ9NhIRGXPyUYuNvQCkJ+ZwOZleZiNtx7j19t+iQ1Lclm1fPGoXEM8ZhUV8OjdK+htvXkwqGkataFTLJ7jYH5JtNu6udPDruONhMNxBIMp2ZyqHmDP/iMjqrsQYmyd67iykPTgY6FHYrKsI/gl4ITb7X7zmm0xfSWXZRGmhyv3Ue7n9BDr/Tx6ooLjVd04UrIJhz9YKqU+dJZzgQMARLQQkbCKqlwfLEVUjX2nW2jp9AJQlu9kUWkqmqbeMkjqbbvIPevnk5+Xi98f+4zc0eRwJHLfpoW88s4xnJmlNzx+1L+D5vAFWvQ1rCi4HwWN0xe7aO3y8t7RetYtyo45J7I1IZlTtR34/XtYt/q2W+4rr8/pRe7n1BAIB6npjo7pneUsuOn7VLz3UYl1sPFYcLlcZ4FsPpgg4gC8wNfdbvc/DnX80aNHJ/4ihBAjcubcBarbNRKcGddt79W1cN68B03RSIyk4QpsQMf1LXyqqlFZ76OzP9pSWJRhojDDPOQ5e9tqWLMon4z0sZsUEo/Orm52H6vBmXH9t/92fS015sMA5AUXkBOeTUNHkIst0Q+ARKuOhUU2DPrYu7Y9/V3kJPpZunDOyC9ACDFq6rxNPNO0DYDPFv0udsOtMw0tW7YspjeASdEi6Ha7r3vncblcNcCfud3ubcMto7S0FLN56Dd+MbkFAgEuXLgg93OaGO79PHaign4tjVllmddt96i9HPceQkMjQUlmteMhTMr1Ez5UVePAmdarQeDc4mTmFQ+djL2vvY77Ht5AcWF+HFc29srKynjtvRPXBYMZZBDy99EQdtNoqqDAWcrSjDyczl6OuTvo96lUNoTYsDgb0xDd4TfIyMDT10lHt4eN61YMuou8PqcXuZ9Tw0V3EzRBpj2NFYuW33S/K/czVpMiEBwNZrMZi+XWMwLF1CH3c3q51f08evw0p2r6SU7PveExo2rEpnfiU/tYnfAwNn3CdY9Hg8BmGts9QDRd3ILStCEne/R1NnLH6jLmuAZfgHoyKC4q5NG7zbzy9tGr6fQAFttvp6e/jQG1m+P+t7jd8QlchakYDQYOnmmhuz/ArhPN3H5bfszBoDMlk7qeLvYePMYdG9fcdD95fU4vcj8nt3WzVpBoTUCv043JfZoUk0V+m9vtLo6lNVAIMTUdO1nBEXcHjpTsQR+36RxsSPgwaxMexa53XPeYqmkcqGimvjWaKWNO0TCDwK4WVszLnNRB4BW5OVk8uGUZvW01V7cZFBMr7PeiQ49ZZyeoRscLzcp1snpBNgrQ3R9g94lGInHMJrYnplDdpvDOzn2jdRlCiBHIScxka/lm7irdOCblT8pAUAgx/Z04dYZDlW0kJg8eBF6hVww49enXbdM0jUNnWrjUEg0CXYXJLCobOgjs72lnYYmDpYvmj6zy4yg3J4vbV5bT19l4dZtDn8b6hA+zMeEj2PXOq9uLsh3cNjfavd7W7WPvqWZUNfYh1HZHMtUdsGvvoZFfgBBiUpNAUAgx7k5WnGV/RSuOlJz4jq/qoKYpmmatvCCJJeXpQwaBnoEeyrKNrFmxNK5zTiRXeQmLy1IZ6O24ui3ZkImi3PgWXpqXxMLSNAAa2wc4VNkScwYSiLYMnm0IsO/QsfgrLoSY9CQQFEKMq7PuKvafasKZemMQGNKCQwYt5+u6OVvbBUBxjoOlrowhg8BQwE+6xcPtG1bFX/EJtmr5YvKSI/i8niH3nVucgqswGYCapj5OVMWXWzgxKZ3T1f0cPnoqruOFEJOfBIJCiHFTXVvHzsM1OFJvnBiiaioHPa9yyPs6IW3w9bDqW/s5eq4NgKxUGyvmZg0ZBKqqijpQzwP3bBpx/Sfa1i0bsKpthEPBW+6nKApLytMpyo6OqzxX283Zmq64zpmYnMmxqk5Onq6M63ghxOQmgaAQYlw0NDaxY88ZnOkFgz5+zn+AjnADzaGLtIduTDfe3u1l3+lmAJITzaxblItON/RyWf1tF/nIQ7ej18e4nMokpCgKH35wC8Ge2htaTgOql/P+w1e3K4rCynlZ5KTZAThR1U51Y29c501MzubA6WbOumNfmkIIEZ9ObzefefXv+Jf9P6LX3zdm55FAUAgx5tra2nnl7eM404sHfbw91MD5QHSh5FmmReSYrs+q0TsQYNfxRlRVw24xsnFp3rAyaPS2XeL+O5Zit9tHfhGThNFo5CMPbqav9YOgzKf283b/L6j076Mu+EHLnU6nsHZRDulJVgAOVbbQ2uWN67yJqbnsOVFPfWPzyC5ACDEs7o6LdHi7ONRwApvROmbnkUBQCDGm+vr7+c1bR3Bmzhr08aDq55h3BwAOXRrzrOuue9zrD7PzWAPBsIrJqGfTsjys5qGXQO3vaWflwlzy827shp7qHI5EHtiyjL72aNopqy6RNEP0Oiv8ewioHwR7Br2ODUtySbSZ0DTYc6KRPs+tu5ZvxpmWzzF3Ow2NTSO/CCHELZ1rj+YXLkkpxKg3jtl5JBAUQoyZgYEB3ttfiSOz9KZj+c4HjuDTBtCh5zb7PeiVD4K8cERl1/EGvP4wep3CxiW5OOymIc/r93koSNGm1DIxscrLzWHJ7Aw8fd0ALLRuxICJkObntG/3dfuajHo2Ls3FZNQRDKu8f7yBQDAS13kdaYVse/807e0dQ+8shIibuzMaCJanlQyx58hIICiEGBOBQIDnX32fhIzyW07omGNZRYl5MQusG3DoP8j5q11eMLq7PzpxZM3CbNKShu4eiUTCGAMt3LNl/cgvYpJbedtiUi0eQsEgVl0ic63RbCANoXN0h1uu2zfRZmL94lx0Cgx4Q+w52UgkjjUGAZwZs3hh2z56e8du3JIQM5k/5OdST3Tt0Nlpg/emjBYJBIUQoy4cDvPMS29iTS1Bp7v124xeMbDAupFi88Lrtldc7KS+dQCAxWXp5GUkDuvc3s5qPvLwliFnE08XD27dRKCnBk3TKDItIFEXDaY7wo037JuRbGPFvCwguuD04TjXGFQUBUdmGc++8h4+n29kFyCEuEFdb9PV16a0CAohphRVVXn+N2+hJBSi18eXzryupY+K6k4gmi1jdlHysI7r7Whg66almM3muM47FRkMBh65Zy197bXoFB1LbHewKeF3KbMsG3T/4hwn84pTgOgag5VxLiujKAr21FJ++dJbhEKhuOsvhLhRedosfvzI9/jK5r/CYU4Y+oARkEBQCDFqNE3j16+/S8CQidE09Fi+wXT1+TlQEe3WTHNaWDE3c1ite15PH/OKHBTk58V13qksPT2N1YsL6e9pJ8WQTZIh/Zb7LyhNIz8z2sJ66kLH1XzNsdLp9RiTinnmpR1EIvGNORRCDM5usjEvo3zMzyOBoBBi1Gx/ezfdYSdmi+2m+/RHughrg89a9frD7DoeHbtmsxhYtzgXvX7otyk1EsGqdrB+zfK46z7VLV4wlxxnmKB/6K5aRVFYNT+LVIcFgAMVzfT0D76I91AMBiOqLZ8XXnkrrm5mIcTEkkBQCDEq3t9zkIYeI1bbzcfyhbUQBzyv8G7/03SFr1+PLhxR2X2iEV8gOkN4w+LcYS0TA+DprObR+zbPmHGBN3PvnRtQPfXDCsgMeh3rFudiNesJRzR2n2gkEIqvVc9kMuNR0nl1+3sSDAoxxUggKIQYscNHT+FuDGJ33HosX6VvHx61F586gI4PgjxN0zhc2UpXnx+A1QuySb7cWjWU3s4mtqxbiNU6dguuThV6vZ5H791Ib1vNdduvXVfwWjaLIZqhRVEY8IXYd6oJNc6ZxBarnTavjXd27ovreCHExJBAUAgxIhWVbo64O0hIuvW4tI5wI9XBEwCUm2+7bhzb+boeapujS5FcO35tKD6vB1eulZLiwjhrP/0kJTlZvagAT18nAdXLUc8O3uz7KT51YND905KsLJ+bCUBLp5eTVe1xn9uWkER1u8a+g8fiLkOIma6xrwV/OL6hGvGQQFAIEbcL1bXsOXYJZ2rOLfcLayGOe98CotlDXJYVVx9r7fJy/HwbAHkZCVdntA5FVVVMoRY2b1gVZ+2nryWL5pNk8qBGVFrCtUQIcda//6b7z8p1UpafBMC5S91Xg/J4JDjTOFXdz4lTZ+IuQ4iZ7Du7/4NPvfR53rm4Z1zOJ4GgECIujU0tvLX3LI70giH3bQlX41F7UVBYarsTnaIHwOMLsfdkE5oGDruJVfOzhz3Or7+9hkfu3TjjxwXezENbNxHubsZljgbddcFKeiM3zway1JVBRvLlnMRnWq5208fDkZLJ/opm3Ocvxl2GEDNRj7+P1oF2VE0lKzFjXM4pgaAQImadXd3R/MEZxcPaP8/oYqX9AeZZ1pFkiL65hSMqe05GJygYDTrWL87FaBjeW1J/Tzvrls0iIWFs19eaykwmE3dvWEzqQBo2nROIjtG8GZ1OYe2iHGwWAxE1OnnEHwjHfX5nah7vHqriUl1D3GUIMdOc76gGQKfoKE0pGpdzSiAohIjJwMAAv3p1F87M2Fa7zzbOotSyFIhODjlytpWuvug4mNULsoeVQxggHAqSYQ+yYN6c2Co+AxUV5uPKsVGmi/6/t4Zr6Am33XR/i8nA+sW56HUKXn+YvSOYPALgTC9i286TtLbFP+5QiJnE3RFtRS9OysdsiG8t1lhJICiEGLZAIMCzv36XhIyyEXXJVtX3UNN0eXJISSq56cNv2fP1XOK+u6Z/HuHRcvvG1eQELDh1acwyLcKsu/kajwApDst1aehGMnkEwJExixffOEBPT++IyhFiJnBfbhF0jXF+4WtJICiEGJYr+YPNKbOGzB98K+3dXo65o61SuekJzJuVOuxjezubuGvdIkxxZi2ZiXQ6HQ9v3cAS/yoW2jZh1Q0ddBdlOygv+GDySF1L/JNHFEXBmVnKc6/sxOPxxF2OENOdpmmk21NwWhxjnl/4WvElAhXTihoKEWhvJ9DRGf3d3kGgvYNgRwcRnw81FEINhdBCYdRQEC0cQWcyorfZ0Fus6K2W6N82G+b0NCwZGZgz07FkZGJKSUbR6yf6EsUIRSIRnn1pB7rE4eUPVrUIHrUXK47rtvsCYfZcnhySaDOxan7WsFsWA34vszJNFBcNPTlFXC85OYkV8/I5drGLBMfwZmUvKc+guy9Ae4+Pg2dacCaYsVviey0rioI9vYxfvvQ2v/+Re2ZULmghhktRFP5i9R+hadq4LswugeAMo2ka/pYWBs5foP/8efrPV+GprkELxz8o/FYUgwFzRjr24mISSktIKJlFQsksDDLIf8rQNI0XX3mLiCUXo3F4LXFVgaOc8x+k1LiMJKJr/Kmqxp6TTfiDEQx6hfWLczAZhxdYaJqGOtDInQ/cF/d1zHS3LV1IVc0bRCJOdMP4cnZl8siOA7X4AhF2n2jkjtty4z6/TqfDklrCMy+/ySc+tBWDQT5+xOC0SIRIIIga8BPxB9BCQdRg6GqjhBoMooVCqOEIWjiEFomghsJokQhaJIwWUS//Hf1BVdEu/1z5G027vE0DTQUNNE0F9XIQdnWbBmgfbOdygKYBV4O16O8P/nn99mv/vD7Au/Hx4TImOSn8vU9gSnLGduAg5JU4A4S9PrqPHqNz/wF6T50m3H/zBPMGhwNzehrmtFTMaWkYEhJQjEZ0l38UoxGdwYAaDBL2eon4fFd/wv0DBDo6CLS2ER6ILl6rhcP4m5rxNzXTufeDGYuWrEwSystIWrSQpEWLMKenjfn/g4idpmm88sa7DCjpWMzDy/QxEOnG7T+EhkoQPwrRFr/j59vo6InmwV05LxtnwvBbhXo7LvHhu1ePqEtawIP3bODnL76HM7N0WPtbzQbWLsrlncN19HtDHKpsozQz/nug1xtQ7YU89/IOPvY7W+V+TmNaJEKwp4dwXz+h3l5CfX2EevsI9fURHhgg4vUS9niIeLzRzxKvl4jPjxoIoAYHz0UuruecN4+M2zeNuBwJBKepUH8/XYcO07n/ID0nTqKFQtc9rjOZsJfMIrG8jISyMuzFRZjT09CPUpdN2OMh0N6Ov7UNX0MjAxcv4rlYjb+lFQB/Syv+llY6dkUXzLTm5ZG0eCH2eXPRZFm4SWPHO3vo8CditduHtb+maZzwvYtKBIuSwGzTKrrpoa6ln/N1PQDMLkymIGt4mUMAvJ4+FpWkkS5fFkYI0AEmAAAgAElEQVTMbrezdmkJ+8+0E0oIY1Zs2PW3blFIT7Ky1JXB0XNtNHV4MelMZGbGXwejyURQzeGF37zJhx++W9aBnKLUUAh/cwu+5mb8zS0EOjoIdnQS6Owk2NlJsLsHVHVsTq7ToTMYUIyG6G+9AcWgRzEYUHT66N96ffRvve7y3zrQ6VAUBUV/5W8dKAqKToErfysKKICi+62/ARS4su3yF9wP9rnyPL6y/co/r31+K9f9+m03fy3cuN2Y5CRl1crh/X8NQQLBaabvnJumV16l68ChaJP4FTodzgXzSV25nMQ5s7EVFKAbw64Zg92OwW7HXlQE1zxXwwMDDFysZuBiNX0VZ+itOIMaCOBraMDX0ACvbQOjkerlt5G1eSNJSxajMxrHrJ7i5nbuPkh9twG7wzH0zpfVBSvpCEfXjVto3YRRMTHgj3CiOjrzNCPZyqKyW6eiu5amaZhCbaxZJV3Co2Xh/Dn877lvUztQR75xNsvsdw95TFl+Ep29fmqb+6htC5Lf6SUvc/jPi99msljx+NJ5+bV3eOT+OyQYnMTUUAhvfQOe6mo81bX4GhvxNTcTaO+IKdDT220YEx0YnQ4MiYnobTYM9ujYcoPNht5uQ2+1ojdb0FnM6C0WdGYzeosZncmMznS5Z8pkknHno0wCwWlADYfp3HeApldfY+B81dXtitFI0uJFpK5eScry5Rgdw2+FGSuGhITL3cEL4dGHUUMh+s+56Tlxkp4TJxm4WA2hEN379tO9bz+GhARSV68ibcM6nPPmyhvAONmz/wjupiCJQ+QPvpaqqZzzHwQg21hCjqkEry9AZZ2PiKpFuxkX5qDTDf9Dv6+9ho89sF4ChVG2cd4Kak/V0RBy44qsJEGfdMv9FUVh+dxMuvv99A4EOXimlSSHlQRr/F/SzFY7PT6N17a/x/33bJZ7PAlomoavsYm+ijMMXLjIQHU13kt1txxDHh0HnoElIx1Taiqm1BTMaanRv1NSMDqdGB2J8oV+COfaL9DQ18zstFLynNnjem5lPGemjJWjR49q8+bNw2IZ3him6SLi99O8bTvNr20j2Nl5dbutsICcB+4jde1aDDbrBNYwdv2trVT++jdYqmsZOOe+7jFLVibZ991Lxh2bMQyzq1LEbt+hY5yu8cQUBF7hVfs449vLfOt6LIqdXccbaOrwoiiwZXkBaUnDfz56B3qYX2Bm1fIlMddD3FowEuLTv3mS/tAABaa5LLXdOazjevp9vHWwjrAKyYlmtqwowKAf2Tg/30Avuc4g92yRtSHHm8/no2LPHrKCIbzn3PSePkOou3vQffV2G/biYmwF+VhzcrDm5mDJzsaSkS5f0EfBfx9+mrer97Ag08WXNv1lXGX4/X7OnDnDsmXLYvpWJS2CU5CmqrS/v4tLP3+aYFfX1e3Jy5aS8+D9OBctnLLfro1OJ4bbluH65O+j9PfTvnsvHbv34Kmuwd/SSs2PfsKlp58h847byb5/K9acnImu8rRy+OgpTlf3k5gc3yAwm87BcvtWACqqO2nq8AKwpCwtpiBQVVUskS5W3rY1rnqIWzPpjfzO/K389PivqA+ew2VeiV0/dFdvgtXI7HwrFZd8dPcHOHK2lZXzhr8E0GCsCU7qe7p55/193LFxTdzliOHRVJX+81V07j9Ax779BNvaqfutffR2G4nl5SSUzMJ+eaUHc0bGlP1cmQquZBQpTx2/9QOvkEBwiuk7e46aH/2EgaoLQLRZPuOO28l58D5seXkTXLvRZU5PJ+/Rh8l79GE8tbU0vbqNjl27Uf1+ml/fRvPr20hetpS8j3wIx2zXRFd3yjt2ooJjVV0kJmeNuKymDg+nL3QAkJlkYFZubOPJ+ttr+MQjG+SDZwxtmbWOlyu30xvo52LgGAttm4Z1XGqigbnFyVTWdFPT1EdakpXSvFt3LQ/FnphMdVsnhj0H2bhudAbAiw9okQh9lWfp3H+AzgMHCXZ2Xfe4zmrBOW8ezgXzcc6fh724SFr5xpEn6KW+rxkY34wiV0ggOEX429q49LP/pWPP3qvbUlauoOgPfh9r9viOJ5gI9qIiyj73GYo++QladrxFy7btBLu66D56jO6jx0hefhuFn/hYdHKKiNnJ05UcOtuGI2XkLawD3iD7TzUBkJRgoizHFFNAN9DXxYoF+SQmTvyY1unMZDDx2IIHuNTSiLcuCW6dee46c4uS6ekP0tTh4ejZNpITzaQ6RzYMxe5Ixd3UgbL3EBvWrhhRWSIq2N1N61vv0LLjLYIdHdc9ZsnJIWnFbXSlJDN/yx3DXhlAjL6qzhoAFBTKUovH/fwSCE5ymqbRsm07tT/9+dW1lezFRRT94adIWrhgYis3AYwOB/kf/h1yH3mIzn0HaHjxJby1l+g+fITuI0dJW7+Ogt/9KNbskbdqzRQVlW72n27GkRr7YsEhLYCBDwK9cERl98kmgmEVk1HHmgVZePoHH3M0GDUSIVHXy7Il0kU4HraUrIcSeLX/PbqCQYzDTN2nKAqrF2Sz48AlBnwh9pxs4u5VhVhMI/tISXCmca6xA01aBuOmaRq9pytoeWMHXQevXz3CVlhA6prVpK5eha0gn0AgQM+ZM9L6N8Gu5BfOc2RhN8XwjWyUSCA4iQW7u6n61x/Sc+w4EB0/V/CJ3yXzjs0z/oWrMxhI37COtHVr6Ni9l7pfPou/pYWOXbvp3LuPzDvvoODjH8MYw9InM9HJirPsP9UUVxCoaRoHPa+hoLDIuhm7LonDla309AcAWLMgB7vViOfm65ffoK+9lk9+aFPMdREjs3XLen787DaM6eXDPsZk1LNucQ5vHazD6w+z71Qzm5bmxTQrfDAJzjTcTR1ouw+yab0Eg8OlhsO0vbuTpl//Bl9j09XteruNjM2byLr7TmwFkp5xMlqSPY+IFsFhnpiMWxIITlKdBw9x4d//k3BfNNl76to1lHz6cYzSXXYdRacjfeN6Uteupu3td6l/7lcEu7po2f4mHXv3U/yHnyR98yYZazaIYycrOFTZHlcQCNAYOn91zcC+SCdNjVDbHH2+LixNIzvNTjiG1IUDfV2sXlKEXbqoxp3BYODOdYvZvu8CztThDw9ITrSwfG4mBypaaO3ycrKqnSWujBHXJ8GZRlVLJ9ruA2xev2rE5U1nWiRC2873qX/uVwRa265uTygtIWvr3aStW4t+hq2oMdWUp82ifALGBl4hgeAkE/H5qPnRT2l9620A9FYrs/70j0nftFGCmVvQGQxk3XMX6Zs30vz6G9Q/9yvC/f1U/cu/0/be+5R8+nGZYXyNw0dPcfR8J46U+MaXhrQAp327AMg0FGHw5nDMXQ9AbnoCc4tTYipPjURw6PtYslC6hCdKcVEBBedraA8EMJmGn2GoOMdJV5+f83U9nLvUTYrDQmH2yFvi7Y5ULrR0ou06wO0bJBj8bVokQvvuPdQ/+zz+5pboRkUhbe0ach5+kMSy4aURFEICwUnE19hE5Te+jb8p2qzvmDuHsr/8cyyZI/+GPVPozWbyHn2Y9PXrqP7v/6Hr0GF6T53m+J9/nvyPfIjcRx6a8QubHjh8ghMXeuMOAgHO+vYT0Lzo0FOuX8fuo01oGiTajKyaH/tyIv0dtfz+72yKuz5i5FRNJX2Ok8pdp8hNWx7TsUvKM+juD9De7ePgmRYcCSaSE0feCmV3pHKxtRP1vb3csWmNfBm+rPvYcWp+9BN8DY1Xt6WuWU3+Rz+CvVC6f0VsJBCcJHpOnuLcP3yPiMeDotdT8LsfJfeRh2b8WMB4mdPTmP3kF+g6cJDq//4Rwa4u6p5+ho7deyj/67/CXlQ40VWcEHsPHKWi1oMjJf5ksb2RdqqDpwAoM9/GsVMD+AIRDHqF9YtzMRlje84O9HayekmxdAlPsH898BP21R1hdloJvZ2NOGMYMqDTKaxdmMOOA5fwBcLsPhGdPGKO8bkwGLsjlZquHra9+T733jWze0YCnV3U/OgndO7dd3VbysoVFHzsMezFRRNWLzG1jWxJeDEqWra/yZmnvk7E48GQmMi8rz9F3ocelSBwhBRFIXX1Kpb8+w/IuvceUBS8dfWceuKLtOx4k+mQVScW7+85SMUlL4nJI2thTtSlMNeyBqcujb7qfDp6/QCsmp+NM2H4XYpwuUvY0M/iBXNHVCcxcityFwFwrucizmQPwWAgpuOtZgPrF+egUxQ8vhD7TjWhjtJrzJ6QRKsvgZdefRs1hvy204UWidD8+jaOf/YvrgaBiS4Xi/7pH5nz5BckCBQjIoHgBNIiEar/58dc/M//AlXFmpfHou99B+c8+VAcTQa7nZI//RMWfOvrmNLSUINBLv7Hf+H+7j8T9ngmunpjTtM0Xn9zJ1UtWlxp436bTtFTbrmN3N6tVDcOADBvVir5mbFPZOrvqOWBuyW12GSwMm8Jabbo2M6+1D5Cvb+db2JoqU4rt82Ntja3dHqvLio+GizWBPq0VJ59eUdMk5CmuoELFzn5xN9S/d8/IuL1orfbKfnMn7LgO98goXT8s1CI0dPt6+Xv3/4uPz/+AgOBifsskkBwgoS9Xs5+8zs0v/o6AElLFrPwH7+FJUvWvxsrjrlzWPyD75GyIjr+qXPvPk5+/gn6L2dpmY4ikQgvvPImLZ4EbIkjy/5wrbZuL8fOtQOQk2ZnQUlqzGVIl/Dkotfp2Vq2GYDddYdYvaqM3s7GIY66UUmu82qmkcqaLupaYlg/aAhmi42gKYenX3iD4OV1VacrLRKh/vkXOPnEF/FcjKYfS9+0kaX/8W9k3X0Xik4+vqc6d8dFzndW88aFnZj0Ezd2XZ5JEyDU20vFk1+i++gxALLvu5e5X3oSg3wgjjljYiKzn/wCxX/8BygGA/6WVk5/8e9oevX1addVHAqF+OULb+BVMrHaRm99Kq8/uoDwlckhqxdkxzxuS41EcBqlS3iyuWPWWqwGC6FIiAuhSxRlGAkG/DGXs3R2BmlJ0ckiByqa6e6PvYybMZnMKIlF/OL57XimaYt+sKubM099nbqnnwFVxZKTw7yvP0X5X/05piTnRFdPjJLzlxeSnpWUj8kwvMXcx4IEguMs2N1Nxd9/BU9NLeh0zHr8j5n1+B/JeMBxpCgKOQ/cz4LvfBNLVhZaOEzN//yYi//536jTpMvJ4/Hw8+feQEsoxGgevTXEIhGV3SeaCAQjGPS6uCaHAAx01nL/XdIlPNnYTFY+Mv9+Pr3897i3/Hbu2ryWcF99zOXodQrrFuViNRuIqBq7jjfiD4zea8tgMGJOLeUXL75DW1v7qJU7GXQfO86Jv/w8vadOA5Cx5Q4W/+B7MzKT1HTn7owGguVpE9vFL4HgOAp0dlLxd1/GW1cPOh2uv/5Lsu/bOtHVmrESy0pZ9P3vkrIymte0dcebnP36t6b8uMHOrm7+98W3MaeWYjCMvLtB01QODLxKfcDNwcoWuvqirTurF8Q+OQRgoLeDNUtmSZfwJHWf6w42z1qDSW9Er9dz18Yl9HbE3kUcnTySi16n4PWH2XOyiYg6eq3uOp2OxIwyXth+mPNV1aNW7kRRw2Fqf/YLKr/6DUK9feitVsr/+i8p+9xn0Jtjf52JyS0YCVHdHR2H65rAxaRhkgWCLpdrncvlOuhyuXpcLtcFl8v1+ETXabQE2tupePLL+BqbUAwGZv+fvyFt3dqJrtaMZ7DZmP3FJ8h5+EEAek6c5NQXnsR/zQr9U8n5qmqef20fCRnl6EZpDNGl4BlawtUc9W2nri+aSWR+SSp5GbF3N6uRCElGDwvnzxmVuomxV5CfR3GmKa4u4lSnhRXzouOe23t8HD3bOqpDMBRFISlzFu8eruHQkZOjVu54C/b0UPHkl2l86dcA2EtKWPT975K+QVrNp6ua7joiajQP9ERmFYFJFAi6XK5k4BXg+263Own4MPBtl8t1x8TWbOT8ra2cfvLL+FtaokHgF58gdbXk0JwsFJ2O4j/4JCWf+VPQ6fDVN3DqiS/S7z4/0VWLyb5Dx3j3cA3OzJJRW2stqPo4448uVxHuzELzOMnPTGT+rNgnhwAMdNbwwD0bRqVuYvzcuXkNkf6GuI4tynZczTRzsbGXqvqe0awaAI7UXI5f7GP727un3FjfK0ta9bvdAOQ8eD8L/+GbWLPjX/BdTH7lqbP4wdav8Oer/pAU6+hN5IvHpAkEgQLgVbfb/SyA2+0+DrwHTOmcU77mFk4/+WUCbW3oTCbm/P3fkrL8tomulhhE1t13MffLf4feZotO6Pn7r9Cxb/9EV2tIqqryyhvvUnHJH3fe4Jup9O8jpPnRInpCdbNJcZjjyhwC0N/TzrplpVit1lGtoxh7V7qI++KYRQzR3NO56dEW5GPuNlo6R3/4RWJSOk0DVp7/9Q5CodColz8WrvRABNra0ZlMuP7PX1P8R38w47MfzQSKopDjyGJdYWxZfMbCpAkE3W73Sbfb/ckr/77cQrgeODFxtRqZQGcXZ778FMGODnRmM3O+9CTJSxZPdLXELSQvWczCf/gm5ox01GAQ93f/mbZ3d050tW7K7/fzv7/aRmcwiQRHbPl9h9IdbqU2WAFAuLEEqy6B9YtzMehjf9uIRMKkWHzMnzt7VOsoxlYwHGRnzX4Ggh7y83IpTDcQinGhaYh+6K1ekI3TbkLTYM/JJvo9o7/8i8WaQMCYw0+ffYP29tFbw3AstLz5NpVf+yYRrxej08n8b3yVtLVTut1DTFGTMsWcy+VyAq8CR9xu96vDOSYQiP3NaSyFBzy4n/oagbZ2FKOR0i8+gaW8DL9/9JZRmI6u3MeJvJ+6jAxcX/8qVd/+B3y1l6j6138n4PWSvuX2CavTYJqaW9i+8xi21BL0ev2oL7IbCAZQAglEVA2tvZg1SzIxGZSYznNl377WCzzy4S3y/J9CwmqEv3nrG3T5e/j4/Ie5u2Qja1cu4dip5whnxd5tqQBrFmbxzpEGgiGVnccauH1ZLmbTKK+YoOgwJRfzzGv7Wb0wnwXzJteXD01VaXz2eVp/E/1os+TmUPrFJzBmZIz762MyvN+K0RPvfVQm23gKl8tVDLwGVAGPud3uIa/s6NGjk+oitFCI4P8+g1bfAIqC8bEPoS8vm+hqiRhpPh/Bp59Fa2oGwHDPnRhWTHwzvqZpVJy9QHVLAEda/pid41yDn7a+IIrJz5yMFNKd8XVXefo6mJtnYlbR2NRVjJ1trbs43X+eFKOTPy74EIqi0Nbeyf6KFhypeXGV2eMJc6rWh6aBw6ZnUZEVnW5s8gd7+jpJMQ+watn8UZs8NRJaJELo16+inqkEQFdchPHDj6JYRm+JJyGWLVsW0wtqUrUIulyupcAbwC/cbvffxHJsaWkp5kkwxV4Lh7n4Tz8gUB8dWF306cdJ3SiD44crEAhw4cKFSXM/I3PnUvWd7+Jxnye8/S0yU1LJeuiBCatPMBjk1R278RvzKJ07dgOMK2u6aOsdAHTMzcm9Otg/Vn6/D/ovcNeWxybF/RSxseYkcnrXebpCvegyzZQ4CgC4ba6OVm8CZqst5jIzALO1n0OVbfR5I9R2wMp56aM2wen6k2UQ9Hs5ea6Bh7euJyFh9BZWj5UaClH9g38jcDkITN28icLLC9tPlMn2fjtT9AcGSDDZR/05f+V+xmrSBIIulysT2A581+12fzfW481mM5YJ/lalaRoX/uv/p/fYcQAKP/l75N5914TWaaqaDPcTAIuFBV/9Mme/+R16T1fQ+Mtn0Wka+Y99eGw+uG6hobGZbe8expJSjGMU1ge8merGXs7UdANQmJXIgtL4P6SDvQ2sXb5g8txPEZO52eWUJBdysfsS79XtZ+6yaM/Glk1rePY376JPiG+GekleMr5AhNMXO6lvGyDRbmJR2cjzYA/GkOBAtSXwq20H2LC8jHlzXGNynltRg0HOff9f6b2cTSr3dx6h8Pc+Pu7vITcjr8/x9aWd36PL18PvL/4QG4tXTXR1Js9kEeCPgDTgyy6Xq/+an69PdMWG69LPfnF1YkHOww+S9+jDE1shMSr0VitzvvQkSUuXAFD/zHPU/fLZcTu/pmnsPXiUV3dWkJBRPiqLRN9Mc4eHQ5UtAKQnW1k5L74ZwgB9XS1sXDkbk2niUieJkburNNqjcbjxJN2+XiC6mPMDW1bR214Xd7nzZqVSnOMAoi3QFxpGf1mZK3Q6Hc7MUvacauPl198Z11nFkUCAym98+2pK0fyPPTapgkAxvrwhH3W9TfQHPSSaJ66F+lqTpkXQ7XZ/C/jWRNcjXk2vvkbjy78BIH3zJoo++XsTXCMxmvRmM3Oe/ALu7/4TXQcP0/D8CxhsNnIfeWhMz9vd3cNrb+0lYEjHOUbjAa/o7PWxr2kfmpKDw2Zjw+Jc9HHMEAYIBYPkJmuUlRRz5syZUa6pGE9rCm7jePMZNhavwmlJpOny9vT0NBaUpHC+dSCuXNaKorB8bhZef5jWLi9HzrZitxjJThu7jDOJSen0h4L8+Nk3uGv9YoqLCsbsXAARn4/Kb3ybvoroa6Dw9z5O3oceHdNzisntQmctGtFpDeWpxRNcm6jJ1CI4ZXUdOUrNj38GQPKypZR+9tMok2BgshhdOqMR1xN/TfKyaMtg7U9/Tsubb43Jua60Aj772n50jlnY7I4xOc8VA74Qu2oPoi+oxLpoN6uXpMSVQ/iKQG8tW7dIVoTpwGww8fm1f8KynAXolOvf19atvg1DoCXuRZyjOYlzcFyzrEx339jOnDUYTSRmlLN9XxXb395NJBIZk/OEPR7OPPX1q0Fg0R9+UoJAgbvjIgC5jiwSzJMjzaZEKyPkuVTH+e99H1QVW1Ehric+j24CB/+KsaUzGnF94Qkcc6Mp0i7+x3/RvmvPqJ6ju7uHX/xqG2cbIzgzise8CykQjPDe8RrIPgdAqjGLFJsz7vJ6Oxu5Z+NSDPI6mPYUReHBu9fR114bdxkmo56NS/OwmPSEIyrvHWsYkzUGf5szNZcWTwI/eXYb1TWXRrXsiN9P5de+Sf+5aLaQWY//MbkPPTiq5xBT0/nOaF5sV+rEppW7lgSCIxDs6eXsN75NxOfDmJTE3L//W/SSNWHa05vNzPn7v8VeMgs0jaof/CtdR46OuFxVVdm7/wjPvH4A/Ti0AgKEIyq7TjTiTz6LYgqgaHqWJm6Ou7yA30tptoWC/PiWFhFTT3JyEkvnZOPpj3+MX4LVyMaleRgNuugXk6MNeP2juy7mYEwWK7a0Mt48UM1Lr76Nz+cbcZlqKMS5b//j1SCw5DN/SvZ9W0dcrpguFAw6A+VpJRNdkaskEIyTGgpx7jv/SKCtDcVoZM6TX8CcPjaz3sTkY7DbmffUl7Dm5aFFIrj/4Xv0nq6Iu7zzF6r5yXNv4G5VSEovGpeB5BFVY+/JJjr97Rgyoy0i5ZZl2PXxtQZqmobmaeKOjatHs5piClixbBEJSjfqCLpZUxyW6LhUnYLHH2Ln0XoCobHptv1tjpRsvPpsfvqrd9l/6FjcXd1aJML5f/4Xek6cBKD4j/6ALFk5Qlzj7zZ+jp8++s+sLZg8qWYlEIyDpmlc+Pf/pP9stCut7M//jERX+QTXSow3o8PBvK99GXNmBmowSOU3vk1/VWxrOPX09PLcyzt490gD1pQSLNbxGTOiqhr7TzfT1OFBn9yGotOwKomUWeJ/c+ptr+P+LSsnxcK9Yuz4In6qumqv26YoCg9t3Uh/R82Iys5IsbF2YQ6KAr2eIO8fayAcVkdU5nDp9HqcmSVUNkb46bOvU1cfW15lTdO48B//l87L+cnzH/swOQ/ePxZVFVOcSW/EbJg8qynIO3YcGl98mfad7wPRF3v6BhkUP1OZU1OZ/7WvYExORvX7Ofv1b+FvaRnyuHA4zI539vDL1/YTthbgSM4Yh9pGaZrGocoW6lv7AXBZbmOt/VGW2O7AoMS3NI3P28+CkhQyMqRVfDrb13CUH9b8kn879BMi6vWtdTabjY0ryunrah3ROXIzElg5LwuAzl4/u082ElHHL3mU1ZaIOaWU13e7eealHbS1tQ95jKZp1P7kZ7S9/S4A2fffS/7HHhvrqgoxKiQQjFHnwcNc+sXTAKSuXUP+Rz8ywTUSE82SlcW8p76E3mYj1NvLma9+k1Bf/6D7hsNh3t9zkB89u4Nmb+K4dQNfoWkaR8+1UdPUB0B5QRILStNIN+aTYSyMq0xVVTGF2li3evJ0dYixUZyUTwSVnkAfJ1oqb3h87uxycpIiBIMjy11bnONkiSv6paKl08uBimbUcU6H6kzNQbUV8MJbJ3nxlbfp6em96b4Nv3qRpsu5gzNu30TxH/2BrBMopgwJBGPgrW+g6vv/AkBCaQllf/FZWSZGAGAvKmT2F59AMRjwNzVx9pvfJnJNAvBIJMKefYf50TPbqe40kZhegsk0/imdTl3ooKo+Oqh/Vq6Tpa6MEX9g9bdX88i9G+WDbwbITsggzxJtrXuvet+g+9x75wZCvSOfhTu7MIV5l1Mb1rX0T0gwqCgKSWl5+Iw5PP3KPl7bvpOBgYHr9ml+Ywd1Tz8DQMrKFZR+9jPyuSCmFHm2DlN4wMPZb33n6gzh2X/7BfSSm1FcI2nRQko/+2kA+s+5qfr+vxIOhth74Ag/emY7Ve16EjNKMVsmZmb5mepOKmu6ACjISmT53MyRB4HdbWxYXjahOVzF+FroiI6HPtp0ih5/3w2PGwwGtm5eTk9H/YjPtaA0jfKCaE7tS80TEwxCNDNJcmYx3WoaP3tpNy+8+jatrW10HjxM9X//DwDOhQtw/c1foejjX39TTF91PY0caTxFX2Bg6J3HmQSCwxCdCfZ9/E3NKAYDs7/4xP9j773j4zqvO/3ntukFGACDDgJsw95EsYqiOtUsq1mObVm2k02cns0mm3U2682m2nHKL7ubOLE3iWMr7r2pd1GUSJEUKRZwSJAAiN6n11t+fwwAdpAkSKMAACAASURBVBIgB0Th+3w+wztz25xLzH3v9z3vec/BXl423WYJZiDB22+j4cmPAjD09jv8/A//lOO9Ep6KBdgdrmmz68ipId5vGQSgutzFqmUu5GsUgblclmq/Pi21WwXTR8jThEO1Y1gmb7Ttvug+dbXVLG3wkk4lr+m7JEliXSg4I8QggKKolFY2kdVqeeZbL3H0r/5mNIdsI0v+8A+QRTlFwSV4ve0dvrDzn/jc6/8w3aZcgBCCE+D0N77FyL73AJj/y7+Eb+mSabZIMFPp6Oxit83LYFPhN1LecpTy4wemzR7LsjjUMjguAisDLhYuS/NK4mkOpd/AtK4uPYdlWeSj7dx/963FNFcwC7DJGtsbNrK9cRPLg5fOlnDbLRtRcz2Y5rXN+r2oGDw0fWIQQIsNs2DXs8iGTs7l5fDqzbxz8AjZ7LXFRgrmLscHC4mkF5fPnETSY4jU/1dgcOdbdH7vBwBU7riHqntFTijBueRyOfYdOMyJtj6ShhNfaT25HR/F9ezXcbWHKX3rWXRPCekFy6+rXZZlcfDEIM1theHgmnI3m1ZV8Fry61iYRI0BpKvsC8YGTvPw3RtF9ZAblI+tfASHw3HZfSRJ4tH7t/MfP3wDf+W1Jc8dE4MAx09HaO8tTMbatLL6mj3bk0VOJwn+9N9RMikMu4PBhz6FEqikZSDDwW+9TLBEY83yBSxcMPVVgQSzg7yR5+TIaQBCMyiR9BiiFb8MydY2TvyffwTAu3QJ83/5F6fZIsFMwTRNwsdbOHKig/6RLE5/NXZ/E+OpmCWFwXt+gcof/Qv2gS7KX/4ufR4fucr662KfZVnsD/dz/HRhYkhd0MOWVTWEs++QtuJIyKx23n5VD6p0IsqqhWVUV1UW22zBHMPr9bJ9wyLePNCDt/Tafi8XE4MWsGlFNYp8fQSXlM8RfOZptNgwlqwwcO+T5AOF67LZHdiq5pMHXt7XxWu7m6mv9HHT6qVUVJRfF/sEM5PWkQ50s1ApJyQ8grOHfDRK81/+FWY2i60swJL/9vvI2tXlWBPMDSzL4nRHJ4eOnqRrMIHkKMfjraXkEs83S7PR/8DHqf7eP6MmIgSf+Q96Hv9VDG/plNu5t7mPls5CuouGKi+bV1STsqK0ZAul8BbY1+BVApM+t2kYOKwhtmwSJbMEE2PZksW0dfTQn0pju8aJUueLwdO9cXJ5g1tW16KpUxzpZJqUv/ht7H2FSTCDdz5Otrbporv6SiqACgZzBt99/iB2JUdlwMnaFYupqakWnsIbjPDosHCZq5Qy19S2/1eDEIIXoVA+7q/Hy8ct+cwfYCudeX88wdSj6zrh4y2ET3UzEEljaT68/kq8FVUTOt50eel/4CmqfvAllHSC4M+/Ru8jn8ayX35Y7WoxTYvdR3pp6ynM5myq8bFheRWyJHE0+RYmBg7JTcix8arOnxg8xSc+dJd4kAkmxb13buPfv/VzLPvCa/7tjIlBVZE52jpM71CKV/d2sH1dLXbbFD3SLIvSnT/D1VaoJjW85T5Si1Zd8TBZUSipqAUgaln85I0TqOZ7VJS6mN9QSWjRAuwi+8ScZ15JLdsbN+G1XZ/KUZNFCMHzsCyLk1/8ErGjzQAs+q3fwLt40TRbJbheWJbF0NAQh5tb6B2KMxLLobrKcXtr8F5l0Yx8WSUDOz5C8OdfwzbcT8UL36T//qegyGkm8rrBzoPd9A6lAFhY52f90jMpYlY6tyMjU6k1oUmTn90YHezkvu1rcDqnJ/2NYOYSSUcpcV66RrUsyzxy3za+9bNd+IPXPjQmSRKrF1XgsKnsD/czFMvw4p4Obr+pDrez+CM33vd34TtcmCEdW7mJ+Oqtkz6HJEn4A5VAJSlgz/E4b+x7Gb9boczvJLSggcZ59Sgi/cycY1XVUlZVLZ1uMy6JEILn0fXDH9P/yqsA1D3xOBXbRfm4uYxlWUSjUY6GT9IzEGUomiZvOfAFKlGcJfiLpHkyDYsY3vYgZW/8BGdHC4E3f8rw9g9CkTxrqUye1/d3EUkUZi0ubQywelH5Od4Xp+xhvfvqhnTTiSjLG300zrs+MY6C2UEkE+Mfd/877/cd42/v/Sx1vupL7ltaWsKWtU28c2QAb0lxShGG5pVitynsPtxDPJXjxT2nuW1dHSXe4nnZnCePUPrWswCkGpcwsvWBoty3LrcXl9sLwIhh8dLebvQ3j+Bza/g9doIBH6FFjZSUlAgPvGBKEULwLIZ276H9a/8BQNmWzTSIWpFzjlwuR/vpDk619xBJZIkksuRNG96SIJqtBs8UxnQnVmxEjQ7jP7gT79F30f1lxNZee0djJJ7h9f1dpLM6EnDT0koW1Zdcu8GjGIaOk2G2bbm3aOcUzA18Ng8d0R4sy+LVU7v4+JrHLrv/6hVLae94heFctmiVdRqrfdg1hZ0HC/fAS++e5ta1tQRLrz1vp62vg/KXvoOERbaihsG7PwxTUDVEkiS8/gD4C3G7CWC4L8ve4/vRyOB12fC6bZR4ncyrr6GqMohN5CwUFAkhBEdJnGrl+N/9b7As3AsWsOg//5YoEzTLSSQStJ/upLNnkEQqRyyVI5kx0ZyleHxlSA4J79SE6l2SyOYdaLEhXK3NlLz9PLqvlNSCFVd9vp6hJDsPdKMbJoossXV1DbUVxa3ykRo8xSc/vEN4JQQXIMsytzVt4gdHn+ONtt18dNXDKPLlhzYfuGd7IV6wbFHRflPV5W7uWF/P6/u7yOYNXt3bwfqllSyou/oOkRodJvjM08iGju4tof+Bp7C06ye+bDY7gdH4QoA4MDKS5/DpVozM+zjtEi6HVnjZVSrK/dRUBQkEAiKtk2BSiF8LkBsZofkvPo+ZyWALBFj6R6J83GzBsixisRhdPX109w6QSOVJpvMk0jl0S8PmKsHlLkOySdhtMO1/VVlm8K4nxtPKlL30XXS3j1xVw6RPdbIzwrvNfVgWOGwKt66to8x/Rtlaowl3r+VhGx3o4ME7bhIB7YJLclvTFn5w9Dmi2TgHe5tZV3P5jo2iKDxy/61852dv4QsWL6damd/JXRsaeP29ThKpPHuO9jESz7IuFESeZHoZOZMi+POvoqSTmDYH/Q88henyFs3Wq0VVNfylhRnJABaQBBI5i45TKd46fAQzl0JTwGFTcdgVHFph6bRr+P0eSkv8+Lwe3G73eBshuLG54YVgPhbn6J/9JbnBQWSbjSX//b9hLxPl42YSpmkSjUbp6x+kp2+QZDpHMqOTzuikMnksxYHN6cPlDiApEpIHvDO49O14Wpnv/zNqPELwmafpfexX0f0T+90Zpsm+Y/2cHE0P43Pb2L62Fo/rXG9FV/44rdlDrHbdhk+Z/Jh3MhFh1aIA9XW1V95ZcMNS5akgVL6A8OBJ3mh754pCECBQWsJtG0K8tr8DX+DScYWTxee2sWPjPN56vzBp6kRHhGgixy2ra7DbJjgJQ89T8dzX0SKDWLLMwL0fHc8VOFORJAmH043Dee6sVBNIASkDzLhBy2CGXLYdI5/FMnKYRpaRoUH2H+vB6bChKQqqKqGpCqoioyoyigIOux2nw47L6cDhsOOw29A0DVVV0TQNTdNQFAVZjKKdQyqf5ot7vkaobAG3z9+MR8wannnkRkY48sd/Sqr9NEgSi/7zb+NdtHC6zbrhMAyDWCzG4NAwHZ09HA230HJ6EN2USWd0MnkTVAd2hwen219obBxgc8BsjZIxXV76HvgEVT/8EkomRfBnX6X30U9jOi/fUCTTeXYe7GY4lgGgqszFllU12LVzH3J5K8uh9BtkrRRH07vY5HloUvblczlK1BhbNtw9uQsT3JDcOm8j3fE+yt0T70QvCS2ku3eA1uE4ziJ622yawva1dRw8McCx9hH6R1I8v7udW9fUXnkSiWlS/vL3cHS3ATB02yNk6mZeJYirQVYUnC43TteZNkbXdfKyD3tJEFlVMQADyEJBRZpg5SyMhI6u5zHyKXRDxzQMsAov0zSQLLPwWQJFkpBkkCUZGZAUCVmSkKWCYC14Zy0kSR5fNzZoMVYlRpYkkM7MyZEo7CNRWD+GJJ07b0cq7DH24Vws67LhXpcaOJnIiMql9ujK9bAndoA9nQewOiTscvFGVubPq2XRwovnsZwsN6wQzPT3c+R//gmZnl6QZRb9zm9RvnXzdJs1J8nlckQiEfoHhugfHCGdyZPOGqRzOumsTi5vgeJAc7iw2T1kbA1kbUFUVcXlgWsP+Z6Z6IEgA/c+SeVPv4IWHaLi2a/T99CnQL14+oveoSS73u8hmy/UB14+v4wVC8ouWmKrOf0OWSuFjMJK5+TqARfqCLfxyC/cL+ICBRNie9Mmbp+/BfUK8YHnc/utm+j9wXPougP1Er/7q0GWJdaGgpR47ew52kcynefFPe3cvKyKxmrfxQ+yLErfegb3ycMARDbcSXLJuqLZNFuRJAlV1Qp/nyLHVFujrzGurvL5ZU5+PtdW9nrStOVaAPDKARJmLYkifr9+qkMIwWsh3d3N4c/+CbnBQSRVJfRf/wtlm64uwa6g4NGLRCL09PbTNyr0UhmddE4nk9XJGzKS5sDu8OJwlhQ8enZQ7OA5zxGg6/r0XMQ0ka1tYuiORyl/6bs4etspf/l7DN7zYZDO9Fwty6K5bZj3TwxiAZoqs2lFNXXBi49/R/QBTuUOArDYcTNuZXIB87H+k3zkoe0i4FwwYWzK1Yk4SZJ4/AN38pVvP4unYnHROx5NNX58bhtvHugmndV5+1APvUNJblpSeUElEt97b+I79DYA8eUbiN50e1FtEdx4DOs9AATU4oU/TAU3XEufbGvnyB//KflIBNlmY+kffYaSNaun26wZj2majIyM0NHVQ99AhHRGJ5nJk87qZHImkubE7vThdJUWGnMHaA4QRfmuTHLxGpTYCKV7XsJ98jD6rhIiW+4FSSKd1dl9pJeewSQAfo+Nbatr8bovPihuWRYH068AFm7ZzyL7TZOyJTrYyT3bVlJScunkwAJBMbHZbDyyYwvff34v/mBxPBxnU+Z3smPTPN4+1EPfcIrW7hgDkTRbVlZTNpoo1H3sPUrfeR6AVNNShrd9oGg5PgU3JpZlMqz3AhBQhBC8LkT27qNy8yakS2RlN3M5ht7Zw6kv/T/0RALF5WLZZ/87vmUzN9v3dGAYBgMDA7Sd7mFoJEYio5NM50llDCTNicPlx+EsQ1ILkzLm8tDt9SR2022o8Qje5r34D+7EdLg4XLuWd5v7yOUL4wnzqrxsWFaFetmaqhZ1thDx9BCrnLehSBO/xROxYdYsKmNB07xrvBqBYHIEgxXcsq6Jt97vwzcFEzOcdpXbb6rjWNsIB1sK2QVe3HOaVQvLWScPUvbaDwDIVM2bslyBghuLmDmMTg4QHsHrxsm//js6g0Gq7ttB5d13onm9WJZF/FiY/ldfZ3DnWxjJgldF9XpY/r/+J56FcyMI+GpJp9O0ne7kdGcf8WSO+KjgQ3Ph8QbQbJXgAIej6KEhgvORJIZvfQglncDVdozS3S+QqoiS84fQVJmblgRprPZdcehMkmQW2NdQr4WwyRMvi5LLpKl0p9m8Ycu1XolAcFWsXL6E/sFh2gajOD3F90hLksTSpgDBgItdh7pJpPL0HTpGoPsFJNMkV1rBwP1PYhUxVlFw4+KRS9jqfowRoxePXDrd5lyWOSMEAbL9/bR/9Wk6vvltAhtuJtFykkxv75kdJImS1ato+qVP4Wq4sUpl5XI52to7aD3dQzSRJZ7Kkc6BzV2K21OGZJew22dAnr0bGUXh8PqHqB6IUp/s4Z6B3Ti8Hio2b5t0/dTJiEDTNCHVyYNP3D9ZiwWCczBMg5dO7uSNtnf4xNoPsbh8cnWF77h1M9//yYsksnZs9qnpfpb5Hdy7qZGWfUe49dTLaKZOXHWxf83DNNicCF+goBgokkqFVkeFVjfdplyROSMEl/315xl++RX6X30dM5tlcOdb49uc9XUE77idilu3YS+/MXIERiIRjh1vpXcwSjSeIZ4xsblKcXsLFTWcDihSGV1BEUhndQ6eGKC1O4at8jY+0vUC1dkhbm19lYElNaQbl0zJ91qWRWKghY8/dqcodi+4ZmRJ5rkTr9EV7+WNtt2TFoKSJPHIg3fy9HeewVTnI0/Rb9IVG+Tuoz9FMbNkZBvfqb6TgY4sxyLtbFheRcAnxkAENw5zRgg6G+pZ8GufZt7Hn6T/lVcZ2bcfZ10twTtuxz2/ac6nwYjFYhxuPkHPQJThaIasqeEpCWKzVaGVQGC6DRRcFNO0aOmM8H7LIHm9EAvoKfEwvP5TlL34NWwj/ZQ//036H/wE2drJPVQnQmyglcfu3YzbPTMTnQpmF5IkcWvjRr556Me81bGXT6x9HG2SM4oVReHDD9/F1777Ap5g8WcSqyMDVP74X8erhvTd/0k8wyoD3TFG4lleeKedxfNKWbmg/IKZxQLBXGTOCMExVI+bmocepOahB6fblCklm81y9Nhx2joHGY5lSOdVPKVBbLYa3OUgHuszn4FImr3NfUTiWaCQFmblgnIW1ZcgyxL9H/gkVT/8f6jxEYLPPE3fQ79IrvLCkIbjmXdxyB7qtSWTemjGhjq5e+sygsGKol2TQLBt3ga+degnJHMp9vccZmPd2kmfw+l08tgD2/juz9/GX1m8WG41MjgqAhOYNjt9H/gkVNazqaaQaubdo73EU3nC7SN09MZZtaicedW+i+bqFAjmCnNOCM5VLMuip7ePQ0dbGBxJMZLUcfoqcbqqcQbEMO9sIpnOc+jkIK3dsfF1jdU+1iyuwGk/c0saHj99D32Kyh9+GTWVoPIn/0b//R8/xzMYNQZozryNhYXp1Gm0r5yQDbHhPjavrGHh/MaiXZdAAFDuDrAsuIgj/cd5o233VQlBgPKyAHffspwX3j5BSfm1x3Sr0SEqf/yvqKk4pmaj78FPntOxqgy4uG9zI0dah2luHSKV1XnncC/H2kZYvbiC6jLXnB9ZEhQH0zKQpdkTaiOE4AzGMAxOnGzlWEsH/cMpdNmNrzSI7C0nMP31zwWTJJ3VOdo6REtHFHO02LvfY2P9kkqCgYsn4dH9ZfQ/9IsEf/JvBTH4s68ysOMXSDcuxbJMDqRewcLCJfups00sjjAZG2H5PBerVy4r2rUJBGezvXETR/qP0xntQTeNSVccGWPh/Eai0Th7w/14S4NXbY8SG6Hyx/+Gmoxhqjb6H/wEuaqGC/dTZFYtLKex2sfBEwN09ieIJLK8vr+TyoCLNYsrRPyg4Iq8mfgehpUn5NhIrW3RdJtzRYQQnGHk83kOHz3GydP9DIxkkJ1leH3VeMTo3awlmzdobh3m+OkRDLMgAO2awvL5ZePDwJcjH6ik75FfIfjTr6DFRqh49hsM3fEYhxolRozCrPg1zttRpSvHYqVTSWp8WbZtEeUUBVPHxrq1BN1lLKlYiCxdW5zdTWtXkkztIdw9hNs3+cl+tv4uKp75Gmoqgalq9D/wFNnqxsse43Pb2LamloGRFAdODDAYydA3nOL5d9qpr/SyrCkgBKHgouhWnojRj3W969ldA0IIzgB0Xefw0WOcaO2lP5LF4avC6arFX/y8qoLrSDqrc6IjwvHTI+MTQTRVZmljgMUNpZMKRNf9ZQUx+JOvFCaQvPxd5PUlsNhGnRYiqF05CXQ+l8PDAPffs+Oqr0kgmAhOzcGy4OKine/WrRvIvvoW7cMRXJ6Jl0x0tjVT/sK3kfU8pmZn4L6Pka2dePWSilIXd93cQNdAggPHB4mncnT0xenoi1MZcLG0KUBVQAwZC84QMfrGRWCZWjPN1kwMIQSnCcMwaA6f4NjJLgYjGTR3EKe7jtKq6bZMcK1E4lmOtQ/T3hMfHwJWFYlQQylLGgPYtKsbJjPcPvoe+WWCP/t37P1dbN8bwZHzU7L5liseq+dzkGznscfvEw8twazkrtu28PMXXqc/ncDhvHid7bPxHnqb0p0/R7IsdLef/geeIl8++QZWkiTqgl5qyj20dkdpbhsmnsrTN5yibzhFqdfO0qYA9UHvFb37grnPkN4NgEv24ZBnx7RNIQSvI5Zl0dHZxf5DJ+gbTiE7K3B7avFdfeiLYIZgWRbdg0nC7SP0DafG12uqzII6P0vnBXDYr/12Mx0u+h76JSqe/Q+cXafY+H6UROZZhrd/EEu7eP1hXc9jJtr52GP3oqrilhfMTiRJ4oF7tvPDn75ENCNjd1yiuKVpUrrrWXzv7wIgV15N//0fx7jGaiWyLLGgroSmWj9d/Qma24YZimYYiWfZ9X4PTvsA82t8zK/143Fd/F4UzH2G9R4AAsrs8AaCEILXhUgkwu59h+nsj5PDja+0Cm+F6DnOBeKpHG3dMVq7YyQz+fH1HqfG4oZS5tf6i56LzLLZ6X/gKSpe/A6u1qN4jh/ANtDF4D0fIV92bjyBYegY0TY+9vgONE2UzhLMbiRJ4uEH7+TbP3yebK4Gm+3cWkhSPkv5S9/F1doMQKphMYP3/AKWrXg1k2RJor7SS13Qw8BImua2YboHk6SzOkdahznSOkxlwMWCWj91QQ+KInIR3khkrEIp27IZXl/4bIQQnCJ0Xee9g0cIt/YSTUv4y2pxBspFmpc5QF43ON2XoLUrykAkfc62ilInS+aVUlPhmdrcY6rGwL0fwffem5TsfgnbyABV3/8nhrd9gOTSmwAwDYPcyCmefHwHNpvwUAimh8HkMG+d3stNtSup8137w1GWZZ54+B6+8b1n0aUG1FFPuL2rlbJXv48WGwEgvnwDw9sehKucsXwlJEkiGHARDLiIJXOc7IrQ2hUjmzfGh41tmkx90EtdpZfKgAtFDB3PeW73fpS0mUCZRfJq9lg6Cxgf+n3/OD1DaRy+KuzeeZSKVC+znmzeoHsgQWd/gp7B5PjsXwC7TaGx2kdTjY9S73WcSSjJxNZtJ1s1j/IXv42ajFH+6g9wdLcyuPUB0rHTfPxDO7DbRQVpwfRgWRb/69W/oz85RCKX5GOrHynKeRVF4Rce3cG3fvACeVslwX2v4Tv0duE7ZZmRTTuIr94K1yke1ue2sXZxkFULK+geSHCyK0rPYJJc3uRkV5STXVE0Vaa2wkN9pZfqMpfwFM5hnPKVY1hnEkIIFoF0Os3uvQdp7RohY7nwlVbjrxQ9v9lOMp2na1T89Y+ksM5oP2QJaio8zK/xU13unvIg8ZyZ5lhmD0scm7DJ5wq7bE0jPU/8JuUvfxfn6RN4wu+hdZ9i2W/8ihCBgmlFkiS2NKznR83Ps/P0u3xk1QevOZ3MGJqm8YHljRz4/N+gxQvJ2XNlVQze+Rj58umJz1LkwrBxfaWXZDpPe2+Mjr4Ew7EMed2krSdGW08MVZEIlrqoLHNRFXDj99jEJC7BtCGE4FViWRbHW07x/tFT9EfzeErrsJeWIB67s5ds7syQTt9wkngqf852WZKoLHNRN9qrt9uuX+b499Nv0Jk/Rp/exp3eJy/IWm863fQ/8BSefa8TePdl7PEoJz//1wyuXkXjJz+OZ37x6xQLBBPhloab+VHz8wylRggPnmRpxbUn2M3H4nR+7/t0/+RnaJaFJUkMr9pCYtM9oMyMx5rbqbGsqYxlTWUk03k6+uN09CUYjKTRjcLksu7BJDCAw6ZQWeaistRFeYkTn1sIQ8H1Y2bcMbOIWCzGO3sPcbo3iqH68frrKRV5RWcdlmWRyugMRdMMRgvJYsdq/p6NpsrUlLupC3qoLnejqde/bFBvvpXO/DEA5ttXXbJ0UT6vM7ygjq0f/BO6nv468WNhogff5+Dv/lcqbruVho99BEdQTFEXXF8aSmqp99fQEe1mZ/u71yQEswODdP34p/S98CJmtnC/uhrqWfDbv8FLzW2ks1mcrpn3WHM7NZbMC7BkXoBURqdnKEnfUJLeoRTZvEEmZ9DeE6e9Jw4U2p2Az0G530GZ30mpz4HTrghxKJgSZtQdEwqF1gJfApYBJ4BfDYfDu6fXqkLOv0NHmmlu6WYoYeIvr8NVNvkM94LpwbIsMjmDSDzLcCzDUDTDUDRNJmdcsK8kQZnfSWXARVXARVmJc1oDvHNmmvdSLwEQUKqZb1t90f2ymRT2fC9PPH4fqqoS+PxfMLx7D21f/Q8y3d0MvPYGgzt3UXn3XQRv345n8SLxUBFcN25puJlvHvoxb3fs51Nrn0CdpNcu1dFJ1w9+xMDrb2AZhftWdjioeehB6p94HFnTeGThQn7y7CsMJA1cbt9UXEZRcDlUFtT6WVDrx7IsIoksvUMp+oZSDEbT5HWTvG6Oj06MYdNk/B47JaMvv8eGz23DpgmBOBNIGBHyVha/UlG08IfrxYwRgqFQyAH8FPgz4F+Ap4CfhEKh+eFwODkdNvX29fPue0foHkyhOCtweRoIzI78kDcs2bxBPJkjlswRSWSJxAuvbP5C0QeF4d5Sn53yEidVARcVpa6ip3u5WizL4kD6VbJWCgWVda67kS7SwKRTcUqVCA8/ei+yXNguSRJlmzZSuv4m+l58mY5vfpt8NErvs8/R++xzOKoqKb91GxW3bsNVX3e9L01wg7F13s3Ec0luabgZZYKzeDO9vYzse4/hvfuIvHeAsSBd1eul5gMPUHX/vWjeMzPxJEniofvu4PmXd9IxcnXl6K43kiRR6nVQ6nWwtDGAZVnEkjmGohkGo2mGohmi8SwWkMubDIykGRg5N1OBpsp4nBoelw2vS8Pj1HA5NFwOFZdDnZZRjBuRttwhWrL7KVNq2Ob90HSbMylmjBAEbgeMcDj8pdHPXwmFQr8L3A9893oZEY1G2bP/MJ19MVKGnZKyapHzbwYx5t1LpvMk03kS6TzxVK7wSuYvKfjG8Lg0yvwOyv1OyvwOSrx2FHlmCL/zsbCwS4W4g+XOW/AopRfsk4yPUOPLcv/dd13UKyCrKtX37aBi+630PvMsfS+/MvER/QAAIABJREFUSqa7m0xvH53f+R6d3/ke7qYmStauxj1/Pp75TTiqq5Bm6P+JYHYSdJfx1JrHLruPnkoRDx9nZN97RPbvJ93Vfc52e0U5NQ9/kMq77kBxXDweR5Ik7r1rG7v27OdgSzf+stmT1BcK9vs9dvweO/NrCwmwdd0kmhzt1CZyRBNZIoks2dERjbxuMhLPMnKR0BYoVDVyOTScdhWHTcFuU3DYVOw2BU2RSCV17IkcToeFTVNQZEl4GK+CsYoiJersC7+ZSUJwCXD0vHXh0fVTSjwe5+ChY7R2DxNLS/jKarCXlomJH9cZy7LI5gwSaQNjMEk2b5HK6qSzOqlMnmS6sDw7dcul0FS5MITiHX2NNq4zxds3EWRJZrXrDuptSylVLiyNFRvuY0mdg9u23XbFc6kuJ3WPP0rtY4+QPNXKwBtvMvjGTnLDwyRbW0m2tp75XocDd1Mj7qZG7OXlaH4/Wokfze/HVuJH9XqRNQ1JEZ4GwZWxDAMjnUZPJtGTKYxkknwsTqanh3R3T2HZ1U0+Gr3gWMXtomTNaso2bqRs62bkCVbG2bJhHaX+E7y2pwV/cOK1hWciqipT5ndS5j83C20mp5NIFTrCidSZTnEinR8XiQC6UfAyxpK5S39Ja8f4W1kCTVPQVBlNkVEVGU2VUdXCe1WRUOQzS0WRUBQZRZaQJamwHH2NiUpZLoy+yKP7SJKELBWEryQVtkkySBQ+zzYhalg6EaMfmF0VRcaYSULQDaTOW5cCLlFH6Fz+4s3/i0Nz4FDtOBQbPruXDy174KL75nI5Tpw8RWvHAMOxDKmcgjdQheasxessjEDoun5tVyMAwDBMsnmDbG5saZAZXY4FSWeyOpnRz2dStJz/U7iQsZ7u2HCI1zX63qVhv2jcjImum8W+xCnHRwWGcaZhtyyL6EAbW9fMY/nSxWQymUmdT62tofojH6bqwx8i0XyMkd17SJ48Rbr9NFY+j5nJEG8+Rrz52OVPpCjImlYQhZqKpKqFoetCC48kSVhI5PI5DtsunAU52xp7AZiWRS6b5bCmIQFYBc81FmCaWIaOZZhYhlF4rxvjkzomirNxHv41q/GtWV2IZR3tcOR0HSbRLjfNq8dht/Gzl/fhDS4cD5uYK6gylHg0SjwXVgwyTIvMWCc6q5POGqSz+ni7e/by/H61aRUyKGQvEkN9PRlrHiRJQhr/PCoUC29Hl4Xt5x9XkJUwtvGs1Wdv5eyDJ9IiXazZMl1DWE2FZ8t77+U5oJ86+4gJnHWye4LbZrBq5QgVpWc6CNlJ3mtjzCQhmIQLCm+4gPhEDg4PF/7jrVElEVD8lPY4iMaSxBNp8oZFTrdI6Xk6Xd145RoCai02yw0SjIxEingpcw/LstANyBsWumGdWerWOevy+rnvJ+C8uyR2VcKmSdg1GbsqYbfJODQJh03GocmoytliwgAMzFyG2GU6vrMd0zRI9J/glvWLwcxz5MiRaz/pxpth483YTBNrcBCrtw+zpw+rvx8rmcRKpiCV4pxEigCGgWkYmBMQolfXPAlmKtf891RVpNISpECg8CoLIAdKkSrKsdxuIkDENODYFTojE2DN4gpe3rUTR2ABqnrjlVl0SOBwMJrdQqLw2C88+i3LwjRH23Wz0HbrRsGLaJiFl24w/t4wwTQtDKuwNE0wRs9hWqPnsy5sKq6GsXNY55ysCCeeAlTfIBpgZpzEowqQv9Ih10w0CS/tOsyqxgn5yi7LTBKCzcBvnrcuBHx9Igc3KWswZYOcnmGgu5Mv/+4X+DJf4M/+7/eom7cW12hvcEDvYCTzHiP0cZr3cEoeSpUqypV6GrRlxb2iGYhhmOR0k1zeIJc/671ukh9dFtYb5yzzRfKk2TQZu1aIU7FrCk57IV7FYVNw2BRUBTKpOFXBMlEb9zxymRRSuptf+bWP4rhEjNRUYZkmRiJJPhpFj8exdB0zny94EPN5rLyOpeuFRtuywDKxTAs9n2NwcIjy8rJzZopesjkvxhNEUDzOc38Yus7g4CDlFRWoY/fn6PAesoykqEiKgqSMvlcVFIcDxeVCcbsKS5eLvmwEv8OLS7s+RTfXrl3LT559nZjhxuUtuS7fORvQdZ3h4WEqKspQJzjsPhEKArMgCk3LwjItzHHBaGFZFtbYtnMEpDV6POP7WFhnicIzHmgLznikOUs4jv9zZhvj+55v51kbOWfXS1zYxVfHbHFi+RgaXioXll1p96JQoiV4fMdN54Q7ZbNZWlpaJn2umSQEXwHsoVDoNymkkPk4EASen8jBy51bx3/Iz792Rju2NB9k/qLl458VS6ZUqSJi9GNhkrYSpPUWLMlivrqqeFczhZwr5ozzhN3oMm+Q1w2y+XP3M6/FRXcWEoU4ErsmY9MKos52lsAbE3u2s97bNeWKFTh0Xac/n0TTtKI2TLMB0zLYl3qBBfa1BNRzYwIT0UFq/Dr3P/LQ9A1xuVwQrJjUIZlMhsiRI9QuX37dxaug+Fzr33Os5FzzQAu/fNNHuXvhtimw8uJ85PH7efvd9zh4ogd/ef11+97ZgKqqN1x7W1zKgfXX9Rv9konXc+3eQJhBQjAcDudCodB9wD8Df0khj+BD4XA4ffkjz2BZFt//j3/gh1//4vi6r37xz4hFh3jsyd8sFAnX5hHU5o0Hdw7rPQwbPdRpiy96zpgxhGkZRZsJVBhitUZzRRnjOaNyo+8LAs4cf3+up664Yg4KQbq2UTFnGxV2mjom7M5ef+5nmyqLGK8icyyzm678cbrzLdzlfQq3UsgzFu1vZcOKOtavmx0dFYHgUkiShN9RyPG3q2PvdRWCkiSxZcM6Gmp7+Pkr7+IMNN2QQ8UCwfnMGCEIEA6HDwFbr/b480XgGGPrHv/4b42vUySVMrWGMvXcGT6WVYiFMEdfR7Lv0Ge24KGMICEC5gJk045hmOiGORpTYY5+LrzP6+all7pZdHexJIGmjgo19SzBpp4v5sa2n1kvUgXMDPrz7RzPvgtAk20lbsVPNpOCZBcffvAWygIXpo4RCGYjWxvW807Hfo72n2AkHaXU6b+u319XW80nn9jBj37+KrF0CW4xVCy4wZlRQvBa+NK/fYNdP7hQBI7xw69/kf5MCXVLto7GHpyJSbDGAl8t67wQJQv7il5kFyQYIsEuTvIORjSI3rEYK1cctywU0p2MvcYEnHb2UpXHBdz5ok9VhHduNpMxk+xLFSIg/EoFy523EBvuprFC454PPDDnZjsKbmzWVi3HodrJ6Fne6djPfYtvv+422O12nnhkRyHf4PE2/BXzRBsquGGZE0LQsiz2PvdPV9zv3We/SEnDzZO44SWyh7cie0dQKjpRSnuRFBOlZADz9HJUTUFVCnmUxvIrnZ9zSVMK78eFnjL2Xhlfp6oysmiEbkgsy2Jf6nmyVhoVjXWOe0j1t3LXLStZOL9xus0TCIqOTbWxvnY1O9v3sKtj37QIQSgMFW/deBOLmgZ45qV3MJzVOF2eabFFIJhO5oQQhIJH7UpZQzRVYf3SILIsjya1ZDSx5WhSy9EEmOOJL0c/K/J8FOVmTClHn9GCKeksvH3FdbkuwdxGkiSabKuIGP0sMtZRYaZ58Im7xcQKwZxma8N6Tgy1sjy4CNMyp7U2azBYwSc+8iA7397LoZZT+INNwjsomBBZM8WxzG7K1BqqtQUo0uyUVLPT6vOQJIlP/cb/4B8+918uu99/+u3/yeKGwDV8k8p8Lh2w359vZ0jvZoF9HTZZ1CURTIxys5YtuW3cvWktixfOn25zBIIpZ231ctZVr5gxgkuSJLZtuZkVSyP87MW3yCpluDwidlBweQb1Llpz79OWO8wD/l+dbnOumjkTfHTz1rt55GO/fsntj3zs19lwyz1TakM48y7h7B5ejH+FcGYPeWsOZzYWXDOWZRHpb6POl+JXP/KwEIGCGwZZmplxzaWlJTz5oftZOc9BrP8kuj71iYEFs5dhY7S+sBJElWbvDPQ54REc47EnC/moz585/OjHfoNHn/yNKf1uyzIpVauIGH3krSzNmbc5mT3AIvtNzLevnrUuY8HUkIgN4yLKE/dvpLzsWrzUAoGgmEiSxMb1a1izcikvvf4O7X1pMZlEcFGG9IIQPD/7yGxjzqiTkYEeFEnnrrvvw6lZfOPfC5NHfuGpX2PL7TsY7j+NrNixOz243MUPCJYkmRXOW1hoX8vxzF7acofIWWlasvtosov8b4ICqWScTLad21avYPnSzeLhIhDMUOx2Ow/cs52RkQgvvLabkYwNX6B6us0SzBDyVo6IMQAIIThjeOyupVRUVGCz2fi1px7g6X/9B6DQu7Msi0wmQyKRoLd/kNNdfYzEM0STBporgMfrL9oD2SG7WeXazkLHOo5n9uBTyme1y1hQHLLpJPlED94Gg5f7XmO+GmA5oek2SyAQXIHS0hI+/MgO2k938Oqu98nJJXj8ZVc+UDCnGdF7GSsiF1CEEJwRlJeXY7efmaBxtrCTJAmXy4XL5SIYDLJqdMKvruu0tZ+mpbWLwUiaSNLAU1qNzX7tMzZdspc1rjsvud20DGRJuebvEcxsctkMmWgnKxZU0rB9LZ995W8wTIM32/Zwz4Jbz6m/KxDcaGT1HD8Lv8Su03v5va2/Qo2v6soHTRPzGur5RH0dx0+c5N2DJ4jrLvyByuk2SzBNlCgVrHfdS9wYwS5fn5rZU8UN/RRSVZWFC+azcEEhSD+dTnPgUDMdPZ0MRrJo7nLc3uJnvbcsk9cT3yGgVLHUsQnbLP8RCS4kmYhhpftZ0hRk8307yFl5/vuLf0Vaz+B3+Pj9Wz4tRKDghkeTVZ5veZ1IJsaujn08vvyB6TbpskiSRGjxQkKLF9J+uoO39zUznFLwl9WIMI8bDJvspM42N0Z1xJPoLJxOJ5s3rGMzYBgG4eMtHG/toW84iaX68JaUF+Vm78iHiRr9RI1+uvLHWebYyjzbctGQzAFiI/045STrQ/WsXnk/sixjmib/Z+eX6En0o8gKv7flVyhziZJxAoEsy2yqW8dzLa+x6/TMF4JnM6+hnnkN9fT19fPm7vfpj+Rwl9ah2WzTbZpAMCmEELwEiqKwbGmIZUtDWJZFW3sHR46doncoRQ4nvtLKqy79VastIu2IczzzLjkrw4H0y7TnjrDaeTslarDIVyKYavR8jvhQF+U+hR2bQjQ1zjtne29ygBNDbQD84toPs6RiwTRYKRDMTLY0rOe5ltfojPVwOtJFQ0ntdJs0KSorgzz+0F2k02l27z3Iqc5OcpK3aI4DgWCqEUJwAkiSRFNjA02NDViWRW9fPwePHKdvKEk8I+ELVKNqE+8FKpJKyLGBettSDqffoDvfwojRS9QYEEJwlmBZFtHhXpxyhsbaUjbesR2X6+K1p2u8lXz+7s+wq2Mfdy/cdp0tFQhmNovLmyhzljKUHmFXx95ZJwTHcDqd3LZtE9sti7b20+w7dIL+kRwOXyUOp3u6zRMILokQgpNEkiSqqyqprioECcdiMQ4cOkZXfx8j8Tw2T3DC6WlcspcN7gfoz7fTkTtGg23ZVJouuEYsyyIZj2Bmhqgud7N9e4i62onNFgt6ynl46Y4ptlAgmH3Ikszm+nX87PjLtI10Trc510zBcTCPpsZ55HI53j/czKnTnQxEszh8VThdQhTOdizLmlPeXiEErxGfz8etWzcAkMvlOHrsOG0dPfRHUuRx4i+tRFYuPzs4qM0jqM277D6C6cGyLGIjAyhmnGCpi5vXNLBwwcarDgsQCAQXct/i27mtaTP1/tmdhuN8bDYb69etZv06yOfzHDpyjJPtnQxEMsjOUry+wJwSFDcClmXxYvyreGQ/Sx2bKVVn7kz3iSKEYBGx2WysWbWCNasKP5b+/gEOHT1B31CSSDKP4ijB65/cjd+WPUzGSrLIfpOoTnKdyGRSpCJ9eOwSFQEn27ctpLZ24rMC80YeTRG5IwWCiVLhnvt5+TRNY92alaxbsxLDMGhr7yB88jSDkTTxlInDFxTewllAwhwhZUZJmVGWS7dMtzlFQSiLKUKSJCorg1RWFmL+xm784ydPMxzNEEnqqM5SPL6SSwqMjJnkcPpNdHJ05Y6z2nUH5ersjJ+ZyeRyWZKRfhyqTpnPweL6AMvuvnTM3+VI5dP8ySv/Hxvr1/LI0ntFb18gEFyAoigsmN/IgvmNAGQyGZrDJ+jo6SWayBFN5FEcPrz+MjH6MMMYKyunYsMnz40OjBCC14nzb/yxZNYn27qJJLJE4hnylh1PSQU2WyExtiKpNNiWcip3kLg5zM7E92i0rWCZ4xZssv0y3ya4FKZhEIsNYWXj+Nwafo+dYKWPZds34vP5runcuqHzt299mdZIB23RTtZVr6CxtL5IlgsEgrmKw+Fg7eqVrF1d+KzrOt3dPZw41cFILE0slSeVMZDtXjzekklNThQUlzP1hauRpLkh0oUQnCbOT2ZtWRbRaJRjx1sZGOkjlsiRTuWolxYSdM3jqLGLmDlIW+4wGTPJJs9D03wFMxvLskinkmSSEWQzi9et4XFqlHgdbF+1gJrqKpQrxG5OBtMy+eK7T3Oo7xgAv7Tuw0IECgSCq0JVVRoa6mloONOG6LpOf/8Arae7GImOEE/lSWXypLMmkurA5vTidHmEB3GKGTIKQjAwy+sLn40QgjMESZIoKSlh04a14+ssyyIWi9Ha3sGSvrvYHzvCUb2Z+lQ9w6kO7E4fTrf3hr3xLcsim0mRTsax8ilsGrgdGk6HituhURMqo6FuET6fb0qHaC3L4ukDP2Bn+x4AHl12L/cs3D5l3ycQzFUsy6Ij2s2B3iN8IHS3CK04C1VVqamppqam+pz1hmEQjUbp6e2nd2CYVCZPNmeQyRlksgbZvAGyDUmxY3O4sDscKKKq0VWRMzNkzRQAZXMoTGtSv4ZQKFQDhIDdgC8cDvdOiVUCoCAO/X4/a1b5WQPcz3ZSuTROzUEsFqOnt5+u3gHSmTzprF545QxyeZBVO4rmxOF0odnss6pBtSyLXDZDOpknn0uDkUXCxG5TcNoUHHYVuybjdGgEqr3UVC0lEAigadMzQSOZS/Fu1wEAbmvazIdXCG+tQHA1dES7+f3n/xyA5cEQCwIim8KVUBSFQCBAIBBg+UW2m6ZJMpkkGo0RicYYiSZIZ3Lk8jrJXAYj1onpzJCTFPK6SV43MSwJSVZBUkBWUVUNVdNQVQ1FVZFlZVY9U4qFTXbwgP/TRI0BfEr5dJtTNCYkBEOhkBv4N+BDgAUsBv4uFAqVAY+Ew+GBqTNRcDYuW6Eusd/vx+/3syS0CIBYJk4kE6OhpBZd14nFYkSjMYZGosTiI2RyOrmcSU43Cje6aZE3Cje9rhuAArIMkoIkK1goKIpSuOFlCUmSkaTRpTzaAFgWllUQbmBhmSamaWKaBqZhgGRiGSZYJqCDaSBLEooqocgymiKhKgqqKmFTC0tkg7TZxfIaP5WV1fh9XtxuN3b7zBWzHrubP779d/n58Vd4cvWjM9ZOgWCmU++vodJTQV9igLc79gkhWARkWcbr9eL1eqmrO9eLlclkOHLkCMuXL8fhcIyv13WdXC5HNpsll8uRTmdIptKk01nS2TS5fA7TAMMyMQwL07IwzcKzwLAsLNPCMC1M0wIobKOwn2WOLpGwLAtr9DjTMkEqrMNi9NlSOM5CorCyIEBGP42+G/skIUkSlgWSNLpmfNPZbXLh/egRZ850Qbt98XbcKuxOlJ7zdr9Uu29dsKYYzwhvWfFGAifqEfwCUAcsAfZRuLLPAE8Dfw98rGgWCa6Krx74HrtO7+WDS+/h0WX3j/cQm5qufKxlWei6jq7r5PN58vk8uq6TyebI53Usy0Q3TEzDQDeMUeFX+DHLsowsFW5ASZbRVBWbpmKzaSiKgqqqqKqKzWZD07QrDmNfqmGa6VS4y/jk2g9NtxkCwaxGkiQ216/jR83P8/bpfXxs1SOiYzUNjLXbV5M5YaoZe/5YljX+Ovvz+fucf9yltl/sOya6/kq2TgXFfD5OVAh+EHg0HA4fD4VCAITD4eZQKPRp4IWiWSO4KpK5FOHBkxiWyQ+OPsfbp/fzy+s/yorK0ISOlyQJTdPQNA2n0znF1goEAsGl2Vx/Ez9qfp6B1DAnh9tZWNY43SYJZhBjHQPRQSgeE/Ut+oDYRdabgMicO824bS7+5t7P8tCSu5ElmZ5EP3/62t/zxT1fm9IeyY2IaZns6Twg/l8FgimisaSOSk8FAG937JtmawSCuc9EheALwB+FQqFxD2IoFCqnMGT84lQYJpgcDtXOk6sf5XN3f4b5pQ0AOFWH6DUVkbyR5x93f5W/eetLfPPQj4UYFAimAEmSeHDxnTyx4gPcuWBuVG4QzH5OR7oYTkem24wpYaJDw78N/BAYAFzAcxRiBpuBT02NaYKroam0nr+46w94+dRObpm3YbrNmTPEswn+5q0v0TzQAkA0Ex8NYRZCWyAoNjsWifRLgpnFv+7/Fs0DLTy8dAcfXfXwdJtTVCYqBEfC4fDGUCh0B7Bs9LijwIvhcFi4RWYYiqxcNo9dzshjE7VwJ0x3vI/Pv/GP9CYKk+MfX34/H1r+oPC2CgQCwQ1ATs9xYqgNgHklcyd/4BgTFYKHQ6HQY+Fw+BXglak0SDC1HOk/zv9++1/56KqHubVxI/IcKZEzlXxl/7fpTQygyAq/dvPHubVx43SbJBAIBILrRMtwG7qpA7C0YtE0W1N8JqoCRGHDOcI3Dv6QSCbGF/d8jf/x0l9zYqh1uk2a8fz6hk/QWFLHZ7f/jhCBAoFAcINxdOAEAFWeCgLOkmm2pvhM1CP4DeCFUCj0TeAUkD57Yzgc/nKxDRNMDb+z+Zf42sHvs6fzAC3DbfzRS1/g1nkb+cTax/HaPdNt3oyk1Onn8/f8ofCeCgTTgGVZRDMxSpz+6TZFcIPSPCoEl81BbyBMXAh+GEgBl6qdJYTgLCHoKef3t36aw33H+Mr+79AR6+H9vmZUWdSehMJD52Kxf0IECgTXn/d7m/mXfd8kb+r844N/Lu5DwbQwr6SekXSMZcHF023KlDChp384HG6cYjsE15kVlUv4wo4/4sWTb+Kze3Bqs6eKx1RgWibPHn+VA71H+MNtv3nFCigCgWDq8Tu845O0WobaWFw+f5otEtyIPLXmMZ5a89icTRk2YTdQKBTyAp+gMGtYAcLA18PhcN8U2SaYYhRZ4d5Ft11y+0ByiDJn6ZwXRZF0lH/c8zUO9h4F4LmW17h/8R3TbJVAIGjw11LtDdIT7+edjv1CCAqmlbmaKWJCT/hQKLSCgvD7A6ASqAJ+DzgSCoWWTZ15gulCNw3+/LX/w+8992e81vo2umlMt0lFxzRNXjr5Jr/3/J+Pi8AtDevZ3rhpmi0TCARwpvYwwDud781Zj4xAMJ1M1NXzv4GXgAXhcPixcDj8QaAJeBb4u6kyTjB9HO47Rk+in654L1/c8zV+6+ef5Znjr5DVc9NtWtF4t/sgX977DeLZBE7VwW9u/CS/s+kXcdtmXqF1geBGZVPdTQAMjtYeFggExWWiQnAz8LlwOJwfWxEOh3PA5wBRA2gOsqZ6OZ+7+zNsqFuDhMRQaoR/f++7fGHnP023aUXj5trVLAo0srVhPX9772e5tXHjnHX9CwSzlXkltVR7gjSV1JPRM9NtjkAw55hojGA/UEuhpNzZ1FCYTSyYgywIzOP3t36arlgvP25+gTfbd3Pn/K3TbdZVcbHZwLIk88e3/y42VaTJFAhmKpIk8bl7PoNLc063KYIbjN2d79EZ7WF11TIWljVOtzlTxkSF4NPAl0Oh0G8Du0fXbQb+Hvj6VBgmmDnU+qr49Y1P8cTKByl1XDyX1/u9zTSW1OFzeK+zdZfGsiyO9Id55vir1Ptr+MiqD16wjxCBAsHMR4hAwXTweus77O1+n45oN/95y3+abnOmjIkKwT+nMEHkhxRmDAPkgS8C/20K7BLMQMpdgYuuz+Qz/O1bXyZn5lkRDLG+ZhXra1dR5iq9zhYWSOczvHX6XZ49/iodsR4Ajg2e5LFl9wnhJxAIBIIrYlomzYMtACwLzs1E0mNMNI9gFvjlUCj0X4HFQAZoCYfDYlj4/2fvvsOjqvI/jr9n0iFACCV0Qr00hRBCqFJdKdLtioIK4oK4LoKwLmUFFxFEFFx0cXdF0FV+CgioiCAo0ot0uBQpgUAg9ATS5/fHkFkCAQIkuZOZz+t58pi5c++dz8wJ5ptz7jlXOHTuGA4cpGeks/XELrae2MW/Nn9B3dI1GdX6T/l63V1KeiovLBhOUlqya1u14pXpWLMNdrvPTY4UERFxijkfS2KKs8TxxPsLXy1HhaBhGEHARJzF35Qr23YZhrEEGHZl4oh4qVqlqvFR17fYeGwbG2K3suX4TpLSkiniH5xtEXghOYHElEuUCS51R0ViYsolYi/GEVa45HVD0f4+flQPDWf3qX1EV2xIpxptqFGiiiaBiIhIju0+5ewNLBIQTIWiZS1Ok7dyOjQ8Fec1gV9ctW0YMAGYBAzO5VxSwAT5BdIyvDEtwxuTmp7KzpP7KOyf/XU9q49s5N+bv8TPx4/igUUJCSxGSGBRmlduRESputftvzZmM78d38nJxHiOXTjBuaQLALwU3ZeW4Y2v2//5yMcoEhCseyeLeJhDZ4+y8vA6igcV40GjvdVxxIPtunJ/4dolq3t8R0JOC8HuwB9M09ycucE0zUWGYZwEFpELhaBhGH8F+gFFgS3AINM0d97teSX/+fn40aDsjdcZP3g2BoDU9FROJp7mZOJpAOesrFLX77/39EGWH1x93fa4xFPZnr9c0TK3H1pE3N6vRzaw0FxK6cIl6Fyzncf/ghbr9Kzdgeqh4ZQrEmZ1lDyX00LQzv8miVwtBbjrm9QahtEH6A20AmKA4cC3hmFUMU1TS8l7mP6NnqBjjTZUYX3hAAAgAElEQVTEJZ7i7OXznEu6wLmkC1QtXinb/cNDKtC4QgNKFSpB+aJhlCtShvJFwyga4D4zlEUk7zWt2JAFe5ZwMvE0B88eoWpoZasjiYcKL16R8OIVrY6RL3JaCC4EphqG0cc0zT0AhmHUAN4HvsuFHCWAcaZpHrpy7veBsTjXLjyaC+cXN+Jj9yG8eAXCi1e47rmkpOsXjL0vPJr7wqPzI5qIuLGqxStRqnAJTiWeZu3R31QIiuSCnBaCrwBzgV2GYWTOFC4E/AC8lJMTGIbhA2TXhZNhmuY712zrCsSbpqkiUEREgP/de3jBnh9ZE7OZx+/ppuFhkbuUo1vMmaZ5BngYuAfoC7wNjAGmmqaZ/YVa12sDnMnma8vVOxmG0QqYjiagiIjINZpUaAhAXMIpjl08YXEakYIvp8vHdMc5Y/hB4Dfg38AR4DXDMEaYpvn+rc5hmuZSblF4GobRG/gA50SRL26277WSk5NvvZO4vcx2VHt6BrWnZ3GH9ixfKIyn7+1Fg7A6lPQvnu3lJJIz7tCe7ibDkYHdlqM+Mrdzp+1oczhuPRfDMIztwCzTNN82DGM80M00zTqGYXQB3jNNs+odvXrW1xiJsxfwYdM0V9zOsZs2bdKEEhEREbkr2y7sZc2Z36hWuCLtSzWzOs4diYyMvK3rJXJ6jWAN4L9Xvu8CfHPl++3AXa+0aBhGX+BPQFPTNPfeyTmqV69OQEDA3UYRiyUnJ7N//361p4dQe3oWtadnUXte79dNWziXdpGUgAzq1r1+XVt3ltmetyunhWAs0NAwjFJAHWDAle2dgN9v+1WvNxwIBjYZhpG5zQFEmaZp5uQEAQEBBAbe9Uo24ibUnp5F7elZ1J6eRe3p5HA42HP6AAD3lKnlNZ9JTgvBicD/Xfl+nWmavxqGMQb4C/D03YYwTdO49V4iIiIieeNEwilOXz4LQL3S3lOW5HTW8HQgGngUaHtl8w84e+xua1KHiIhIbshwZLA3/ndOXbk7kcjd2HnSOQAZ5BdIFS9ZTBpy3iOIaZq/4ZwxnPl4TZ4kEhERyYHRP03GjD9Aj9odePzeblbHkQLu+MWTANQuVQMfe3Y3U/NMOS4ERURE3EmN0HDM+AOsjdnMY/d01eLScld6N+hFt1p/IDH1stVR8lXBXCxHRES8XpOKzsWljyec5PC5YxanEU9QNLAIZYuUtjpGvlIhKCIiBVKNElUoUag4AGuPbrI4jUjBpEJQREQKJJvN5rrl3JqYzeTkBgkikpWuERQRkQKracWG7D99kKaVIslwZOBj856L/EVygwpBEREpsGqWrMrY9kOtjiEF2JlL5ziecJIaJarg7+NndZx8p0JQREREvNbqmE18uuUrShcuwbQHx1kdJ9/pGkERERHxWjuuLCRdo0QVi5NYQ4WgiIiIeKX0jHR2n9wHQF0vuq3c1VQIioiIx8hwZGj2sOTYwbMxXE5LAqBemApBERGRAikpNYl/bfqCAQtGEHM+1uo4UkBkDguXKFScsMIlLU5jDU0WERGRAs/f158Nx7ZyLukCa2I2UymkvNWRpAAoVySMRuXupWThUK+9RaEKQRERKfDsNjtNKjbku70/sTZmM4/Ue9Brf7FLzjWu0IDGFRpYHcNSGhoWERGP0KxiJADHLp7Q8LBIDqkQFBERj1C9RLjr3sOrY3TvYZGcUCEoIiIewW6z07RCQ2zYOHP5nNVxRAoEXSMoIiIe48Fa7elS636KBxWzOopIgaBCUEREPEZoUIjVEaQAMOMP8OOBldQrbdAqvIlXTyzS0LCIiIh4lY3HtvHLoXUs3POjVxeBoEJQREREvMy2uN0A3FOmtsVJrKdCUERERLzGhaSLHDwbA0B9FYIqBEVExPOkZ6SzPW4Ps7fO1b2HJYvtJ/cA4Gv3pXapGhansZ4mi4iIiMc5cj6WsSveA6BJhYZULxFubSBxG1tPOIeFjZJVCfQNsDiN9VQIioiIxwkPqUCZ4FKcSDjF6phNKgTFpU+Dh2lU7l78ffytjuIWNDQsIiIex2az0ayS85Zza2I2aXhYXAr5B9G4QgMalK1jdRS3oEJQREQ8UtMr9x4+feks+04ftDiNiHtSISgiIh6pUrHylCsSBujewyI3omsERUTEI9lsNnrW6UhKegqNyzewOo6IW1IhKCIiHuu+8GirI4ibSEhOxNfHVzOFr6GhYREREfF4i/Yuo++8Ifxj/adWR3ErKgRFRETE420/sZv0jHQCtGxMFioERURExKMlpCSy/+xhQLeVu5YKQRER8Qpp6WkcOXfM6hhigR1xJg6HA7vNTp3SNa2O41Y0WURERDze1hO7eG/Nv3E4MpjR7W18ffTrz5tsi3PeX7hGiSoU8guyOI17UY+giIh4vPJFypCQkkhi6mW2nNhldRzJZwE+/gT7F9awcDb0J5GIiHi8koVDMUpWw4w/wOojG2lU/l6rI0k+eibiIXrX70lqRprVUdyOegRFRMQrNK/UCIANsdtITkuxOI3kN7vdToCvZgxfS4WgiIh4hSYVG2Kz2UhOS2ZT7Har44i4BQ0Ni4iIVwgJLEqDMnVwOBwUDQi2Oo6IW1AhKCIiXuO1Fn/EbtdgmEgmFYIiIuI1VAR6l18OrSMlPYWGZe8htFCI1XHcktv9izAM41nDME5ZnUNEREQKtgV7fuSfGz9nkbnU6ihuy60KQcMwqgKTAYfVWURERKTgir90hiPnnXeSiShXz+I07sttCkHDMHyAT4EPAZvFcURERKQA23J8JwCBvgHULlnd4jTuK9+uEbxS6BXJ5qkM0zQvAMOB7cD3wHP5lUtERLzPwbMxfLt3GQkplxje8o9Wx5E8sDl2BwD3htXWLQVvIj8/mTbAkmy2HzIM42HgSaAR0DgfM4mIiBeKv3SGXw6tw4aN05fOUqJQcasjSS5KTU9l+5X7CzfUsPBN5VshaJrmUrIZijYMIxDYCDxvmuYlwzDu6PzJycl3F1DcQmY7qj09g9rTs3hSe9YKqUYhvyAupV5mxYE1dK7R1upI+c6T2vNa6RnpvNz4WbbE7aJ28eokJSVZHSnP3Wk72hwOa+dlGIbRElgMZN7vxxcoBJwH7jVN8+itzrFp0yZNLhERkdvy/cmVbLtgUto/lL6VelodRyRXREZG3tY8C8sHzU3TXAkUznxsGEYr4CvTNEvdznmqV69OQEBAbseTfJacnMz+/fvVnh5C7elZPK09fcIC2LbK5GTKGYpWLE7FouWsjpSvPK09vV1me94uywvBbNi4g+VjAgICCAwMzIM4YgW1p2dRe3oWT2nPe8vXoUSh4lxIusjxS6eoUbqq1ZEs4SntKXfG7QpB0zRXAKWtziEiIp7NbrPzavMXKBNcisL+hayOI2IJtysERURE8ku10MpWR5BclpSaRKCfejhzym0WlBYRERG5G0mpSTz/zTD+unQiMedjrY5TIKgQFBEREY+w/aRJSnoq+84cJCSwqNVxCgQVgiIiIuIRMu8mUjO0CkUCgi1OUzCoEBQREa+Xmp7K+qNbWLAnuxtgSUHgcDj47bizEIzQ3URyTJNFRETE6606spF/rP8UH7sPbas0Jzig8K0PErdy5Pwxzlw+B0DDsioEc0o9giIi4vUaV2iAn48f6RnprInZbHUcuQOnL52jeFAxigcVo3JIBavjFBgqBEVExOsV8gsiqty9AKw8vM7iNHInGparx4ddxjO+/XBsttu6y5pXUyEoIiICtAyPBmBP/AFOJp62OI3cCZvNRmihEKtjFCgqBEVERID6ZepQxN95beCqwxssTiOSPzRZREREBPC1+/D4vd0I8gukUbn6VscRyRcqBEVERK5oX62l1RFE8pWGhkVERKTA2h63h4V7lhKXcMrqKAWSCkEREREpsH48sJJZW79mxsb/Wh2lQFIhKCIiIgVSSnoqvx3fCUDjCrqu806oEBQREclGUmoSW47vsjqG3MS2E7tJTkvGho2o8g2sjlMgqRAUERG5xr7TB+m3YDjjV07jzKVzVseRG1h/bAsANUpUoXhQMYvTFEwqBEVERK5ROaQCvjY7DoeDnw+ttTqOZCM9I51Nx7YBGha+GyoERUREruHv40fzSlEArDi4BofDYXEiuZbdZmfEfYPoXvsBoitEWB2nwFIhKCIiko3WVZoCcDzhJHtP/25xGrmWzWajeolwnri3O2HBpayOU2CpEBQREclGtdDKVCxaFoDlB9dYnEYkb+jOIiIiItmw2WzcX/0+dp/aT/NKjayOI5InVAiKiIjcQIcarelQo7XVMUTyjIaGRUREpECJTzxjdQSPoUJQRERECozYCyf446LXGfrDm1rjMReoEBQREZECY/2xrQCcu3yekMCiFqcp+FQIioiI5NC5y+fJcGRYHcOrrT6yEYBG5etjt6uMuVv6BEVERG4hNT2Vd1b9kxcX/oVtJ3ZbHcdrHT1/nEPnjgJoJncuUSEoIiJyC34+fpy7fJ50RwZLDqy0Oo7X+vXIBgCKBxWjTqkaFqfxDCoERUREcqB9tZYAbI7dzulLZy1O451CAosSFlyK5hUbaVg4l+hTFBERyYGmFRtS2L8QGY4Mfvp9ldVxvFKHGq15v9PfeOyerlZH8RgqBEVERHLA39efVuFNAPjp99WkZ6RbnMg72Ww2/H39rY7hMVQIioiI5ND91VoS5BtIw3L1SE5LsTqOyF3TLeZERERyqHzRMszoNkE9UuIx1CMoIiJyG1QEiidRISgiIiJuKyU9ldd/nMDXO7/jQnKC1XE8jgpBERERcVubY7ez78wh5uxYpAk6eUCFoIiIyF1ISU+1OoJHW3XllnL1wmpSPKiYxWk8jyaLiIiI3IGdJ/fyfzsW4WO3M7L1n6yO45EupVxmc+x2AJpXirI4jWdSISgiInIHElMusevUPgBiL8ZRrkiYxYk8z/pjW0jNSMPX7kvjCg2sjuORNDQsIiJyBxqWu4figc6hyqUHfrU4jWfaG/87ABFl6xLsX9jiNJ5JhaCIiMgd8LX70LZqcwCW/76KpNQkixN5nv5RTzLpgb/ySL0HrY7isVQIioiI3KH7q7fEx+5DYuplVhxaa3Ucj1QppDyVQypYHcNjuc01goZh9ADGA+WAncALpmluszaViIjIjYUGhdC8YiO2xe3Gz+42v1JFcswtfmoNw4gA/gU8aJrmasMwhgH/BxjWJhMREbm5pyMeIsg3AD8fP6ujiNw2dxkafgH4p2maq688ngw8ZhiGzcJMIiIit1Q0IFhFoBRY+dYjaBiGD1Akm6cygAhgkWEYy4B7gd+AgaZpOvIrn4iIiFgvITmRr3d9T7uqzalQrKzVcTxefvYItgHOZPO1FQgFXgSGAuWBTcCCK8WjiIiIeIlfDq/j273LGP7jeM3Ezgf51iNomuZSblB4GoaxA/jaNM3NVx6PBP6M8xrBXTk5f3Jyci4lFStltqPa0zOoPT2L2jNnMhwZpGWk4+/mw8Xu2J4Oh4Mf968EILpcBKRDUrqKwZy403Z0i8kigAkEXvXYDtiufOXI/v37cztTvjty5Ajz589nz549XL58meDgYBo0aMCjjz5KcHAwAGPHjmX//v34+Phgszk/nrCwMHr06EFUVP7dfmfz5s3MnDmT9957jz179jB9+nTee++9XDu/J7Sn/I/a07OoPW9s58V9rD6zBSO4CveVaGR1nBxxp/Y8ejmOYxdPAFA5I4ydO3danMjzuUsh+AnwqWEYnwFbgHGAaZpmjn8CqlevTkBAQB7Fy3vbtm1j7Nix9OnTh0mTJlGkSBGOHTvG9OnTmTJlCv/9738BKFy4MEOHDuXRRx91Hbts2TJee+01vvzyS6pVq5YveePj4/Hz86Nu3brUrVuXXr165cp5k5OT2b9/f4FvT3FSe3oWteetbd95gDNx59mRuI/nmj+Ov4+/1ZFuyB3bc9XmrQBULFqW+yPbuDo85NYy2/N2uUUhaJrmQsMwBgEzgQo4rxHsfjvnCAgIIDAw8Jb7paZlEH/u8h3lvF0lQ4Lw883ZZZjjx4/n6aefZvDgwa5t1apV46233mLq1KmkpqZSpEgR7HY7vr6+Wd5r586dGTduHMeOHaNu3bpZztu7d2+aN2/Od999R0xMDM2bN6dv376MGTOGY8eO0bp1ayZNmoTdbufcuXO8+eabrFq1isDAQB577DH69+8POH/Axo4dy+LFiylWrBj3338/NpuNwMBA1q1bx8svv8zatWvJyMjg/fff54cffiAuLo6iRYvy4osv8uijj3L06FG6d+/OCy+8wMyZM8nIyKBLly6MGDHius8jp+0pBYPa07OoPW/swdrtWXzgZy6mJLL+xDbaV2thdaRbcpf2TE5LYcNx5/LB91e/j6CgIIsTeQe3KAQBTNP8DPgsL18jNS2DAROWcfLMpbx8GZfSoYX48LV2tywGY2Nj2b17N9OmTbvuOV9fX1555ZUbHpucnMyCBQtISkqifv362e4zf/58Pv30U3x9fenQoQOHDx/mX//6FxkZGXTv3p2VK1fSqlUrhg0bRmhoKD/99BOnT59mwIABlCxZkp49ezJlyhQOHDjA0qVLSU5Opl+/ftn+pbZgwQKWLl3K7NmzKVGiBAsXLuSvf/0rXbt2BSAhIYFjx46xfPlydu3axVNPPUXHjh1p0EA3ExeRgq9koVCaVIhgdcwmvtv7E+2qNlevVg4F+PozucNIlh9cTYvK+Xepk7dzl3UEvdrJkycB57V+md555x2ioqKIioqiQYMGfPPNN67nJk6c6HquZcuWzJs3j/fffz/L8Vfr0qULpUuXJjQ0lBo1atC5c2dKly5NmTJlqF69OrGxsZw6dYqVK1cyfPhwAgMDKV++PM8++yxz5swB4Pvvv6d///6EhIQQFhZGv379cDiuX92nffv2fPLJJ4SGhnLixAn8/f1JTk7m/Pnzrn369euHn58f9evXp2rVqhw+fDhXPkcREXfQ2WgHwNELx9l6YrfFaQqWUoVL8Ei9LgT7F7Y6itdwmx7B/ODna+fD19q53dBwiRIlADh16hRlyzrXTBoyZAhDhgwBoFevXlmKrqFDh/Lkk0/mOEdISIjre7vdTpEi/1vO0WazkZGRwfHjx3E4HNx///2u5zIyMlzHxsfHZyk0y5Url+1rpaamMnbsWNauXUvZsmWpXbu261yZQkNDXd/7+vpmW1CKiBRUNUpUoWaJqlxKvYyvXf0t4t68qhAEZzFYtqR7/aVRsWJFatSowVdffcVLL7103fP5USiVLl0aX19fVq9ejZ+fc8mDCxcukJiY6Hr+2LFj1KlTB4C4uLhszzN58mQAVq5cib+/P7GxscybNy/P84uIuJMhzftTLLAIdpsKQXFv+gl1E+PGjWPmzJl88MEHnD59GoCjR48yfvx49u7dm6UXLS+UKVOGyMhIJk6cSHJyMufOneOll15iypQpAHTr1o3p06dz6tQpTp06xYwZM7I9T2JiIv7+/vj4+HD27FkmTJgAQFpaWp7mFxFxJ8WDiqkIlAJBP6Vuon79+nz99dccPXqUnj17EhERweOPP87p06f58ssvue+++/I8w+TJkzl9+jRt27blgQceoEyZMowaNQqAgQMHEhkZSefOnXnooYdo3jzrBdCZ3w8ePJgjR44QFRVFjx49CA8Pp3Llyhw4cCDLfiIiIgDrj25h18m9ukzIIjZP+OA3bdrkqFu3rltMf5e7k5SUxM6dO1F7ega1p2dRe3oWd2jP1PRUBn07krOXz/P4Pd3oUaeDJTk8QWZ7RkZG3laPi3oERURE8lhSWjKnL521OobbWXl4A2cvn8dms9G0YkOr43glFYIiIiJ56JdD6xi06K/8c+PnVkdxKxmODBbu+RGA6AoRlClS2uJE3kmFoIiISB7ysdu5kJzAb8d3cOCM1k3NtCl2u+u+wt1q/cHiNN5LhaCIiEgealohkvJFygDw9c7vLE7jPn7c/wsA9UobVAutbHEa76VCUEREJA/Z7XZ61ukIwMbYbRw8G2NxIvfwSrN+PN3gIR6q28nqKF5NhaCIiEgea16pEWWvXAOnXkGnIL9AHjTaUad0TaujeDUVgiIiInnMbrfTs3ZHapeqQYcarayOI+LidbeYExERscJ94dG0qtLE6hgiWahHULzasWPHrI4gIl5Cd1YSd6RC0M0sWLCAiIgIIiIiqF+/PrVq1XI9btjQexbbTExM5IknniAiIoJx48blyWtMmDCB2bNnAxAbG0tERARJSUm5/joff/wxn39+d+uHTZ06lcGDB+dSotyRlpZG7969OXPmjNVRRKSAWLxvBauPbCIjI8PqKHKFhobdTNeuXenatSsAK1as4I033uCnn36yOFX+M02TXbt2sWbNGoKCgvLkNc6ePUvx4sUBKFeuHL/99luuv0ZMTAwLFy5k/vz5d3Ued+xJ8PX1pU+fPowfP56JEydaHUdE3Nz5pAt8vm0+SWnJ9K7fiy612lsdSfDSHsETCaey/crt/e9WdveBnjt3Lk888QSPPPIITZs25ciRI9SqVYv9+/e79hk8eDDTpk0DnPceHDduHPfddx8tW7ZkwoQJpKamZvt6Cxcu5IEHHqBx48Y89NBDrFq1yvXc559/Tvv27YmMjKRPnz7ExDiXPzh8+DAvvPACjRs3pn379nz88ceuY3r37s3w4cNp0aIFAwYMAGDJkiU8+OCDREVF0adPHw4dOnRdjl27dvHiiy+SlJRE8+bN2bJlC23btmXFihWufSZMmMCIESMAGD58OOPGjePJJ58kIiKCXr16sWvXrptm/89//sOiRYuYNWsWf/rTnzh69Ci1atXi8uXLACxatIhOnTrRqFEjHnvsMbZt2wbA0aNHadSoETNmzKBFixY0a9aM8ePH37ANZ8yYQdeuXV2F3M3aqnfv3rz77rt0796dhg0b0rt3b9fQ9dU/C3v37qVZs2Z88803rnPOmjWLtm3bEh0dzdChQ11tHB8fz5AhQ2jSpAmtW7dm4sSJpKSksGzZMh544AHXOd99911atGjhevzRRx8xfPhw1q9fT5cuXXjrrbeIjo6mVatWWdq4TZs2bNiwgcOHtUiuyO26kHSRT377PxKSE62Oki/+b8e3JKUlE+QXqGsl3YhXFoKDvx2V7Vdu759XfvvtN/785z/z448/UqlSpZvuO2HCBA4ePMjChQv55ptv2LFjBx9++OF1+12+fJkRI0bw7rvvsn79ep544glGjhwJwC+//MJ7773Hu+++y4YNG6hXr56r2Ojbty81atRg1apV/POf/+TLL7/kiy++cJ139+7dLF68mEmTJrFt2zZef/11xo0bx9q1a2nTpg0vvPACaWlpWbLUqVOHDz74gJCQEDZv3kyDBg2Am/eKLViwgFGjRrF27VoqV67MO++8c9Psffv2pUuXLjz99NNMmTIly7lWrlzJ6NGjeeONN1i/fj0PP/wwzz33HPHx8QAkJCRw7Ngxli9fzvTp0/n888/ZsmXLdZlSUlJcxXVOff/993zwwQf88ssvOBwOPvrooyzPHzp0iOeff55hw4bRrVs31/a1a9eyaNEivvzyS3799Vd+/NF526ZBgwZht9v56aef+PLLL1m/fj1Tp06lWbNmHD9+nBMnnKv6r1mzhsTERA4ePOj63Nq2bYvD4WDfvn2EhISwZs0aRo4cyeTJk4mLiwOcMyHbtWvH3Llzc/weRQTS0tMYuuRNvtv7E1/t/NbqOHnu6IXjLP39VwB61O5A0YBgixNJJq8sBAu6UqVK0aRJE4KDb/4PyeFwMG/ePF599VWKFStGaGgoL730EnPmzMl2/8DAQL744gt+++03unXr5hqS/vbbb+nRowf33HMPdrudgQMHMnLkSDZu3EhCQgJ//vOf8fPzo2rVqjz//PPMmzfPdc42bdoQHBxMcHAwX331Fd27d6dBgwb4+PjwzDPPkJaWxrp167LNfjvatWuHYRgEBATQsWNHVw/VjbLf6HUcDgcLFiygR48eNGrUCLvdTq9evahWrRpLly517devXz/8/PyoX78+VatWzbZHbOfOnQQEBFChQoUcv4+uXbtSvnx5goODad++fZbznjx5kmeffZaHH36Y7t27ZznumWeeoVChQoSHhxMREcGhQ4c4cuQIW7Zs4fXXX6dQoUKEhYXx8ssvM2/ePIKCgmjcuDGrVq0iISGB2NhY2rZty7p167hw4QK7du1y9RD6+PjQr18/7HY77du3p1ChQq4eYYB69eqxfv36HL9HEQFfH1/ur3YfAD/s/5nYCycsTpS3Zm+dR4Yjg5KFQulUs63VceQqXnmN4Pud33Cr/W9XyZIlc7Tf2bNnSUpKonfv3q7eNIfDQVpaGikpKfj7+7v2DQoK4tNPP2X69On069cPX19fnn32Wfr378/p06epXbt2ln3r1q3LokWLCAsLw27/398TZcuWdfUygbNozXT8+HHWr1+f5Xq5tLQ0jh8/fvsfwjVCQkJc3/v6+rouRL5R9ps5c+YMderUybKtXLlyxMXFuT7H0NDQLK+XXeF64sSJLO8/JzKvWbz2fQBs3bqVZs2asXjxYgYMGICfn5/ruWvzZGRkcObMGYKCgrJ8NmXLliU+Pp60tDTatGnD6tWrCQ0NpWHDhjRu3Jh169YREhJCw4YNKVSoEABFihTBx8fnhu+3ZMmSrh5CEcm5LkZ7lh34ldOXz/Lp1rkMb/lHqyPlicSUS8RduVzqiXu74e/jd4sjJD95ZSFYJvj2fjnn9f6369ohUrvdnuW6v7NnzwLO4sjPz4/58+e7eqUuX75MfHx8liIQnMOdCQkJTJ06lYyMDFatWsXAgQOJjo4mLCwsS3GXkJDAtGnTaNeuHSdPniQ9Pd1VKBw9evSGhWrp0qV57rnnssx+PXz4MGFhYbd8zz4+PqSkpLgenzt37oafx9Wyy/7BBx/w5z//GYfDke2x5cqVu6TRJ3kAACAASURBVG5ZmZiYGCIjI2+rp9Jut183M+5GbZUTbdq04f3336dHjx5Mnz79lrOIy5Yty+XLlzl37pyrGDx69CjFihXD19eX++67j+nTp1OqVCmio6Np0qQJU6dOJTAwkNatW+c4V0ZGhltOZhFxdwG+/jxZvzvvr/0Pm2O3s+3Ebu4tU/vWBxYwhf0LMemBv7L26GaaVoy0Oo5cQ0PDHiA8PJylS5ficDhYtWoVW7duBZxFR5cuXZg0aRIXL17k0qVLjBw5kuHDh193jkuXLtGvXz9+/fVX7HY7pUqVwmazERISQpcuXZg/fz67d+8mLS2NDz/8kO3btxMREUGJEiWYMmUKKSkpHDhwgH//+9906dIl25zdu3dnzpw57Nq1C4fD4Zo4cnWhdrP3uHz5cjIyMti1axfLly93PXez4iy77Nu2bcPPzw9/f38SEhKy7G+z2ejWrRvz589n06ZNpKWl8dVXX3HgwAHat7+9GW6ZvW/Xvo/s2ionfH198fX1ZcyYMcyYMYO9e/fedP+wsDCaNm3K3//+dy5dukRcXBzvv/++a1Z6xYoVKVasGPPnzyc6OprKlSvj6+vL999/T5s2bXKc6+TJk5QtWzbH+4vI/zSvFEWN0HBs2Nh/5pDVcfKMj92H5pWisNtUdrgbtYibu7anxWazXbdt5MiRLFmyhEaNGvHZZ59lKcRef/11ihcvTufOnWndujWXLl26bnIEOHvr3n77bf7+978TERHBwIEDGT16NJUrV6ZJkyYMHTqUP/3pTzRp0oR9+/YxefJkfH19+fDDDzFNkxYtWtC3b18efvhh+vTpk+17iYqKYsSIEQwbNozIyEimTp3KlClTCA8Pv+V7HzJkCPv37ycqKorx48fTs2fPm34mmY9vlB2gY8eO/PDDDzz//PNZztGoUSPGjBnDqFGjiIqKYs6cOcyYMcPVc5nT3q/M4eXMCRhw87bK7v1nvtbV30dGRtK9e3dGjhx5y7W4Jk2aRFpaGu3ataN79+5ERUUxdOhQ1/OtW7fGx8eH6tWruz6v8uXLZ7mu8VbvN3PIWkRun81mo1+jJ5nwhxH0rNPR6jjihWy3e1G+O9q0aZOjbt26BAYGWh1F7lJSUhI7d+7EU9pzzJgxlCtXjv79+1sdJU9kFpmzZs3Kdga7p7Wnt1N7eha1p2fJbM/IyMjbulZHPYIieah///588803pKenWx0lTyxZsoQmTZrcchkjEfEuCcmJXE7N/Ts1Se5TISiSh8qVK0f37t2zrK3oKdLS0pg9ezavvfaa1VFExM3M3jqXwd+N5pdD1y8PJu7FK2cNi+Snfv36WR0hT/j6+t71PZRFJHvb4/ZQ2C+IqqGVrY5y2zbH7uCng6sBOJ900eI0civqERQREXEj83f/wNgV7zF13SekpKXc+gA3cj7pAtM3zAKgRmg4HWvmfAUCsYYKQRERETdSt3RNbDYbxy6c4IsdC62Ok2MOh4OPNnzG+aQLBPgG8FKTvvjafW59oFhKhaCIiIgbqVGiCt1q/QGAb81l7D61z+JEOXPw7BE2Hd8OQN+IhylTpLTFiSQnVAiKiIi4mYfrdqZSsfI4cDBt7SecT7pgdaRbqhpamTfaDqFjjTa0qaK1RQsKFYIiIiJuxs/Hj0HRz+Bn98UBJKRcsjpSjhglq9G34SO67WQBolnDcp0TJ05QqlQp1/2DJX8cPXo0yx09RMS7hRevyNAWA6gcUoHiQcWsjiMeSj2CkkV8fDwdO3YkJeX2Z6olJiZSq1YtYmNjr3tuwYIFPPXUU7kR0SPNnj2biRMnWh1DRNxMg7J1VQRKnlIhKFkkJSVx+fJlcvvWg127dmX27Nm5ek5Pcvbs2Vz/zEVE8tKhszH89Ptqq2PIXfK6QjAjNZXLx0/ky1dGamqOc5mmSe/evYmKiqJLly78/PPPABw4cID69euzatUqADZs2EBERAQHDhxg7ty59OnTh8GDBxMREcGDDz7ImjVrbnlOgOPHjzNgwAAiIyO57777+OSTTwDo1asXAC1atGDPnj1kZGQwbdo02rZtS7NmzfjLX/5CQkKC6zyffPIJLVu2JDo62nWO7MydO9d17qlTp/KXv/yFAQMGEBERQY8ePdi6dSvPP/88TZs2ZdSoUcTFxQEwfPhwRo8eTc+ePYmIiKBPnz6uHse5c+fyxBNP8Mgjj9CkSRNiYmLYsWMHTz31FI0aNaJjx47MmzcPgDlz5vDQQw9lyfTUU0+57vixZMkSHnzwQaKioujTpw+HDh0CnMO1me+tWbNmNGnShK+++oqPPvqIpk2b0qJFCxYtWuQ654YNG+jVqxdRUVE88sgjbNu2zfVcrVq1mDVrFm3btiU6OpqhQ4eSmprKDz/8wEcffcSyZct45JFHbvZjIiICQHziGUtfP+Z8LGNXvMeHG2bx4/6VlmaRu+NV1whmpKay+Y+DST55Ml9eL6B0aRr+433sfn433S8hIYHnnnuOgQMHMnPmTDZu3MhLL73El19+SbVq1Xj55ZcZNWoUc+bMYfjw4bz66qtUq1aNrVu3snbtWl577TXeffddFixYwKBBg1i6dCl+fn7ZnnPOnDlUrlyZl19+mVq1arF69Wri4uJ44oknqFmzJnPnzqVdu3asWrWKoKAgPv74Y5YtW8Z///tfgoODGTlyJOPGjeOtt95ixYoVfPTRR8ycOZNKlSoxcuTIHH82CxcuZObMmUybNo1nn32WPn368J///IcqVarQp08fPv/8c0aMGAHAN998w4wZM6hfvz7jxo3jlVde4csvvwTgt99+4z//+Q/16tUjJSWFHj168MorrzBz5kx27txJv379KFmyJB07duTNN98kJiaGihUrcvz4cbZv384//vEPtm3bxuuvv86MGTO45557mD17Ni+88ALfffcdAOfPnyc2NpaVK1cyd+5cRo8ezdNPP82vv/7KnDlzePPNN3nwwQeJjY1lwIABvP3227Rp04YlS5bQv39/lixZQtGiRQFYu3YtixYt4uTJkzz++OMsWbKEzp07s2/fPvbt28d77713Jz9qIuIlMjIymLV1Lst+/5U32g4hvHjFfM8QezGON1a8x8WURAr7BVGjRHi+Z5Dc43U9gu7o559/pkSJEjz++OPY7XYaN25M27ZtXb1Zffv2pUyZMvTs2ZPq1avz5JNPuo4NDw+nb9+++Pj40KNHDypWrMjy5ctveM65c+cSExPDtm3bGDZsGAEBAVSqVImZM2dSq1at64Ynv/76awYOHEhYWBiFCxdmyJAhLFiwgJSUFL777ju6d+9OzZo1CQwM5NVXX83xe27YsCENGzbE19eXyMhIIiIiaNCgAQEBAdddZ9i1a1eioqLw9/fn1VdfZevWrRw9ehSAUqVK0aRJE4KDg1m2bBlly5blySefxMfHh3vvvZdHH32UefPmUaRIEdq0acO3334LwKJFi2jVqhVFixblq6++onv37jRo0AAfHx+eeeYZ0tLSWLt2rStD5mccHR1Neno6ffr0wcfHhxYtWnD27FmSkpJYtGgR0dHRtGvXDrvdTocOHahZsyaLFy92neeZZ56hUKFChIeHExERweHDhwHnQqwaGhaRW7mQfJHVRzaSlJbMmOXvsuX4rnx9/ZMJ8Yxd/h7nky4Q5BvI660GW1KMSu7xqh5Bu58fDf/xPsnxp/Pl9QJKlrhlbyBAbGwsBw4cICoqyrUtPT2dP/zBuaCozWbjoYceYsSIEQwbNizLsRUrZv0HWKZMGeLj47Hb7Tc855kzZyhUqBDBwcGu56pVqwbApUtZlyiIjY1l2LBhWWYQ+/n5ERsby+nTp6lTp45re1hYGL6+OfuRKlbsfxc/2+32LFmuZrPZqFSpkutx0aJFCQoK4vRpZxuWLFnS9dyZM2coX758luPLli3Lxo0bAejevTvvvPMOAwYMYNGiRbz00kuAc5h8/fr1zJ8/33VcWloax48fp3Llylny2u12V47MfOD8Kz2z1/DqzzwtLY1GjRq5HoeGhrq+9/X1JSMj4yafkohIViFBxXit5R9585epXExOYPzKaTxdvxedarbN8yVbHA4H7675mNOXzxLgG8CI+wZRXb2BBZ5XFYLgLAaDypaxOkYWpUuXpkGDBlkmU8TFxREQEADAhQsXmDx5Mj169GDChAm0bNnSVYicvGaY+9ixY3Tu3JmMjIwbnvPy5ctcunSJhIQEVwG2aNEiihUrRpUqVa7LNm7cOKKjowFnYRMTE0OlSpUoXbq0q2cO4PTp06SlpeXiJ+P8H0/m9YLgnFRx+fJlypQpw4EDB7L8j69cuXJZrtcD5zV+mcViixYt+Mtf/sLSpUs5ceIErVu3dr3H5557jsGDB7uOO3z4MGFhYcTHxwPk6H+wpUuXplOnTkyYMCHL64eEhNz+GxcRuYGqoZUYf/9w3l45nSPnjzFzy1fYbDY61Wybp69rs9n4Y+OnmbDyHwyI6k2tUtXy9PUkf2ho2A20bt2a33//nW+//Zb09HT279/PQw89xLJlywB44403qF+/PuPHj6dOnTqMHTvWdaxpmsyfP5+0tDT+7//+j1OnTtG6dWtatWp1w3OWLVuWRo0a8c4775CSksKhQ4eYMGECvr6++Pv7A3Dx4kXA2Ys2bdo0Tp06RWpqKu+++y79+vUDnEO233zzDdu2bSM5OZlJkybl2mdy9TDpggUL2L17N8nJybz99ts0adKEsLCw645p1aoV8fHxfPbZZ6SlpbF161a++uorunbtCjh74Dp37sy4cePo1KmTq/eye/fuzJkzh127duFwOFwTR06cOJHjvDabjU6dOrF8+XLWrFmDw+Fg48aNdO3alR07dtzy+ICAABITE3P8eiLi3UoXLsG4dq8SVb4+ZYNLc194dL68bsVi5ZjScQz1wox8eT3Je17XI+iOihUrxscff8zf//53xowZQ6FChXjyySfp1asXP/74Iz///LPr2rbRo0fTuXNnli5dis1mo2rVqqxYsYI333yT8PBwZsyYQZEiRQBueE6AyZMn88Ybb9CyZUsKFSrEoEGDaNq0KeAsqB544AE++ugjXnjhBVJTU3n00Ue5cOECdevW5aOPPsJut9O0aVOGDRvG4MGDSUxM5Mknn3T1Yl7LZrO5etWu/v5Wj202Gw0bNmT06NEcOHCApk2bMnny5GyPK1q0qOs9T548mdDQUF599VXat2/v2qd79+7Mnj2bbt26ubZFRUW5ht1jY2MpX748U6ZMITw8nKNHj17XG3ijx+Hh4UyZMoVJkyZx6NAhQkNDGTFiBE2aNMn2uKu1bt2aWbNm0bFjR77//vsb7icikinQL5AhzftzIekiwf6Fc/38Docj2/9v+fqodPAkNk+4QH3Tpk2OunXrEhgYaHWUfDV37lw+++wzvv76a6uj5JqkpCR27txJZnuOGDGC4sWLX3dtpBQM17anFGxqz4Ll6IXjlA0ujY89+7tE3ag909LTmLd7MQfPxjC0xQDdLq6AyGzPyMjI22owtynrDcP4KzAAKAysA140TfOgtanEappNKyJy+5LTUhjz02SCfAPpWusPtKrSBH+fG09eTElLYU/8AbbF7WbD0a0cT3Bef77qyEZaVI664XFS8LlFIWgYRhfgaSASiAfeAz4G2lmZy91dOzTqibzhPYqI5Lbtcbu5kJzAheQEZmz6nM+3zSMsuBSNyt/LQ3U7X7f/tPUzWRuz2fXYho0HarSiUbl78jO2WMAtCkGgJs6JK76AD5ABXLrpEUKPHj3o0aOH1THy1Pjx462OICJS4DQqX5+JD7zON7uXsCpmI4mpl/n97BHCQypku3+90jVZG7OZisXKcW9YbZpXaqSlYbxEvhWChmH4AEWyeSoD+C/QH4gB0oFYoHl+ZRMREfE0lUMqMLjpszx2T1d2nDQ5feksVW6w+HPzSlFElW9A8aBi2T4vnis/ewTbAEuy2X4I5xDwr0An4ATwLvAlt1EMJicn331CsVxmO6o9PYPa07OoPQumor7BNCsX6XqclJQEZG3PgIAAgmwBruek4LnTf5duMWvYMIxFwFemaX5y5XEgcBFoYJrmzlsdv2nTpjx5Ezf6bHTNmoiIiLijgjpruCJw9VoEGVe+cnybiurVq99wDbs75XA4+P3336lXrx4AO3bsoGrVqioE81BycjL79+/Pk/aU/Kf29CxqT8+i9vQsme15u9ylEPwWGGoYxmLgODAe2G6appnTEwQEBOTJulYrVqzI8n3dunVz/TXkennVnmINtadnUXt6FrWnd3OXW8yNAb7GeZ3gMaAK0N3KQA6Hg9GjRzNo0CDXtkGDBjF69GiPWtdu3bp1rjtfiIiIiHdxix5B0zRTgGFXvtzCmDFjeOONN67bnrntb3/7W35HEhEREclV7tIj6Fa+/vrrbIvATG+88Uau39Zt4sSJtGjRgmbNmvH8888TExPD2bNnGTJkCG3btqVBgwZ07dqVzZudC37OnTuXAQMGMGLECBo2bMgDDzzAxo0bGTJkCA0bNuTBBx9kz549AEydOpVXXnmFZ555hoiICB555BHXc9fasGEDvXr1IioqikceeYRt27a5nvvkk09o06YN0dHRPPXUU+zcect5PCIiIuLGVAhew+FwZBkOvpFBgwbl2hDxmjVr+P777/n2229ZuXIlZcqUYdq0aUyaNAm73c7ixYvZsGEDkZGRvPPOO67jVqxYQatWrdi0aRP169enT58+dOjQgXXr1lG7dm2mT5/u2nfx4sU89thjbNy4kVatWvHHP/6R1NTULDliY2MZMGAAf/zjH1m3bh3PPvss/fv35/z58xw+fJj33nuPzz//3DWc/NZbb+XK+xcRERFrqBB0A/7+/pw5c4Y5c+Zw+PBhxo4dy4QJE3jllVcYPXo0NpuNY8eOUaRIEeLi4lzHlS9fng4dOmCz2YiKiqJ8+fLcf//9+Pn5ER0dTWxsrGvfZs2a0bFjR3x8fHjxxRdJTEx09S5mWrRoEdHR0bRr1w673U6HDh2oWbMmP/zwA35+fqSmpvLFF1+we/duBg4cyKxZs/LtMxIREZHcp0LwGjabjWnTpt1yv2nTpuXaMjKRkZGMHz+eX375ha5du9KhQwd+/vln4uLi6N+/Py1atGDEiBHs3bs3Sy9ksWL/WwHex8eH4OBg12O73U5GRobrccWKFbM8V7p0aU6fPp0lR2xsLCtXriQqKsr1tX37dk6cOEG5cuWYMWMGO3fu5PHHH6d169bMnTs3V96/iIiIWMMtJou4m169ejFq1KgbXic4atQoevXqlWuvd+LECapUqcKsWbO4fPkys2fP5uWXXyYsLIzHH3+cPn36ADB//nz27t3rOu52CtGTJ0+6vk9LS+PkyZOUKVMmy/Bw6dKl6dSpExMmTHBtO3r0KCEhIZw5c4ZChQrx8ccfk5KSwuLFi3nttddo2bIlpUqVuot3LyIiIlZRj+ANjBkzhlGjRl23ffTo0YwZMyZXX2vLli0MGDCAmJgYgoKCKFKkCMWKFSMxMdG1ttOBAwf4+OOPSUvL8RrbWfzyyy+sWbOG1NRUPvjgA4oXL05ERESWfTp16sTy5ctZs2YNDoeDjRs30rVrV3bs2MGxY8d49tln2bVrF/7+/oSEhBAYGEhQUNBdv38RERGxhnoEb8Bms/G3v/2NsLAwBg4cCDiHgzO/z00dOnRg7969PPHEEyQkJFCtWjWmTp1KfHw848ePZ+LEiZQpU4aePXsyZcoUzp8/j81my9IjeKvH9evXZ8aMGQwaNIh69erxz3/+0/V85n/Dw8OZMmUKkyZN4tChQ4SGhjJixAjXOoNDhgzhpZde4syZM5QvX54pU6ZkGY4WERGRgsUt7jV8tzZt2uSoW7dunqyMfuDAAapXrw7A/v37qVatWq6/Rl6bOnUq+/bt4/3337c6yi0lJSWxc+dO8qo9JX+pPT2L2tOzqD09S2Z73u69hjU0fBMOhyPL5IxrH4uIiIgUZBoavoVq1aplmX1bEF07TCwiIiICKgRvylOKp5wskC0iIiLeR0PDIiIiIl5KhaCIiIiIl1IhKCIiIuKlVAiKiIiIeCkVgiIiIiJeSoWgiIiIiJdSISgiIiLipVQIioiIiHgpFYIiIiIiXkqFoIiIiIiXUiEoIiIi4qVsDofD6gx3bdOmTQX/TYiIiIjcpcjISNvt7O8RhaCIiIiI3D4NDYuIiIh4KRWCIiIiIl5KhaCIiIiIl1IhKCIiIuKlVAiKiIiIeCkVgiIiIiJeSoWgiIiIiJfytTrA3TAMIwL4CKgD7AMGmKa5ztpUcqcMw2gBvAMYQDzwtmma/7Q2ldwtwzDCgO1AX9M0v7U6j9wZwzAqAB8CLYELOP99TrU2ldwpwzCaAe8DNYDjwN9M0/yvtankdhmG0RiYZ5pm+SuPiwP/BtoA53G2679vdo4C2yNoGEYgsBD4F1AM5w/0AsMwClsaTO7IlR/eBcC7pmmGAA8D4w3DaGdtMskF/wJCAa1eX0AZhmED5gM7cbblA8AYwzCaWBpM7ohhGD442/PvpmkWA54HZhqGUcnaZJJThmHYDMN4FlgC+F311Aycf6iVBh4C3jYMI/pm5yqwhSDOajfdNM2PTNNMN03zP0Ac0MniXHJnKgELTdP8AsA0zd+A5UAzS1PJXTEMYwCQAMRYnUXuSjRQFhh+5f+3u4CmwF5rY8kdCgFKAn5XinwHkAykW5pKbsdfgMHAOMAGYBhGMNANGG2aZoppmhuAz4Gnb3aiglwI1gJ2XbPNvLJdChjTNLeapvlM5uMrPYQtgS3WpZK7YRhGTeDPwItWZ5G71hBnb+BEwzCOG4ZhAk1M0zxjcS65A6Zpngb+AfwXSAF+AQaZpnnM0mByO/5lmmYDYONV22oAqaZpHrpq215uURcV5EKwMHDpmm2XgEIWZJFcZBhGMZzD/htN01xodR65fYZh+AKf4vzlctbqPHLXQnGOwpwCKgJ9gKlXruuVAsYwDDvO35cPAUFAF+A9wzDutTSY5Jhpmiey2VwYuHzNtlvWRQW5EEzE+QN8tULARQuySC4xDKMKsBrnZJGeFseROzcS2GKa5pKrttmsCiN3LRk4Y5rmBNM000zTXAN8jXMYSgqenkC0aZpzr7Tnd8AibjGEKG7vEhB4zbZCOC/PuaGCXAjuxjm79GoG1w8XSwFhGEZDYC3wvWma3U3TTLY6k9yxR4DHDMM4axjGWZzXgH5hGMYwi3PJndkD+F7pScpUoFed8HKVgIBrtqUDqRZkkdyzD/A3DKPiVdsMnJd13FBB/of8ExBgGMYgnEvI9MY5S+YHS1PJHbmyxMhiYKJpmhOtziN3xzTN2lc/NgzjIDDwSs+DFDw/4uxtGG0Yxhs4J490B9pbmkru1BLg74Zh9AFmAvfhbM82VoaSu2Oa5kXDML7BueJGP6Ae8DjQ8WbHFdgeQdM0U3C+uceB08BAoKtpmteOj0vB8BzOWWyjDMO4eNXXWKuDiXg70zSTgNZAY+AkMBt4yTTN9VbmkjtjmuYOnNcHvgycA6YCT5umudnSYHKnrl6aqx/O5WSOAl8Br16ZPXxDNodDS3uJiIiIeKMC2yMoIiIiIndHhaCIiIiIl1IhKCIiIuKlVAiKiIiIeCkVgiIiIiJeSoWgiIiIiJdSISgiIiLipVQIikieMgwjwzCMP1idw5MZhlHfMIz7cvF8swzDOGYYRrFrtjcyDCPFMIyb3qlARAoOFYIiIgXffKBWLp5vMM7fD+9mbjAMozDwGfAv0zS/z8XXEhELqRAUEfEMttw6kWmaZ4EXgT5X9ea+e+U1/pxbryMi1tMt5kQkTxmGkQGMAboBdYBdwHOmaW4xDOMfQC3TNNtetf8goJ9pmvUNwzgETAGevHLsRuBF0zR3Xdm3KM4CpQeQBvwI/Mk0zVOGYYQDvwMjcRYvy0zTfCSbfH2AQcA3V/ZLBqaZpjnuqn2GAv2BSsAFnPfwfMk0zTTDMD7B+Ud1baAK0AU4dCVXe6AIcBD4q2maX1053yFgHNAXiAC2A08AL13Zdh4Yaprmlzl4nyuAzGHhT0zTfNYwjFrA+0BzIA7nvYHfuJK3D857s+/Heb/2MaZpTrmu4Zyv+znQFOc9ab8GWpimuS67fUWkYFKPoIjkhxeAEUB9nIXUx1e2zwbuMwyjzFX7Pn5le6axwIf/3969hVhVxXEc/3pLhYKMLEVjgi4/1CzSMLCbFCn4FpUGSpoJmRATlJK9JOEt68HSysypxMaCHiolUx8qSsywJMGUf+mEpiKJUFp5Gc0e1jq6PcyZGSUdnfP7wDBnn7X2/q+1H4Y//7XXHmAwKalZJalbblsM9AHuzT+XAivKYg8HhpASwkpuyuffBUwGpuSEFEljgedIydP1pErZOODhwvljgFdIid8PwFJSAng3MAD4GnhbUtfCObOAmcBtQA9gA3A0H38GLJLUqRXzfID0D+anArX53qwGNpHu94Q81pmF2IOBvfn3R83cl6eA7qTEd46TQLP2p3NbD8DMqsLsiFgDIGkeqboE8C2wk5SozJdUA9wOjM7tJ4D3I6IunzsR2A2MlLQJeBDoFRH7cvsYYL+kocCefI15EbG9hfF1BMZGxG5gs6RbSMnrAlKSNa40fuA3SbWkCmXJ5lL1Lo/jE2B5ROzMx3OBiUBfYHueV31ErMztHwOPRsTUfPxajt9XUufm5hkR6yQdBw5ExEFJE4CDETElD2dbHu+nkqYVxvxiXgKuKCL2S/qOVOX8poV7aGYXISeCZnY+FBOxP4GOkrpERGNefhwNzM+/10bErkL/kwlIRByQFKQk7AjpmbUGScVYnQBxKhFsKDVI+hy4s9C3lMztyElgyffA8znmV3m37AzShoyBpMpgMTFq4HQLgVGS7gBuBAYVxlayrfD5ECkhLh4DdM3nNzfPdWWx+6ep6mDhuw7AJUBNPj7QuEN2/AAAAsdJREFUUhJIusgo0vLxWmChpIER8XdL55nZxcOJoJmdD8eb+K60uaEemCapDykRfKus37Gy4075u87AYdLyZ/l19wFX5ONDhbbHgW6F41Ky2FSM4wCSHiNVBheTlmNfAN4s63+49EFSR2ANcDXwAWmZdi+wvuycxrLjf2laS/Nsqv9a0lzL+5cS7EO0QFJv0jxfBt4AfgLmkpbIzayd8DOCZtamImIr8CMwifQ8Xfkza6VqGpIuB24gPf+2lZTUdY+IhohoAP4gbS65pkKsPaW++aeUoF6br10yJMeAtIFkVkTURsQSIEgVwUq7dG8FhgHDI2JGRCwHrsxtZ7OztzXzLO7620K6R7sK/WuA2ZzZ3/w60jL89FwtfRaYJGnYWczBzC5QTgTN7EJQDzwDrC5bsuwATJb0kKT+wLvADmBNRPwMLAeWShoqaQCwjLR795czjN8VqJPUT9Jo0i7iV3PbLuA+JTeTNrL04vTKYtFeUjXxEUk1kkaSKmqlOGckIoKW5/kX0E9SD05ttHlPUv/8ouk6oDEijrQmpqQngfuB8RHRmMexGPgCeCe/U9DM2gEngmbWFsrfW/UhKbGqb6JfHel5vQ1AF2BEoZI3jlRNXEF6Vu4YqRJ3tEKcSn4nvcJlPfASMDUiluW22hx3I7CSVI17nVOVyhPFOLl69gTppcxbSJW46aTq2uAK8U+7RhNjb2meC0hLwXUR8Q8wglSF3ECqsK4ibVapFOskSdeRloDnRMTGsuaJQE/SPTKzdsDvETSzNidpEPAlcFWxaiXpV9KO40XnMPb4HKP3uYphZnah8mYRM2szknoC9wBPA0tau3RpZmb/Dy8Nm1lbuoy09NuBtBu3LTS7VGpm1p55adjMzMysSrkiaGZmZlalnAiamZmZVSkngmZmZmZVyomgmZmZWZVyImhmZmZWpZwImpmZmVWp/wBoBmQpHAbjawAAAABJRU5ErkJggg==" alt="" />
print "The algorithm suggests sampling at X=%.4f"%(next_sample(gp, yp))
The algorithm suggests sampling at X=1.5833

The red line shows the expected improvement. Comparing the solid blue line and shaded area with where the exepcted imrpovement is largest it makes sense that the optimisations suggest we should try X=1.58 as the next point to evaluate our scoring function at.

This concludes the toy example part. Let's get moving with something real!

Random Grid Search as Benchmark

To make this more interesting than a complete toy example, let's use a regression problem (Friedman1) and a single DecisionTreeRegressor, even though it is fairly fast to fit lots of classifiers on this dataset. Replace both by your setup for your actual problem.

To judge how much more quickly we find the best set of hyperparameters we will pit bayesian optimisation against random grid search. Random grid search is already a big improvement over an exhaustive grid search. I have taken the particular regression problem from Gilles Louppe's PhD thesis: Understanding Random Forests: From Theory to Practice.

from sklearn.grid_search import GridSearchCV
from sklearn.grid_search import RandomizedSearchCV
from sklearn.datasets import make_friedman1
from sklearn.tree import DecisionTreeRegressor from operator import itemgetter # Load the data
X, y = make_friedman1(n_samples=5000) clf = DecisionTreeRegressor() param_dist = {"min_samples_split": sp_randint(1, 101),
} # run randomized search
n_iterations = 8 random_grid = RandomizedSearchCV(clf,
param_distributions=param_dist,
n_iter=n_iterations,
scoring='mean_squared_error')
random_grid = random_grid.fit(X, y)
from scipy.stats import sem

params_ = []
scores_ = []
yerr_ = []
for g in random_grid.grid_scores_:
params_.append(g.parameters.values()[0])
scores_.append(g.mean_validation_score)
yerr_.append(sem(g.cv_validation_scores)) fig, ax = plt.subplots()
ax.errorbar(params_, scores_, yerr=yerr_, fmt='ok', label='samples')
ax.set_ylabel("score")
ax.set_xlabel('min samples leaf')
ax.legend(loc='best')
<matplotlib.legend.Legend at 0x10c22bfd0>
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAApAAAAHLCAYAAAB/FKj5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8XHWd//HXpKVJwQq6ShF0f9ILX0URAREXdRHd/TXyU9bfRryLLiKLNsDyYxfFSyaJCiJeqgQvqPvztsquhnV/q1ARFWUVkSK4gPihiYtLRS5S5CJtKGZ+f8xMTNNJMqdNZs5MXs/HI4+eOefMOZ/ph5Z3v+ec7xRKpRKSJElSvTqaXYAkSZJaiwFSkiRJmRggJUmSlIkBUpIkSZkYICVJkpSJAVKSJEmZLG52AVOllE4Azo2Ix0+zfS/go8AaygF4PXBqRPyucVVKkiQtXLkagUwprQA+DMw0OeU6YA9gVeVnT+D8+a9OkiRJkKMAmVJaBHwB+CRQmGHXDmAwIh6MiPuBzwBHNqBESZIk0cBL2JWAuKzGpvFKEHw7cANwKfCm6Y4TEcdPWXUscP1c1SlJkqSZNfIeyKOBy2qsvzWldBzwWuBZwLPrPWBK6QygB3jOnFQoSZKkWTUsQEbE5dS4ZJ5S6gI2ACdGxEMppVmPVRnNXEc5PL4oIm6Z43IlSZI0jUKpNNPzKvMvpfR8yk9SP1xZtRjYHbgPeEZEbJqyfxcwDOwLHBsRt2U537XXXtvcDyxJkpQDhx122EzPnMyo6dP4RMSVlJ+qBiCldBTwtemm8QE+BTwOeH5EPLgz53za055GV1fXzrxVObJ161Zuuukm+9km7Gd7sZ/txX62l2o/d0XTA2QNBaZM45NSegDoBm4FXg9sBX4z6XL33RGxooE1SpIkLVi5C5ARcQWw95R1k5/ezs3UQ5IkSQuRYUySJEmZGCAlSZKUiQFSkiRJmeTuHkj90XRTLBUKO/3UvSRJ0i5zBDLnRkdH6ejooKOjg9HR0WaXI0lSQ5VKpZo/ai4DZI4VCoXtRhunvpYkaSFwMCV/DJCSJCm3HEzJJwOkJEnKtfXr19dcVvMYICVJUi6VSiWKxSK9vb0T63p7eykWi211H+TVV1/Nc57znGaXkYlPYUuSpFzq7+9ncHBwh/XVdQMDA40uSRWOQEqSpNwZHh6uGR6rBgcHGR4entNznnfeeTzvec/jyCOP5MQTT+S2227j3nvv5YwzzuCFL3whz3zmMzn22GP56U9/CsDFF1/MySefzFlnncWhhx7KmjVr2LBhA2eccQaHHnooL3nJS/jFL34BwPnnn8/pp5/OG97wBg455BBe8YpXTGyb6pprrqGnp4fDDz+cV7ziFfznf/7nxLbPfe5zHH300RxxxBG87nWv46abbprT34N6GSAlSVKulEql7S5bT6e3t3fOLmVfddVVXHrppXzzm9/kyiuvZJ999mFoaIgPfvCDdHR0sH79eq655hoOO+wwPvShD02874orruCoo47i2muv5eCDD+aNb3wj3d3dXH311Tz1qU/lE5/4xMS+69ev51WvehUbNmzgqKOO4q1vfSvbtm3bro7bb7+dk08+mbe+9a1cffXVnHDCCZx00kncd999/OpXv+KjH/0oX/7ylycue7///e+fk8+flQFSkiQteEuWLGHz5s38y7/8C7/61a94z3vew7nnnsvpp59OsVikUCjw61//mmXLlnHnnXdOvG+//faju7ubQqHA4Ycfzn777cdf/uVfsttuu3HEEUdw++23T+x75JFH8uIXv5hFixbxlre8hd///vcTo5lV3/jGNzjiiCN40YteREdHB93d3RxwwAF861vfYrfddmPbtm1cdNFF3Hzzzaxdu5YvfvGLDfs9mswAKUmScqVQKDA0NDTrfkNDQ3M2pc9hhx3GOeecww9+8AOOPfZYuru7+f73v8+dd97JSSedxPOe9zzOOussbrnllu1GPffcc8+J5UWLFvGoRz1q4nVHRwfj4+MTr5/0pCdtt23vvffmnnvu2a6O22+/nSuvvJLDDz984ueGG27gjjvuYN999+XTn/40N910E69+9at5wQtewMUXXzwnnz8rH6KRJEm509PTQ19f37T3Qfb19dHT0zNn57vjjjvYf//9+eIXv8iWLVv40pe+xGmnncby5ct59atfzRvf+EYAvv71r3PLLbdMvC9LgL3rrrsmlh955BHuuusu9tlnn+0uY++9994cc8wxnHvuuRPrNm3axF577cXmzZvZfffd+cxnPsPDDz/M+vXredvb3sbzn/98Hv/4x+/Cp8/OEUhJkpRL/f399PX17bC+WCzS398/p+e6/vrrOfnkk7nttttYunQpy5YtY8899+T3v/89XV1dQPkbcT7zmc/wyCOP7NQ5fvCDH3DVVVexbds2LrjgAh7zmMdwyCGHbLfPMcccw/e+9z2uuuoqSqUSGzZs4Nhjj+XGG2/k17/+NSeccAI///nPWbJkCXvttRddXV0sXbp0lz9/Vo5A5sB0NwA7074kaSErFAoMDAywfPly1q5dC5QvW1eX51J3dze33HILr3nNa3jwwQdZuXIl559/Pr/97W8555xzOO+889hnn33467/+a9atW8d9990367fkTH198MEH8+lPf5re3l6e/vSnc+GFF05sr/765Cc/mXXr1vHBD36QW2+9lcc+9rGcddZZE/NEnnHGGZxyyils3ryZ/fbbj3Xr1m132bxRCu00EWc9rr322tLTnva0iX9N5EGpVGJ0dJTVq1cDsHHjRlauXEmhUGB0dJRVq1YBMDIywsqVK5tZaq5s3bqVm266ibz1UzvHfrYX+9lemtnPmf4f2UrOP/98Nm7cyMc+9rFmlzLRz8MOO2ynfxMdgcwBv+dTkqTprVy5cruHUdR8BkhJkpRb7TKg0m6DQwZISZKkeVbPxOitxKewc279+vU1lyVJkprFAJlTpVKJYrG43b9Yent7KRaLc/a1TZIkSTvDS9g51d/fX3Py1Oq6gYGBRpckSZIEOAKZS9/61remnXkfyiFyeHi4gRVJkiT9kQEyh+qZXb+3t9dL2ZIkqSkMkJIkScrEAJlD9YxADg0NtdV8UpIkqXUYIHNozZo1Nb88vqqvr4+enp4GViRJkvRHPoWdU9VRyKkP0xSLRYrFYhMqkiRJKnMEMqcKhQIDAwNccMEFE+uGhobo7+/30rUkSWoqA2ROTPeNM2vWrJlY7u7ubmhNkiRJtRggm8xvnJEkSa3GeyCbbLZvnDn++OMbXZIkSdKMDJBNNDw8POs3zixfvryBFUmSJM3OS9hNUiqVtrtsPZ165oSUJElqJAOkJEmSMjFANkmhUGBoaGjW/RyBlCRJeWOAbKKenp5Zv3Fm8jQ+kiRJeWCAbLL+/v6aIbJYLDr6KEmScil3ATKldEJK6e469/1CSumr813TfPIbZyRJUqvJVYBMKa0APgzMOoN2Suk44DX17NsK/MYZSZLUKnITIFNKi4AvAJ8EZhx6SyntC5wNfHa2fSVJkjS3GjaReCUgLquxaTwi7gfeDtwAXAq8aYbjFIDPAe8CngI8ds6LlSRJ0rQaOQJ5NLC5xs/1KaXDgNcCZzD7iOIpwD0R8c917CtJkqQ51rARyIi4nBqBNaXUBWwAToyIh1JK0x4jpXQgcCpw+K7UMjY2titvnxeTaxobG2Pr1q0zrtcff2/y2E9lZz/bi/1sL/azvcxFH/PwXdiHA/sD36yEx8XA7imlzcAzImLTpH1fBiwHflnZtwvoSCldHxHPrPeEIyMjc1X7nNm06Y8fc+PGjWzZsmXG9fqjPPZTO89+thf72V7sp6qaHiAj4kpgj+rrlNJRwNci4vE19j2b8sMz1X2LwNMj4rgs51y1ahWdnZ07X/Q8WLp06cTy6tWrWbFiBaVSia6uron1q1atYsWKFU7vUzE2NsbIyEgu+6ns7Gd7sZ/txX62l2o/d0XTA2QNBaZMzZNSegDojogf1tg/8zQ+nZ2d2wWzPJj8B7JaX6lU4sADD2R8fHy7fQ2Q28tjP7Xz7Gd7sZ/txX6qKncBMiKuAPaesq7W09tExEAjamoWg6IkScqj3MwDKUmSpNZggJQkSVImBkhJkiRlYoCUJElSJgbIHCiVSpRKpWlfS5Ik5UnunsJeqFauXLnDdD2SJEl5ZIDMAafrkSRJrcRL2JIkScrEAClJkqRMvIQtaadM96CXt2RIUvtzBFLSThsdHaWjo4OOjg5GR0ebXY4kqUEMkJJ2SqFQ2G60ceprSVL7MkBKkiQpEwOkJEmSMjFASpIkKRMDpCRJkjIxQEqSJCkTA6QkSZIyMUBKkiQpEwOkJEmSMjFASpIkKRMDpCRJkjIxQEqSJCkTA6QkSZIyMUBK2mnr16+vuSxJam8GSEmZlUolisUivb29E+t6e3spFouUSqUmViZJaoTFzS5AUuvp7+9ncHBwh/XVdQMDA40uSZLUQI5ASspkeHi4ZnisGhwcZHh4uIEVSZIazQApqW6lUmm7y9bT6e3t9VK2JLUxA6QkSZIyMUBKqluhUGBoaGjW/YaGhigUCg2oSJLUDAZISZn09PTQ19c37fa+vj56enoaWJEkqdF8CltSZv39/QA7PExTLBYpFotNqEiS1EiOQErKrFAoMDAwwAUXXDCxbmhoiP7+fi9dS9ICYICUtNPWrFkzsdzd3d3ESiRJjWSAlCRJUiYGSEmSJGVigJQkSVImBkhJkiRlYoCUJElSJrmbBzKldAJwbkQ8foZ9isDfAkuB7wInRMR9DSpRkiRpQcvVCGRKaQXwYaA0wz6nAC8HngXsCxSADzSkQEmSJOVnBDKltAj4AvBJ4E0z7LoW+LuIuL3yvhOBx85/hZIkSYIGBshKQFxWY9N4RNwPvB24AbiUaQJkSmkP4ABg35TSDcDjgEuA0+alaEmSJO2gkSOQRwOX1Vh/a0rpOOC1lC9LP3uGYzym8uvxwF8A24CLgI8Ab663kLGxsXp3VY5V+2g/m2fy7/3Y2Bhbt27d5WPZz/ZgP9uL/Wwvc9HHhgXIiLicGvdcppS6gA3AiRHxUEpppsNUP/H7I+LOyvvfCwyTIUCOjIzUu6tagP1snk2bNk0sb9y4kS1btuzyMe1ne7Gf7cV+qioP90AeDuwPfLMSHhcDu6eUNgPPiIiJ/0NFxN2V9V2T3r+Y8oM0dVu1ahWdnZ27XLiaa2xsjJGREfvZREuXLp1YXr16NStWrNjpY9nP9mI/24v9bC/Vfu6KpgfIiLgS2KP6OqV0FPC1Gabx+RzwrpTSjymPSL4L+Ocs5+zs7KSrq2v2HdUS7GdzlEollixZMvF6yZIldHZ2Uihk+vfcDuxne7Gf7cV+qipX0/hUFJgyjU9K6YGU0nMrL8+ifC/l1cAvgV8B/9DQCiUBsHLlSsbHxxkfH2flypXNLkeS1CBNH4GcKiKuAPaesm7ZpOVtwDsqP5KaZFdHGiVJrSuPI5CSJEnKMQOkJEmSMjFASpIkKRMDpCRJkjIxQEqSJCkTA6QkSZIyyd00PpKUJ6VSqeZ6pzGStJA5AilJsxgdHaWjo4OOjg5GR0ebXY4kNZ0BUpJmUCgUthttnPpakhYiA6QkSZIy8R5ISWoi77GU1IocgZSkJvMeS0mtxgApSU3kPZaSWpEBUpIkSZkYICVJkpSJAVKSJEmZGCAlSZKUiQFSkiRJmRggJUmSlIkBUpIkSZkYICVJkpSJAVKSJEmZGCAlSZKUiQFSkiRJmRggJUmSlIkBUpIkSZkYICVpFuvXr6+5LEkLlQFSkqZRKpUoFov09vZOrOvt7aVYLFIqlZpYmSQ11+JmFyBJedXf38/g4OAO66vrBgYGGl2SJOWCI5CSVMPw8HDN8Fg1ODjI8PBwAyuSpPwwQErSFKVSabvL1tPp7e31UrakBckAKUmSpEwMkJI0RaFQYGhoaNb9hoaGKBQKDahIkvLFAClJNfT09NDX1zft9r6+Pnp6ehpYkSTlhwFSkqbR399fM0QWi0X6+/vn7DzOMymp1RggJWkahUKBgYEBLrjggol1Q0ND9Pf3z8mla+eZlNSqnAdSkmaxZs2aieXu7u45O67zTEpqVY5ASlITOM+kpFZmgJSkBnOeSUmtzgApSZKkTHIXIFNKJ6SU7p5h+7KU0pdSSnenlO5MKV2YUupsZI2StCucZ1JSq8tVgEwprQA+DMx0zaYfWAI8EXgKcBBw5rwXJ0lzyHkmJbWy3ATIlNIi4AvAJ4GZ/sm9GlhU+SkA48BD816gJM2xRs0zKUlzrWHT+FQC4rIam8Yj4n7g7cANwKXAm2Y41DrgYuB+ygH425V1ktRSqvNMLl++nLVr1wLly9bVZUnKq0bOA3k0cFmN9bemlI4DXgs8C3j2LMdZAnwaeA/waGC4svyOegsZGxurd1flWLWP9rM95Lmfk2saGxtj69atc3r8F7zgBRPLRx999Jwfvxny3E9lZz/by1z0sWEBMiIup8Yl85RSF7ABODEiHkopTXuMlNJuwFeAQyqjlvenlN4JXESGADkyMpKxeuWZ/Wwveeznpk2bJpY3btzIli1bWur4zZTHfmrn2U9V5eGbaA4H9ge+WQmPi4HdU0qbgWdExKZJ+y4D9gS6Jq37A/BIlhOuWrWKzk4f3G51Y2NjjIyM2M82ked+Ll26dGJ59erVrFixoqWO3wx57qeys5/tpdrPXdH0ABkRVwJ7VF+nlI4CvhYRj6+x7+aU0o+BD6SUXg3sDhQpj0rWrbOzk66urtl3VEuwn+0lj/2c/D/M+ahvvo/fTO32eRY6+6mq3DyFPUmBKdP4pJQeSCk9t/LyOGAMuBW4HriO8gM4kiRJaoCmj0BOFRFXAHtPWbds0vKvKYdISZIkNUEeRyAlSZKUYwZISZIkZWKAlCRJUiYGSEmSJGVigJQkSVImBkhJmkGpVKJUKk37WpIWotxN4yNJebNy5UrGx8ebXYYk5YYBUpJmUCgUml2CJOWOl7AlSZKUiQFSkiRJmRggJUmSlIkBUpIkSZkYICVJkpSJAVKSJEmZGCAlSZKUiQFSkprIb7qR1IqcSFySmsxvupHUagyQktRErfpNN9ONkrbq55GUjZewJUk7ZXR0lI6ODjo6OhgdHW12OZIayAApScqsUChsN9o49bWk9maAlCRJUiYGSEmSJGVigJQkSVImBkhJkiRlYoCUJElSJgZISZIkZWKAlCRJUiYGSEmSJGVigJQkSVImBkhJkiRlsjjLzimlfYEEXA08OiLumJeqJEmSlFt1BciU0h7APwLHASXgAODDKaU/Af53RNw9fyVKkiQpT+q9hP0B4InAU4CHKIfItwNdwLr5KU2SlGfr16+vuSyp/dUbIP8KOD0ibqmuiIibgb8FuuejMElSPpVKJYrFIr29vRPrent7KRaLlEqlJlYmqVHqvQfy0cD9NdaPA7vNXTmSpLzr7+9ncHBwh/XVdQMDA40uSVKD1TsCeRnwzpTSROBMKT2O8qXtb89HYZKk/BkeHq4ZHqsGBwcZHh5uYEWSmqHeAHkq5Qdn7gZ2B9YD/w08FjhtfkqTJOVJqVTa7rL1dHp7e72ULbW5ei9h3xsRR6SUXggcWHnfz4FvR4R/S0iSJC0g9QbIG1NKPRHxXeC781mQJCmfCoUCQ0NDvPzlL59xv6GhIQqFQoOqktQM9V7CXjKvVUiSWkJPTw99fX3Tbu/r66Onp6eBFUlqhnpHIL8MXJZS+grwS2DL5I0RceGuFpJSuhHYn/KT3QC3RsRBNfbrBD4OvAzYBnwsIs7e1fNLkurT398PsMPDNMVikWKx2ISKJDVavQHylZQnED92mu27FCBTSkspf0Xi3hFx7yy7vw94EvBkYDnlYLsxIr66KzVIkupTKBQYGBhg+fLlrF27Fihftq4uS2p/dQXIiHjyPNdxEHBHHeER4HXAqyLiAeCBlNIQ8EbAAClJDbRmzZqJ5e5uv1NCWkjqHYEkpbQMeAPlp7AXAQH8U0TcWef7FwHLamwaBw4BtqWUfgSsAq4DTouIX0w5xmOAvSk/AV51C+A/eyVJkhqkrgCZUno65cnEHwGuqbzvJcA7Ukp/HhE/n+n9FUdXjjHVrcD7gZ8AZwJ3Ae8GLkkpHRgRWyftu0fl14cmrXuI8tyUdRsbG8uyu3Kq2kf72R7sZ+uZ3KuxsTG2bt26wzb72R7sZ3uZiz7WOwL5UeBy4E0RsQ0gpbQE+CzwYer4PuyIuJyZn/qefB/lO1NKa4GDgasnra8Gx6XAg5Xl3Sct12VkZCTL7so5+9le7Gfr2LRp08Tyxo0b2bJlyw772M/2Yj9VVW+A/DPgsGp4BIiIh1NK51AeOdwlKaWTgNGI+E7l9WLK37E9efSRiNicUroLeArlb8WB8sM3N2U536pVq+js7NzVstVkY2NjjIyM2M82YT9bz9KlSyeWV69ezYoVKyZe28/2Yj/bS7Wfu6LeAHkXsB9w85T1+7L95eSd9QTg1JRSN3APcC5wc0T8rMa+XwL6U0ovBx5H+f7Hf8hyss7OTrq6unaxZOWF/Wwv9rN1TA4S0/XNfrYX+6mqegPkF4ELU0qn8sdLyn8GrAP+aQ7qeB/waMqjmY8Cvk95nkcAUkoPAN0R8UPgXcBHgF8AJWBdRAzPQQ2SJEmqQ70B8r3APsC/Un4CG8qTeH8ceNuuFhERjwBnVH5qbV82aXkr8JbKjyRJkhqs3nkgx4A3p5T+ATiA8r2JIxExF5evJUmS1ELqncZnKXAe5dC4rrLu5ymly4AzI+LheaxRkiRJOTLTtDqTnU95HscNk9adCfwl8MG5LkqSJEn5VW+AfBnw+oj4j+qKiPgG8DfAq+ajMEmSJOVTvQGygz8+PDPZw4DP80vSAlMqlSiVStO+ltTe6g2Q/w6cn1J6SnVFSmk18DHgkvkoTJKUbytXrmR8fJzx8XFWrlzZ7HIkNVC90/icDlwM/DylVH3yenfgW8Ap81GYJCm/CoVCs0uQ1ET1TuOzOaV0HLA3cCDw1MqmDRFx9/TvlCRJUrup6xJ2SullwG2Uv3LwOspfHfhK4KuVb6eRJEnSAlHvPZDvAfoi4nLgTcBtEfE0yk9g/918FSdJkqT8qTdArga+Ull+KfBvleUbKI9KSpIkaYGoN0DeDhyaUjqU8j2Q36ysPwb45XwUJkmSpHyq9yns84CvVpavjoj/SCn1A+8Ajp+PwiRJkpRPdY1ARsQngCMoPzjzwsrqbwGHR8RF81SbJEmScqjeEUgi4jrKT2BXX181LxVJkiQp1+q9B1KSJEkCDJCSJEnKyAApSZKkTAyQkiRJysQAKUmSpEwMkJIkScrEAClJkqRMDJCSJEnKxAApSZKkTAyQkiRJysQAKUmSpEwMkJIkScrEAClJkqRMDJCSJEnKxAApSZKkTAyQkiRJysQAKUmSpEwMkJIkScrEAClJkqRMDJCSJEnKxAApSZKkTAyQkiRJysQAKUmSpEwMkJIkScrEAClJkqRMFje7gKqU0o3A/sB4ZdWtEXFQjf32Aj4KrKEcgNcDp0bE7xpVqyRJ0kKWiwCZUloKJGDviLh3lt3XAXsAqygHyC8C5wOvn9ciJUmSBOTnEvZBwB11hEco1zwYEQ9GxP3AZ4Aj57U6SZIkTWjYCGRKaRGwrMamceAQYFtK6UeURxavA06LiF9M3Tkijp+y6ljg+jkuV5IkSdNo5CXso4HLaqy/FXg/8BPgTOAu4N3AJSmlAyNi63QHTCmdAfQAz8lSyNjYWJbdlVPVPtrP9mA/24v9bC/2s73MRR8LpVJpDkqZeyml3wFrIuLqGtsWUb4Xsgf4XxFxXb3Hvfbaa/P5gSVJkhrosMMOK+zse/PyEM1JwGhEfKfyejGwG7DD6GNKqQsYBvYFjoiI27Keb9WqVXR2du5a0Wq6sbExRkZG7GebsJ/txX62F/vZXqr93BW5CJDAE4BTU0rdwD3AucDNEfGzGvt+Cngc8PyIeHBnTtbZ2UlXV9dOF6t8sZ/txX62F/vZXuynqvISIN8HPJryfZCPAr4PvKy6MaX0ANBN+X7J11MemfxNSqm6y90RsaKB9UqSJC1YuQiQEfEIcEblp9b2yU9v52XqIUmSpAXJMCZJkqRMDJCSJEnKxAApSZKkTAyQkiRJysQAKUmSpEwMkJIkScrEAClJkqRMDJCSJEnKxAApSZKkTAyQkiRJysQAKUmSpEwMkJIkScrEAClJkqRMDJCSJEnKxAApSZKkTAyQkiRJysQAKUmSpEwMkJIkScrEAClJkqRMDJCSJEnKxAApSZKkTAyQkiRJysQAKUmSpEwMkJIkScrEAClJkqRMDJCSJEnKxAApSZKkTAyQkiRJysQAKUmSpEwMkJIkScpkcbMLkCRJaqZSqVRzfaFQaHAlrcMRSEmStOCNjo7S0dFBR0cHo6OjzS4n9wyQkiRpQSsUCtuNNk59rR0ZICVJkpSJAVKSJEmZGCAlSZKUiQFSkiRJmRggJUmSlIkBUpIkSZnkZiLxlNKNwP7AeGXVrRFx0Czv+QKwNCKOm+/6JEmSVJaLAJlSWgokYO+IuLfO9xwHvAa4eD5rkyRJ0vbycgn7IOCODOFxX+Bs4LOAM31KkiQ1UMNGIFNKi4BlNTaNA4cA21JKPwJWAdcBp0XEL2ocpwB8DngX8BTgsfNVsyRJknbUyBHIo4HNNX6uB0rAT4BXAX8KbAAuSSl11TjOKcA9EfHPOPooSZLUcA0bgYyIy5k5sF44afmdKaW1wMHA1dWVKaUDgVOBw3ellrGxsV15u3Ki2kf72R7sZ3uxn+1lIfRz8mcbGxtj69atTaxmfs1FH/PyEM1JwGhEfKfyejGwGzC1ey8DlgO/TCkBdAEdKaXrI+KZ9Z5vZGRkTupWPtjP9mI/24v9bC/t3M9NmzZNLG/cuJEtW7Y0sZr8y0WABJ4AnJpS6gbuAc4Fbo6In03eKSLOpvzwDAAppSLw9KzT+KxatYrOzs5dr1pNNTY2xsjIiP1sE/azvdjP9rIQ+rl06dKJ5dWrV7NixYomVjO/qv3cFXkJkO8DHk35PshHAd+nPNoIQErpAaA7In5Y472lrCfr7Oykq6usAX8vAAAROUlEQVTW7ZVqRfazvdjP9mI/20s793NyMG7nzzlXchEgI+IR4IzKT63ttZ7eJiIG5rMuSZIk7Sgv80BKkiSpRRggJUmSlIkBUpIkSZkYICVJkpSJAVKSJC1469evr7ms2gyQkiRpwSqVShSLRXp7eyfW9fb2UiwWKZUyzxS4YORiGh9JkqRm6O/vZ3BwcIf11XUDA84YWIsjkJIkaUEaHh6uGR6rBgcHGR4ebmBFrcMAKUmSFpxSqbTdZevp9Pb2eim7BgOkJEmSMjFASpKkBadQKDA0NDTrfkNDQxQKhQZU1FoMkJIkaUHq6emhr69v2u19fX309PQ0sKLW4VPYkiRpwerv7wfY4WGaYrFIsVhsQkWtwRFISZK0YBUKBQYGBrjgggsm1g0NDdHf3++l6xkYICVJ0oK3Zs2aieXu7u4mVtIaDJCSJEnKxHsgJUmS2sh081bO5SV5RyAlSZLazOjoKB0dHXR0dDA6OjrnxzdASpIktZFCobDdaOPU13PBAClJkqRMDJCSJEnKxAApSZKkTAyQkiRJysQAKUmSpEwMkJIkScrEAClJkqRMDJCSJEnKxAApSZKkTAyQkiRJysQAKUmSpEwMkJIkScrEAClJkqRMDJCSJEnKxAApSZLUZtavX19zea4YICVJktpEqVSiWCzS29s7sa63t5disUipVJqz8xggJUnSglYqlbYLV1Nft5L+/n4GBwd3WD84OEh/f/+cnccAKUmSFryVK1cyPj7O+Pg4K1eubHY5O2V4eLhmeKwaHBxkeHh4Ts5lgJQkSQtaoVCo+dNKSqXSdpetp9Pb2zsno6sGSEmSJGVigJQkSWpxhUKBoaGhWfcbGhqak9HVxbt8hDmSUroR2B8Yr6y6NSIOmmbfIvC3wFLgu8AJEXFfQwqVJEnKoZ6eHvr6+qa9D7Kvr4+enh62bt26y+fKRYBMKS0FErB3RNw7y76nAC8HngXcC/wT8AHKgVKSJGnBqj5pPTVEFotFisXinJ0nFwESOAi4Y7bwWLEW+LuIuB0gpXQi8Nj5LE6SJKkVFAoFBgYGWL58OWvXrgXKl62ry3OlYQEypbQIWFZj0zhwCLAtpfQjYBVwHXBaRPxiyjH2AA4A9k0p3QA8DrgEOG0+a5ckSWola9asmVju7u6e8+M38iGao4HNNX6uB0rAT4BXAX8KbAAuSSl1TTnGYyq/Hg/8BfA04EnAR+a7eEmSJJU1bAQyIi5n5sB64aTld6aU1gIHA1dPWj9W+fX9EXEnQErpvcAw8OZ6axkbG5t9J+VetY/2sz3Yz/ZiP9uL/Ww9k3s1Nja23YMzc9HHXNwDmVI6CRiNiO9UXi8GdgO2e0woIu5OKW0GJo9MLgYyPY8+MjKyawUrV+xne7Gf7cV+thf72To2bdo0sbxx40a2bNkyp8fPRYAEngCcmlLqBu4BzgVujoif1dj3c8C7Uko/pjwi+S7gn7OcbNWqVXR2du5axWq6sbExRkZG7GebsJ/txX62F/vZepYuXTqxvHr1alasWDHxutrPXZGXAPk+4NGU74N8FPB94GXVjSmlB4DuiPghcBYwQPnS9qOBrwP/kOVknZ2ddHVNvb1Srcp+thf72V7sZ3uxn61jctCfj77lIkBGxCPAGZWfWtuXTVreBryj8iNJkqQG86sMJUmSlIkBUpIkSZkYICVJkpSJAVKSJEmZGCAlSZKUiQFSkiRJmRggJUmSlIkBUpIkSZkYICVJktpIqVSiVCpN+3ou5OKbaCRJkjR3Vq5cyfj4+Lwd3wApSZLURgqFwryfw0vYkiRJysQAKUmSpEwMkJIkScrEAClJkqRMDJCSJEnKxAApSZKkTAyQkiRJysQAKUmSpEwMkJIkScrEAClJkqRMDJCSJEnKxAApSZKkTAyQkiRJysQAKUmSpEwMkJIkScrEAClJkqRMDJCSJEnKxAApSZKkTAyQkiRJysQAKUmSpEwMkJIkScrEAClJkqRMDJCSJEnKxAApSZKkTAyQkiRJysQAKUmSpEwMkJIkScrEAClJkqRMDJCSJEnKZHGzC6hKKd0I7A+MV1bdGhEH1dhvGfAJYE1l338DTomIsUbVKkmStJDlIkCmlJYCCdg7Iu6dZfd+YAnwRGB34BLgTOA981mjJEmSyvJyCfsg4I46wiPAamBR5adAeRTyoXmsTZIkSZM0bAQypbQIWFZj0zhwCLAtpfQjYBVwHXBaRPyixv7rgIuB+ykH4G9X1kmSJKkBGjkCeTSwucbP9UAJ+AnwKuBPgQ3AJSmlrhrHWQJ8GnhsZd+98PK1JElSwzRsBDIiLmfmwHrhpOV3ppTWAgcDV1dXppR2A74CHBIR9wP3p5TeCVwEvKPeWsbGfN6mHVT7aD/bg/1sL/azvdjP9jIXfczLQzQnAaMR8Z3K68XAbsDWKbsuA/YEJo9M/gF4JMv5RkZGdr5Y5Y79bC/2s73Yz/ZiP1VVKJVKza6BlFIROA7oBu4BzgWOjIhn1dj3R8BvgVdTfgr7q8B1EXF64yqWJElauPLyFPb7gG9Rvg/yTsrzQb6sujGl9EBK6bmVl8cBY8CtlO+fvA54eyOLlSRJWshyMQIpSZKk1pGXEUhJkiS1CAOkJEmSMjFASpIkKRMDpCRJkjIxQEqSJCmTXEwk3ggppUOATwEHAhuBkyPi6pnfpbxIKT0P+BCQKM8D+oGIuDCl9BjgHyl/VeZ9wEBE/GPzKlUWKaXlwA3A30TEN+1na0opPRH4JPB84H7Kfz7Pt5+tKaV0JPAxYDXwG8p9+4r9bC0ppWcD/xoR+1Vez9i/lNI5wJsoZ8MvAP8nIsanO/6CGIGsfKf2vwOfpfxNNh8D/l9KaY+mFqa6VP6j/3/ARyJiL8pzgZ6TUnoR5e9Fvx/YG3g58IGU0hFNK1ZZfZby99pX5xOzny0mpVQAvg7cRLmXa4D+lNKfYT9bTkppEeV+nh0RewInAp9PKf0P7GdLSCkVUkonAJdR/la/qmn7l1LqBY4BDgKeCjwXOGOm8yyIAEk5bf8hIj4VEX+IiP9LecLyY5pcl+rzp8C/R8RFABFxHfA94Ejgr4BiRDwcEdcAXwaOb1qlqltK6WTgQeC2yutHYT9b0RHAE4C3V/5+/TnwHOB27Gcr2gt4HLBb5R8HJcpf3vEH7GereAdwKvBeoAB1/f36esqDNHdGxJ3AOcAbZzrJQgmQTwF+PmVdVNYr5yLiZxHxhurryojk8yn/wdgWEbdO2v0W7GvupZQOAP4P8JZJq1djP1vRoZRHH89LKf0mpRTAn1EejbSfLSYi7gE+DnwFeBj4AdALPB772So+GxHPBDZMWjfb36+J7XPSLZV101ooAXIP4KEp6x6i/F3aaiEppT0p346wgfIo5JYpu9jXnEspVe+v6Y2Ieydt2gP72YoeS/kqz93AkyiPWpyP/WxJKaUOyn16ObAUeCnwUWAZ9rMlRMQdNVZP9+dx6aTtD03Z1pFSWjLdeRbKQzS/54+/SVW7Aw80oRbtpJTS/sA3KD8E9UrgaUDXlN12p3xZVPn1buD6iLiscokMyqPJD2E/W9EYsDkizq28viqlNAwMYj9b0V8DR0TEmZXXl6SUvgEMYD9b2Wx/v04Ok9Vtj0TEw9MdcKGMQN7MjkOxU4drlWMppUOBHwOXRsTLImKMcpBcklJ60uRdKV9OU369AnhVSuleYDPle1wvonxPsv1sPb8AFldGrqoWAz/FfraiPwU6p6z7A3At9rOVTff/y2oOupntb0eYNSMVSqXSTNvbQmUI9pfA+ylP5fN64Gxg/4iYOqSrnJk01ct5EXHelG1fA7YCbwaeDlwKvLhyg7BaQErpv4C1EXGJ/Ww9lVkuNlKeHmSQ8kM164G/AM7EfraUlNLTKd8idDLweeDPKc+CcTTlhzPsZ4tIKb0A+GpEPL7yetq/XytPYZ8EvBh4BPgm8JWI+NB0x18QI5CVIdgXA68G7gHWAscaHlvGmyg/FdiXUnpg0s97KP9B2A3YBHwN+Hv/Mmtp9rPFRMRW4AXAs4G7gC8Bp0TET7CfLScibqR8/+NpwO8o3896fET8FPvZiiaPEs7Uv48D/wb8hPKo8pXAh2c68IIYgZQkSdLcWRAjkJIkSZo7BkhJkiRlYoCUJElSJgZISZIkZWKAlCRJUiYGSEmSJGVigJQkSVImBkhJbSWlNJ5S+p/NrmNXpZRuTSn97Twc94qU0jlzdKwnpJSuTiltTSm9dy6OKak1LG52AZI0x/YB7m12EXOgxPbfIpHH474B2A84CPjtHB1TUgswQEpqKxFxV7NrWED2BEYiYmOzC5HUWAZISbmWUhoHXgm8G1hF+TtaTwTOBv43cDtwUkRcMWn/7oi4LKV0BfBd4FnAX1AeJeuLiM9Nc64/Bz4CPLWy76cj4j2VbcuADwEvBf4E+DXwwYi4oLL9CuBS4PnAC4H/Al4HvBg4HRgHzo6Ij07a/wfAkZWfm4HTIuI/pqntbcBbgccAPwVOj4jrZqt7NimlvwHeAexL+Ttwz4qI78z2mVNKnwOOr+w3Djw5Iv67nnNKan3eAympFZxDOTwdBRwG/IxyiDqUcuj5+AzvPQv4BnAg8K/AJ1NKfzJ1p5TSosr2bwJPAU4G3p5Semlll48AzwT+F5CAzwPrUkr7TTrMu4GLgGdQvoz+Hcqh7rnAEPDBlNITJu1/JnB55bg/BC5JKS2vUdtbgZOAN1U+8/eBK1JKe9dR97RSSscAH6jUcRDwBeAbKaWn1/GZT618ph9Rvm1g02znk9Q+DJCSWsH5EfEfEXEN5VA2EhEfiYhbgAuBA1JKhWne++2IuDAibgXeBSyhHJam2pPy6N6dEfHfEXEJ8CLgmsr2K4ETI+KnEfFfwPuARZRD2+RzfSkiRoAvV475lkqdH6zsf8Ck/b8XEe+vbP87yqOHr61R29uBMyPi8ogYiYgicCPwZuDR09S9YZrfj6nHPTci/jUifhkRQ5TD6GmzfeaIuB94CNgWEXdFxHgd55PUJgyQklrByKTlLcAvp7zuAHar8b4ScEv1RUQ8UFncYd+I2Ex5RO38lNLtKaVPA50RcUdl++eBJ6eU1qWULgGql2sXTTrX5DofAn4bEQ9W3r+lsr5z0v5XTjr/OOVR1adOriul9CjgicAXUkoPVH8oX5Y/ICLunabu39T4/ZjqQOA9U47bQyXk1vGZJS1QBkhJrWDblNdZniJ+uMa6mqOVEXEq5Uu1HwFWA9+tTqWTUvo8cD5wP/CPwLPrqHO2Ubk/THm9eJp1UB6ZPHjSz4GULz3PWPcsFgF/X+O4r4W6P7OkBciHaCS1mvmY2obKvYdF4O8j4jzgvJTSJ4BXppS+CrweeH5E/LCy/4GVt0536Xw2BeCQSedfXHn9/sk7RcTvUkp3APtFxNcn7f8Z4NuVh3Fq1g18apYabqb88MvEiG5K6WzgNymlLzP3n1lSmzBASmo1WcJLIcP+m4G/ApaklM4F9gL+nPLDKfcDDwA9KaVfA/8DWFd5X/WSdJZzVfWklE6i/FDM6UAX5Xsnp/oAMJBSuhO4jvK9j6+t1DBT3bVMrvEDwJdTSgF8j/LT1mcCx8zymbsyfk5JbcZL2JJaTa2JsKcblax70uyI2Aa8hPIl4J9SnpLn+8C7I+IR4DWUg9XPKY/s/RPwY8pPhdc612znLlEOi6+mHAqfCrwoIu6rse9HgQ9TnlLnBsoPybw0Im6cqe4Zzlv9zF+n/MDMmZSfZn8z8LqIuKxy3Ok+86F1fkZJbapQKvlnX5IaLaX0PeCqiHhHs2uRpKwcgZSk5tiZS96SlAsGSElqDi//SmpZXsKWJElSJo5ASpIkKRMDpCRJkjIxQEqSJCkTA6QkSZIyMUBKkiQpEwOkJEmSMvn/7cGbh1U25FoAAAAASUVORK5CYII=" alt="" />

With eight evaluations we get a fairly good idea what the score function looks like for this problem. Potentially 1 is the best solution, otherwise steeply falling. The best hyper-parameter setting in this case is eight.

You can see that the search explores all values of min_samples_leaf with equal probability.

def top_parameters(random_grid_cv):
top_score = sorted(random_grid_cv.grid_scores_,
key=itemgetter(1),
reverse=True)[0]
print "Mean validation score: {0:.3f} +- {1:.3f}".format(
top_score.mean_validation_score,
np.std(top_score.cv_validation_scores))
print random_grid_cv.best_params_ top_parameters(random_grid)
Mean validation score: -4.322 +- 0.127
{'min_samples_split': 8}

The top scoring parameter is around eight. Let's see what we can do with a bayesian approach.

Bayesian optimisation

Do you have your priors ready? Let's get Bayesian! The question is, can we find at least as good a value for min_samples_split or a better one in eight or less attempts of training a model.

To get things started we evaluate the model at three points of the hyper-parameter. There are used for the first fit of our gaussian process model. The next point at which to evaluate the model is then the point where the expected improvement is largest.

The below two plots show the state of the bayesian optimisation after the first three points are tried and then after the five points choosen according to the expected improvement.

from sklearn.cross_validation import cross_val_score

def plot_optimisation(gp, x, params, scores, yerr):
mu, cov = gp.predict(scores, x)
std = np.sqrt(np.diag(cov)) fig, ax = plt.subplots()
ax.plot(x, mu, label="GP median")
ax.fill_between(x, mu-std, mu+std, alpha=0.5) ax_r = ax.twinx()
ax_r.grid(False)
ax_r.plot(x,
np.abs(expected_improvement(x, gp, scores, bigger_better=True)),
label='expected improvement',
c=sns.color_palette()[2])
ax_r.set_ylabel("expected improvement") # explicit zorder to draw points and errorbars on top of everything
ax.errorbar(params, scores, yerr=yerr,
fmt='ok', zorder=3, label='samples')
ax.set_ylabel("score")
ax.set_xlabel('min samples leaf')
ax.legend(loc='best')
return gp def bayes_optimise(clf, X,y, parameter, n_iterations, bounds):
x = range(bounds[0], bounds[1]+1) params = []
scores = []
yerr = [] for param in np.linspace(bounds[0], bounds[1], 3, dtype=int):
clf.set_params(**{parameter: param})
cv_scores = cross_val_score(clf, X,y, scoring='mean_squared_error')
params.append(param)
scores.append(np.mean(cv_scores))
yerr.append(sem(cv_scores)) # Some cheating here, tuning the GP hyperparameters is something
# we skip in this post
kernel = ExpSquaredKernel(1000)
gp = george.GP(kernel, mean=np.mean(scores))
gp.compute(params, yerr) plot_optimisation(gp, x, params, scores, yerr) for n in range(n_iterations-3):
gp.compute(params, yerr)
param = next_sample(gp, scores, bounds=bounds, bigger_better=True) clf.set_params(**{parameter: param})
cv_scores = cross_val_score(clf, X,y, scoring='mean_squared_error')
params.append(param)
scores.append(np.mean(cv_scores))
yerr.append(sem(cv_scores)) plot_optimisation(gp, x, params, scores, yerr)
return params, scores, yerr, clf params, scores, yerr, clf = bayes_optimise(DecisionTreeRegressor(),
X,y,
'min_samples_split',
8, (1,100))
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAArsAAAHLCAYAAADIqVDeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8VOXZ8PHfmX3NZE8grAnhsMomYkHFtaJtbYt2sdW2j08Xtz79+Pp2sYtrrW21PlZtbW19K9YqLoiisiiCgorIvgQ4QNi3hOyzZPbz/jFJTEKABJJMMnN9P59hJmfOnHNlJiTX3HPd163ouo4QQgghhBCpyJDsAIQQQgghhOgpkuwKIYQQQoiUJcmuEEIIIYRIWZLsCiGEEEKIlCXJrhBCCCGESFmS7AohhBBCiJRlSnYA7amqehPwB03T8k5yvxX4K/AVIAI8rmna73oxRCGEEEKItKCq6iTg78AYYBdws6Zpq0+x/x3AdE3TvtZq23TgcaAUOArcp2naiz0aeCt9amRXVdVi4FHgVM1/HwQGA8OAC4Dvq6r6tVPsL4QQQgghukhVVRvwJvAM4CGRsC5QVdXZwb5OVVX/CDxCqzxOVVUj8DrwO03TPMD3gTmqqg7phW8B6EPJbtOT8RzwN0A5xa43kHjCvJqm7QaeBL7X8xEKIYQQQqSVS4CYpml/1zQtpmnav4AK4OoO9n0NKCExCtw6j8sEcgGzqqoKiUQ4BMR6NPJWeq2MoSmZdXdwV1zTtAbgF8AWYBHw3yc5RhaQD2xrtXkncFv3RiuEEEIIkfZG0TbnAtCatrf3XU3Tjqmqei/QUoqqaVq1qqp/BV4Enicx0HqTpmmHeybkE/XmyO4lQE0Hl42qqk4Bvg3cyalHdZuHzQOttgUAR7dHK4QQQgiR3py0zbngJHmXpmnHOjqAqqqGpsdcB9iBLwF/VlX1nO4N9eR6bWRX07SldJBcN9WDrAW+r2laQFXVUx2m+Qm3A76m245Wt4UQQgghRPfwk8i5WnMA3i4cYzYwTdO0nzV9vVBV1beA7wD/9+xDPL2+0I1hKjAceLsp0TUBDlVVa4BzNE071Lyjpmk1qqpWkhg+P960WQXKOnuydevWnWrymxBCCCFEWpgyZcqpPk0H2A7c3m6bCvynC6cZAljbbYuR6KjVK5Ke7GqatpLPyhNQVXUm8OrJWo+RqPe4V1XV60gUPN8G/LQr5xw7diw2m+0MIxZ9RTAYpKysTF7PFCGvZ2qR1zO1yOuZWppfz05YBlhVVb2dxMSzG0nMnVrShdO9A/xOVdXvAXOAi0i0j72kKzGfjT7TjaGV5pl6LVRV9aqqOqPpy1+TmJS2A1gJPK1p2rzeDVEIIYQQIrVpmhYGrgKuB6pJDDBeo2lao6qqT6mq+lQHD9NplcdpmraVRL3uT4A64AngO5qmre/p+JslfWS3PU3T3ifxrqH1Nner20HglqaLEEIIIYToIZqmbQFmdLC9wzxM07T7Otj2FvBW90fXOX1xZFcIIYQQQohuIcmuEEIIIYRIWZLsCiGEEEKIlCXJrhBCCCGESFmS7AohhBBCiJQlya4QQgghhEhZkuwKIYQQQoiUJcmuEEIIIYRIWZLsCiGEECJlaJrGHXfcwQUXXMCkSZO4+OKLueeee6irq2vZ58Ybb2T8+PFMmjSJyZMnM3nyZGbPns27777bq7EuX76cSy+9FIC1a9e23BbdS5JdIYQQQqSEjRs3cv3111NaWsqiRYvYsGEDzz//PMFgkJtuuqnNvr/4xS/YsGED69evZ/369dxyyy3ccccd7N69Oymxn3vuuSxbtiwp5051fW65YCGEEEL0XZFonKq6xl45V26mHbOp8+Ny9913H9/5zne49dZbW7YNGjSIBx98kCeeeAKv14vb7e7wsVdccQVut5s9e/YwYsSINvfdeOONzJgxg4ULF3Lw4EFmzJjBf/3Xf3Hvvfdy+PBhLr74Yh555BEMBgN1dXU8+OCDfPTRR9hsNr75zW/ywx/+EIBQKMQDDzzA4sWL8Xg8XHHFFS3nWL16NT/5yU/45JNPiMfjPP744yxZsoSKigoyMjK45ZZb+MY3vsGhQ4f4yle+wo9+9CPmzJlDPB7nS1/6EnfddVdXntq0IsmuEEIIITolEo1z25/eo7Im0Cvny8928LefX9aphPfIkSNs376dJ5988oT7TCYTd9xxx0kfGwqFWLBgAcFgkAkTJnS4z+uvv85zzz2HyWRi1qxZ7N+/n2eeeYZ4PM5XvvIVVq5cycyZM/nZz35GdnY2y5Yto7q6mptvvpnc3Fxmz57NY489Rnl5OUuXLiUUCvGDH/wARVFOONeCBQtYunQpzz//PDk5Obz55pv8+te/5pprrgHA5/Nx+PBhli9fzrZt27jhhhu46qqrmDhx4mmfp3QkZQxCCCGE6PcqKysBKCgoaNn2pz/9ialTpzJ16lQmTpzIG2+80XLfww8/3HLfhRdeyPz583n88cfbPL61L33pS+Tn55OdnU1paSlf+MIXyM/Pp7CwkBEjRnDkyBGOHz/OypUr+cUvfoHNZqOoqIibbrqJl19+GYBFixbxwx/+kMzMTAoKCvjBD36ArusnnOvyyy/n2WefJTs7m2PHjmGxWAiFQtTX17fs84Mf/ACz2cyECRMoLi5m//793fI8piIZ2RVCCCFEp5hNBv7288v6ZBlDTk4OAMePH2fAgAEA3Hnnndx5550AXHvttW0Sy5/+9Kd8+9vf7nQsmZmZLbcNBkObcghFUYjH4xw9ehRd19uUJ8Tj8ZbHVlVVtUmmBw4c2OG5IpEIDzzwAJ988gkDBgxg9OjRLcdqlp2d3XLbZDJ1mDSLBEl2hRBCCNFpZpOBAbnOZIdxgsGDB1NaWsqrr77Kj3/84xPu741kMD8/H5PJxMcff4zZbAagoaEBv9/fcv/hw4cZM2YMABUVFR0e59FHHwVg5cqVWCwWjhw5wvz583s8/lQlZQxCCCGESAm//e1vmTNnDn/5y1+orq4G4NChQzz00EPs3LmzzWhoTygsLGTKlCk8/PDDhEIh6urq+PGPf8xjjz0GwJe//GWeeuopjh8/zvHjx/nHP/7R4XH8fj8WiwWj0UhtbS1/+MMfAIhGoz0af6qSZFcIIYQQKWHChAnMmzePQ4cOMXv2bCZNmsT1119PdXU1L730EhdddFGPx/Doo49SXV3NpZdeypVXXklhYSF33303ALfddhtTpkzhC1/4Atdddx0zZsxoM0Gt+fb//M//cODAAaZOncpXv/pVhg0bxtChQykvL2+zn+gcJd1qPNatW6ePHTsWm82W7FDEWQoGg5SVldHV11PXdYLHKvDt3IV31y6iXh8mlxOT243J5cLkcmF2u3AMHYo1N6cHvwPR2pm+nqJvktcztcjrmVqaX88pU6akRdYsNbsiLQQOHKR61Sd4d+7Cu3MX0YaGTj0uY9xY8mZeRO70z2Fy9b0aNSGEEEKcmiS7IqX59x/g4EuvUP3xKmj3KYbBYsFZUow1L5eoz0/U6yPq8xL1+Yj6/KDrNGwto2FrGXv+/g+yp04hb+ZMss6djKFp4oEQQggh+jZJdkVKSiS5L1P90aqWbZacHDznjMetluIeORLH0CEYTB3/F4hHItSu38Dx91dQs2YteiRC9arVVK9ajb1oICNuv5WMMaN769sRQgghxBmSZFeklGBFBfue/XdiJLeJtSCfwV+7lrxLLj5pctuewWwmZ9p55Ew7j6jPT/Unn3D8/RXUby2j8fARttz1awqvnsXQG2/A5LD31LcjhBBCiLMkya5IGTVr1rLzfx8n1tTP0FqQz+CvX0fexTM7neR2xORyUnD5ZRRcfhneXbvZ/cRfCOw/wLGFi6n5dC0lt/yQ7HOndNe3IYQQQohuJMmu6Pf0eJz9z7/AoVfmAWByuxj2ve+cdZLbEXfpCCb86Y8cfu11Dr78KuGqKrY/8DvyZl7E8B/chLnVijpCCJHuTtbxSVpnid4kfXZFv6YHAux66A8tia5rRAkTHn2Ygssv6/ZEt5nBbGbwN77GxP99BPcoFYDjH6xgy12/JtTUxFwIIURCeXk5BoMBg8HQ0idWiN4kya7ot/y7ywk9/f/wbt4KQMGVn2f87x/Elp/fK+d3DBnM+Id+y/Dv34RiNNJ48BBb7vo1jUeP9cr5hRCir1MU5YRFE2RUV/Q2SXZFv1S9ajXaPfdDQwOK2UzpT25nxK0/6vWWYIrBwMAvfYFRd/0Mg8VCqKKSLXf9Cv/+A70ahxBC9FWLFy/u8LYQvUWSXdHv1K7fgPbIo+jRKEpWJqN+ex/5l16S1Jiyp57LmHt+jdFuJ1Jbx9Zf/gavtjOpMQkhRDLpus4999zD7bff3rLt9ttv55577jlpLW9/tXr1as4///xkhyFOQpJd0a/Uby1jx0N/RI9GsQ4YgOW/voNj2NBkhwWAZ9xYxj5wLya3m6jPx9a776Nu0+ZkhyWEEElx7733cv/995+w/f777+fee+/t/YBE2pJkV/QbXm0n2x74HfFwGGt+HiN/fReKy5XssNpwl45g/O8ewJKdTTwYZNv9D1K3eUuywxJCiF41b968DhPdZvfffz/z5s3r9vM+/PDDXHDBBUyfPp3vf//7HDx4kNraWu68804uvfRSJk6cyDXXXMP69esBeO2117j55pu56667mDx5MldeeSVr167lzjvvZPLkyXzxi19kx44dADzxxBPccccdfPe732XSpEl8/etfb7mvvTVr1nDttdcydepUvv71r7N582cDH88++yyXXHIJ06ZN44YbbqCsrKzbnwfRliS7ol/w791H2X2/JR4MYs7KYuz992LJzUl2WB1yDBnM+N//FlthIXo0ivaHR2TSmhAibei63qZ04WRuv/32bi1nWLVqFYsWLeLtt99m5cqVFBYW8uSTT/LII49gMBhYvHgxa9asYcqUKfzpT39qedz777/PzJkzWbduHRMmTOB73/ses2bNYvXq1YwePZqnnnqqZd/FixfzzW9+k7Vr1zJz5kxuvfVWIpFImziOHDnCzTffzK233srq1au56aab+OEPf0h9fT379+/nz3/+My+88EJL6cPvf//7bnsORMekz67o8wKHDlF2z33E/H5MGRmMu/8e7AMKCQaDnT5GJBKhvr4er9dHvddHg9dPMBQlEo0RjbX6ZauDTuJrg0HBZDRgNhkwm4y4HHbcbie5OVlkZmZiNBpPej5bQQFj7v0Nm3/6c6JeH9sffIhz/vgQJofjjJ8HIYQQJ2exWKipqeHll1/msssu44EHHkBRFKqqqrDZbCiKwuHDh3G73VRUVLQ8rqioiFmzZgEwdepUNm3axBVXXAHAtGnTeOmll1r2nT59OldddRUAt9xyC88991zLKHGzt956i2nTpnHZZZcBMGvWLF544QWWLFnCBRdcQCQSYe7cucyaNYvbbrutU28MxNmRZFf0aaHqGsruvo9IfQNGp4Ox9/0Gx5DBHe6r6zoNDQ3s2XeAyqp6AsEIgVAMf2OYUETHYHZgNFmxWK1YLC4MzcnqqT7fiANhiAfjRGvDRMLVhIIHIBbEZlawW03YbSYcVhMDCrIpHjYEd9PCEvYBhag/vZOyex+g8eAhdj76Z0b/8ucoBvlARQiRuhRF4cknn+S666475X5PPvlkt7YhmzJlCg899BAvvPACf/7znykqKuKXv/wlubm5PPjgg5SXl1NcXIzH42kzouzxeFpuG41GXK3K4wwGA/F4vOXrwYMHt7kvPz+f6upqcnI++6TxyJEjrFy5kqlTp7Zsi0ajnHvuuQwcOJB//OMfPPPMM8yZMwePx8NPfvITZs+e3W3PgziRJLuiz9JjMXY+8ijh6hoMNhtjfvMrXMXFLfcHAgHK9+zj4LFaQhGFOl+QiG7BkZGD1ZqDYlJQTOBywtlW9hoMBixWGxarDafb0+a+IBCMweHdflZuWIXZGMXjtJDhtDB4YB6Dv3sjB/81h9o1aznwwlyG3vCts4xGCCH6tmuvvZa77777pHW7d999N9dee223nvPYsWMMHz6cf//73zQ2NvL888/zk5/8hIKCAq6//nq+973vAfD666+zc+dn3XK6knBXVla23I5Go1RWVlJYWNimlCE/P5+rr76aP/zhDy3bDh06RGZmJjU1NTgcDv75z38SDodZvHgxP//5z7nwwgvJy8s7i+9enIoMMYk+a/9/XqRh23YASv/nNhylI9B27ubNxct59qXFPPf6x2iVZur1AmL2Itx5JWTnD8ZmcySlabnd4SS7YAju3GLi9kHUxfNZrflYUGfEO2IUAIdemUflipW9HpsQQvS2e++9l7vvvvuE7ffcc0+PdGPYuHEjN998MwcPHsRut+N2u/F4PPj9fmw2G5BYze2f//wn0Wj0jM6xYsUKVq1aRSQS4S9/+QtZWVlMmjSpzT5XX301y5cvZ9WqVei6ztq1a7nmmmvYunUrhw8f5qabbmLbtm1YLBYyMzOx2WzY7faz/v7FycnIruiTatas5fC8+QDEJk3m3Uo/Nf9ZgsmRg8tdiCVTIdsVJVpZ2adX43E43Ticbmryh2L2PYPt2AG0x57go52HGDxlLBPGjcbcywthCCFEb1AUhfvuu4+CggJuu+02IFG60Hy7u82aNYudO3fyrW99C5/PR0lJCU888QRVVVU89NBDPPzwwxQWFjJ79mwee+wx6uvrT7vCW/uvJ0yYwD/+8Q9uv/12xo0bx9NPP91yf/P1sGHDeOyxx3jkkUfYt28f2dnZ3HXXXS19eO+8805+/OMfU1NTQ1FREY899lib0om+RlXVScDfgTHALuBmTdNWn2L/O4DpmqZ9rdW2QcDfgAuBBuCPmqY90aOBt6KkWmPn01m3bp0+duzYlnd5ou+p2buPbb/4FUowiD8rj2Ozf4TJeuK73uaPkPLz8zGZ+v77NkPAx4BX/4rJV0/U5WHPF/+LxoiX3AwLJUPzOSfNE99gMEhZWRny/zM1yOuZWs709dR1nfLyckpLSwHYtWsXJSUlfXqQ4mSeeOIJdu3axeOPP57sUM5a8+s5ZcqUU74QqqragN3AA8A/ge8AvweKNU3zt9vXCdwD3AnM0zTt603bFWAN8B7wS0AFVgJf0DTtk279xk6i72cIIi1EIhHWrN/M3n0V5C1agDMYJGa1U/vF73aY6PZHcYeLyqtuoHD+05h89RStW07VFV8nCmza5+eTze9QkGVhyjkjGTZ0SL/8YyCEEO2VlJS0meQl+pVLgJimaX9v+vpfTSO3VwOvtNv3NcBHYhS4dQHyNGAA8AtN03Rgm6qqnwOqejTyVqRmVyTVocNHmP/WMv754jtoxwxkb9mGs/Y4ANWXXUfMnZXkCLtXJG8gdZ+7EgDnrk3Y92wDwOZwklVYQsgyiCWfHODZlxaz4qNPCYVCyQxXCCHOSnMZQPtLf9SfYz8Lo4Bt7bZpTdvb+66madcCle22TwbKgIdVVT2qqqoGnK9pWk23R3sSMrIrel0kEmH12o2UH6jCH7PhyR6Ap0DBUb6VjC2rAKifdBGNwzr6v9T/ecdNw1G+FduRfeR88AZHBg4jbkv031UUhYysPCCPPTUhtr70HgVZFmZMHU9hYUFyAxdCiDSWpv1wnUCg3bYAcELTeE3TTrZ6UjaJEeL3gMHAVGCxqqp7NE37sBtjPSlJdkWv8fv9rFi1jn1HvNgzi7BkDiez6T6jr56c5a8BEBwwjLpplycv0J6mGKi+ZDYDXnoCY6OPrA/fpvryr52wm8VixVJQTFDXeW3pVrIcm/jclFEMGzokCUELIYRIQ36gfS2hA/B24RghoEbTtOZebKtUVZ0HfBnolWRXyhhEjzteVc38t95jzmsrqApn4ykowWJtO8Ehe+WbGMIhYlY7VZ//BhhOvjpZKoh6cqg7//MAuHZuxL53+0n3VRSFzLwidOcQFn28l3+/soht23d26zKbQgghRAe2k5hQ1prKiaUNp7IDMKmq2jrn7NXBVhnZFT3m8JGjrFy9mWq/gczcQWTmd1zrZN9ThqMp2audcTUxZ0Zvhpk03vHnJ8oZju4n+4M3ODpgGHHbqSfjebITpQwfbqli9abdTJswgtGjStOxjkwIIUTPWwZYVVW9ncTEsxuBfGBJF47xLonSh3tUVb2fxIS1rwC99hGujOyKbldRUcnc15bwxvLtxOxDyMobfNJkTAkFyV7xJgDBomL86qQO90tJTeUMcaMJU8BL1kdvd/qhLk821qxiPtxaxb9fXsTefQd6MFAhhBDpSNO0MHAVcD1QDdwGXKNpWqOqqk+pqvpUBw/Tmy7NxwgCFwPnkZi89jzwY03TPu3h8FvIyK7oNserqnn/o3Uc9xnw5Awh03n60casT5ZgCnjRjSaqZ34Z0myEMpqZS935nyf7o4W4tA0ESsZ1aWKeKyMbyGbJqj141m3n0gsmUVCQ33MBCyGESCuapm0BZnSw/ZaT7H9fB9vKSSTNSSHJrjhrXq+Xd99fzbF6HU/uYDJtnUtYrUf34y5LvLGrO/dSopm5PRlmn+Ud/7lEOcOxA2R/8AZHioajm61dOkZGdiFxXefVdzczwAOzLpuOw3HCZFkhhBAi7UgZgzhj0WiUpcs/4t/zVxIwDiDzFOUKJ4hFyX7/dQDC2QU0TLygByPt4wyJcgbdYMTkbyBjw8ozOoyiKGTlDSJgHMCcV5fz4ao10shdCCFE2pNkV3SZruus27CZZ+Yu5pDXSWZBMQZj17oneDaswFJbiY5C9SVfhS4+PtVEs/JoGP85ADI2fojRV3/GxzIYjXgKStCOGXj2JannFUIIkd4k2RVdcuDgIebMXciGPQHceSNOaCHWGaba43jWvg8kOhKECwZ3c5T9U8OUi4lZ7RiiETI/XXrWx7M7nNiyS1iyqpxXF7yL3+8//YOEEEKIFCPJruiUUCjE6wuX8fbKnViyS3C4Mk//oI7oOjkrFqDEY0SdHuqmXdG9gfZjcZud+qmXAeDcsQHz8SPdctyM7AEETQN5bt77rN+4pVuOKYQQQvQXkuyKU9J1nfUbt/Cvl9+lQc/DkzPwrI5n369hO7wHgJoLv4hu6dpErFTnHXsekcxcFHSyP14E3bRwRHNpw7pdPl6ctwifz9ctxxVCCCH6Okl2xUlVVdfw/CsLWVfuJyN/BCaT+ewOGI+RuSrRhzo4cDiNw0d3Q5Qpxmik9nNXAmA7vAf7/h3denhnRhYxx1Cem/cBa9ZtklXYhBBCpDxJdsUJ4vE4yz5YxcsLP8WQUYzzTEsW2nHtWI+lthIgkdClWU/dzmocNprgwOEAZH28GGKxbj2+wWAgs7CEjfsaeeHVxXi9XVniXAghhOhfJNkVbRw9VsGzcxeyv9ZCZv6wbluGVomE8Xz6HgD+EeNlUtqpKAq1M65CR8FcV4V7W88sMuN0ZaK7hvL8/BWUbdd65BxCCCFEskmyK4DEaO57H3zM60s3Y80uwWp3duvxMzZ9lFgpzWCUSWmdEM4rwq9OBMCzZhlKqLFHzmMwGPAUlPDh5koWLFpGNBrtkfMIIYQQySLJruDosQr+NfdtDtRa8XRlYYhOMgR8ZGxYAYB33DSinpxuPX6qqpt2BXGTGWMwgGfd+z16LndmHjXRHJ59aRHHKip79FxCCCFEb5JkN43pus7ylZ/w+tLN2LJHdPtobjPP2mUYImHiFiv1Uy7ukXOkopjLQ8OExHLk7i2fYAj0bAcFi8WKPWcE89/ZwEer18nkNSGEEClBkt00VV/fwHMvv82eKlOPjOY2M9VV4d62JnHOyTOJ91BCnaoaJl5I3GLDEIuSsenDHj+foih48oey/VCEV954h0gk0uPnFEIIIXqSJLtpaMOmrfznjZWYPCXYHa4ePVfmJ++gxONEnR6850zv0XOlIt1qo2H8+QC4t67GEAz0ynkdrkyC5oH8a+5CKiuP98o5hRBCiJ4gyW4aCYfDvPLGO6zdWU9mQUmPjeY2sxw7gHNPGQB10y5HP9s+vWnKe8504iYLhkgY9+aPe+28JpMZZ95IXn1nHZu2bu+18wohhBDdSZLdNHHg4CH+9dISGk0DcGb0zgSxzNXvAhDOLsA/cmKvnDMVxe1OvOOmAZCxeRVKKNhr51YUhcy8YXxSVsXCdz4gHo/32rmFEEKI7iDJborTdZ0VH33K2yt34M4vPftV0DrJenQ/9qZlgeumXQ4G+VE7Gw0TZxA3mjCEg7i3ftLr53dn5lHR6Oa5l98mEOidUgohhBCiO0gGksKCwSAvzlvEzgrw5Azq1XNnNLXKCucU0jhsVK+eOxXFHW58Y6YCiZ7FSiTc6zFYbQ5MGcU89+pSaU8mhBCi35BkN0Xt2XeAOa+8S9wxFIczo1fPbTl+GMeBnQCJVmOK/Jh1h4aJF6AbjBiDAVxlPbOq2ukYjEYyCkYy/931bNuxMykxCCGEEF0hWUiK0XWd91eu5p2Pd+HOL8VgNPZ6DBnrPgAgkplLoHhsr58/VcXcmfhGTQYgY+NKiCavLZgnbxgrNx7hgw9XSz9eIYQQfZokuykkFAox97XFlFcZyMgpSkoM5pqKlg4M9ZNnSq1uN2uYdBG6YsAU8OHasS6psbizCtlVoTP/rfeIxWJJjUUIIYQ4GclEUsThI8d49uUlRO2DsTvcSYujeVQ36s7CXzohaXGkqqgnG//IxPPqWb8CYtGkxuNwZdKg5/LvlxcSDPZelwghhBCisyTZTQFr1m1mwbLNuPNHYjSakhaHqb4a5+7NANRPuhCSUEKRDuonz0RHweSrx6VtTHY4WKw2TJ5i5ryyhLq6+mSHI4QQQrQhyW4/FovFeGPhMjbu8eLJG5LscMhYvwJF14k63S21paL7RbPyCJSMA8C96SPoAzWzBqMRV95IXlywkkOHjyY7HCGEEKKFJLv9VH19A8++tJDaWE6vLRJxKkZvHS5tAwANEy8EWS2tRzVMnAGApbYSW1M/42RTFAVPwQgWLN+EtrM82eEIIYQQgCS7/dLuPft4ccFKbNkjsFisyQ4HSHQHUOIxYnZnSz9Y0XPCBYMJ5Sd6J/fmEsKdkZk3jOVr97Fm3eZkhyKEEEJIstuf6LrOh6vWsvSm9AlfAAAgAElEQVSTcjLyS1AUJdkhAWAIeHFtWwtAwzkz0M2WJEeUHrznfA4A+z4NU31NkqNpKyOniPW761m2ovdXexNCCCFak2S3n4hGo8xb8C7bj0ST1lbsZDI2r8IQixKz2vCOn5bscNKGv2QcUYcLBT0pSwifjjszj/JKnYXvfiC9eIUQQiSNJLv9QF1dPXNeWojfUIjTlZnscNpQIuGW1bx8Y85Dt9iSHFEaMZrwjT0PANf2dSiRUJIDOpHTncVRn4P5b79HPB5PdjhCCCHSkCS7fdyu8r288MaH2HJKMVv6XnmAc9cmjKFGdMWAd/z5yQ4n7XjHnoduMGIIB3H2gTZkHbE73NRHs3h5/hJZfEIIIUSvk2S3D/tw1VreW72HzMK+U5/bhq63TI4KlIwl5vIkOaD0E3e48Y8YDyTKSfpCG7KOWO1OgpaB/OfVRUQiyVvmWAghRPqRZLcPisVivPbm0j5Zn9ua7fAeLDWVADScMz3J0aQv7/jERDVz3XFsh/puyy+LxQquoTz38iJZbU0IIUSvkWS3j2nun9tAXp+rz23PvekjAEL5gwgXJn9Ri3QVLhhEqGAw0PfakLVnMpmxZpXw/KvvEAgEkh2OEEKINCDJbh+yZ98BXnhjRZ/qn3sypvpq7Pt3AjKq2xc0NLch278TU311kqM5NYPRiC1nBP+ZtxSfz5fscIQQQqQ4SXb7iI8/Xc87H+/CUzCib9bntuPevAqFxNLAgZKxyQ4n7QWKxxJ1uBNtyLb0vTZk7RkMBuy5I3hh/jK8Xm+ywxFCCHESqqpOUlX1U1VVfaqqblBV9ZQ9RlVVvUNV1VdOcl+BqqqVqqp+oWei7Zgku0kWi8WY/9Z7lB0I9en63NaUcBDXjvUAeMdOA6MpyREJjCZ845rakO3om23I2jMYDDjzSvnP/GXU1dUnOxwhhBDtqKpqA94EngE8wOPAAlVVnR3s61RV9Y/AI8DJZks/A2Sf4v4eIcluEtXXNzDnpYXU67k43VnJDqfTXNvXYYiE0Fv1eRXJ5x3T3IYs1GfbkLWnKAru/JG8+MYHVNfUJjscIYQQbV0CxDRN+7umaTFN0/4FVABXd7Dva0AJ8HfghI+oVVW9GfABB3sw3g5Jspsk5Xv388IbK7D2g/rcNuLxlo/JfSMnELef8OZOJEnc4cJfMg4A1/a1SY6m8xRFIaOglNcWfUJ9fUOywxFCCPGZUcC2dtu0pu3tfVfTtGuByvZ3qKo6Evg/wC3dHmEnSLLby3RdZ+XHa3h31e5+U5/bmn2/hrmhBgCvTEzrc3xjzgXAevwI5qojSY6m8xIJ7wiWr9ZkhFcIIfoOJ9C+dU4AcLTfUdO0Yx0dQFVVE/AccLumaUn5BS/Jbi8Kh8O8PH8JO4/G+019bnvNra2CRcVEcgqTHI1oLzRwGJGMREmMa/u6JEfTNZ+N8K6iprYu2eEIIYQAP2Bvt80BdGVm8W+AjZqmvdNqW6+O9Emy20uOVVTy7EuLCVmLsPfTlcbM1RXYD+8BpN1Yn6UY8I+aAoBz5yaI9q/VypoT3pfeWEGtJLxCCJFs2wG13TaVE0sbTuXrwDdVVa1VVbUWGALMVVX1Z90U42nJNPpesG7DFlaXHcaTV9rvyhZac237FICoO4vGoe1/9kVf4Rs1Gc+a9zCGGnHs3UagdEKyQ+oSRVHIKCxl7oIVXP/lmWRm9s83h0IIkQKWAVZVVW8nMfHsRiAfWNLZA2iaNrr116qq7gVu0zRtYXcGeioystuDotEor7/9Hut21ZOZN6xfJ7pKJIxzZ2KGv3fMuWCQH52+KubyEBxcCvS/UoZmzSO8cxd8IG3JhBAiSTRNCwNXAdcD1cBtwDWapjWqqvqUqqpPdfAwnV5uLXY6MrLbQw4dPsrC5Wuweobh8liSHc5Zc5SXYQwF0RUD/lGTkx2OOA3f6CnYD+zEfqgcY0MtsYz+09quWaItWSlz33ifb8++FLfbneyQhBAi7WiatgWY0cH2DjsraJp232mON7ybQus0GZ7rZrqu88GHq1mwfAuuvJGYLf0/0QVwbVsDQOMwlZgzI8nRiNMJDBtFrKktnGtH/xzdhUTC68ov5YX5y/D7/ckORwghRD8kyW438nq9/Pvlt9l93Ehm3pBkh9NtzDUV2I7tB8A7ZmqSoxGdYjThHzkRILHaXTye5IDOXPNKay+8tpRgMJjscIQQQvQzkux2A13XWb9xC8/PX4Ehoxi7w5XskLqVa1tigYKoK7OlFlT0fb7RiZ67Jl89tkPlSY7m7BgMBuw5I/jPq+8QCvX9pZCFEEL0HZLsnqXjVdU8/8pC1u324SkowZBqE7eiEZzaBiBRByoT0/qPSHY+oYLBQP9aUe1kDEYjluxiXpj3DpFI/2qpJoQQInkkczlD0WiUxUtX8sqidRgyinG6+98EoM5w7inDGGpEV5REsiv6lebXzLF3O4bG/l/zajSaMHqG8cK8xUSj0WSHI4QQoh+QZPcMbN22g2fmLuJYYwaZ+UP6dUux02kuYWgcqhLrp4thpDP/iHOImywo8VhL67j+zmQyg3Moc19bQiwWS3Y4Qggh+jhJdjtJ13W2btvB868s5uOtVbjzSrFYrMkOq0eZao9jO7IXAN+Yc5McjTgTusVKYMQ4oKnnrt6nWh+eMbPFQtRWxKtvvEu8H0++E0II0fMk2T2NaDTKqk/X8//mLmLVtjoMGcNweXKTHVavaJmY5sygccjIJEcjzlTzRDVLTQWWysNJjqb7WKw2AoY8Xn/rPfQUSeKFEEJ0v7RdVOJkfxwVRUHXdaqrq1m/WWPv4VosGQOxZxf3coRJFovi0tYDzRPTjEkOSJypUOEQIp4czPXVOHdtIlwwKNkhdRur3Uldo85bS97ni1denNIlRUIIIc5M2ia7AOXl5ZSWJlpprV69Gn8wRlVtgBpvkCg2MrILcOfnJDnK5HDs2YYxGEBHaRkZFP2UouAvnUDm2mU4d22mdvpVKdVVw2Z3UeGL8s6yj7jysguSHY4QQog+JnX+4nWRoihtRoEWrtQ46HURsRXhzishK68IozF93ws0r5gWHFJKzJ2Z5GjE2fKPnACAsdGH7fCeJEfT/RyuTPbXGHh/5epkhyKEEKKPSdtktz1PdkFilrfAVF+DvSkh8srEtJQQzcwllFcEgHPXpiRH0zNcGdnsPBrh40/XJzsUIYQQfUifS3ZVVb1JVdXjp7g/V1XVuKqq3laXv/ZmjKnOuTOxiETM7qRx6KgkRyO6S/PorqO8DCWamosyuDy5bC73sn7T1mSHIoQQoo/oU5/Tq6paDDwKhE+x2yRgq6Zp5/ROVGlG13FqiX6s/tIJYJSJaakiMGI8WR8twhAJYd+vESgZl+yQekRGdgGflh3GajEzdrSa7HCEEEIkWZ8Z2VVV1Qg8B/wNONWU6klAan4O2wdYjx3A3FADgF+dmORoRHeKOTMIDkp0FXHuTO3/Qhk5RaxYf4Bd5XuTHYoQQogk67WR3aZk1t3BXXFN0xqAXwBbgEXAf5/iUJOAYaqqbgc8wELgTk3T6rs55LTk1BIlDOHsfMK5A5Mcjehu/tIJ2A+VY9+vYQg2ErfZkx1Sj/HkDubdVRo2q4XBg4qSHY4QQogk6c2R3UuAmg4uG1VVnQJ8G7iTU4/qAtQBy4DzgYlAEYnRYHG2ohGcu7cA4Fcng/QsTTmB4rHoRhNKPIZjT1myw+lxmXnDeHv5Ro5VVCY7FCGEEEnSayO7mqYtpYPkWlVVG7AW+L6maQFVPXWNnaZpt7R7/K+AlV2JJRQKtbkGiMZiRKPRrhwm5TjLyzCEg+iKQn3xWGJ9/Plofr3S/XXrEqMJ/+BSXPu249i5kbqRfadUpadeT3vWEF556yOuvfpzZGdJG73e0tHvWdF/yeuZWtLtdewLE9SmAsOBt5sSXRPgUFW1BjhH07RDzTuqqqoAvwP+pmna/qbNdk49oe0Eu3fvBuDQoZZDU11djWK0nvl3kQJGbf0UgPq8QRz1B8EfTHJEnVNTU5PsEPqVaP5Q1H3bsR3ZS93+PYTtrmSH1EZPvJ66ksHf5szn8uljcTqd3X58cXLNv29FapDXU/RHSU92NU1bCbT89VFVdSbwqqZpeR3sq6uqej4wVFXV7wMZwEPAv7pyzhEjRmC1WrHbP6tXzMnJIT8//wy/i/7PGPCRWXkQgNDY8/rFcxGNRqmpqSE7OxuTKek/yv2Gkp1FbMNyjJEQQ+uPUT90erJDAnr+9czPz2dr+U6++eVxOByObj++aCsUCrF79+6W37eif5PXM7U0v57poi9mCAqgt96gqqoXmKVp2kckanufBA427fci8POunMBqtWKz2dr8hzUZjWmdMLn3lqHoceJmC6ER4/rVc2EymfpVvElnMtFYMhbXjvW4y7fgn3xRsiNqoydfz4yCUcxf+CE3fO1K+YPdS5p/34rUIK+n6I/6XIagadr7QH67be5Wt48As3s5rJTX3IUhUDIO3WxJcjSip/lHTsS1Yz3W40cw1R4nmnXCBykpyWA0Ysku5sXX3uGGr10lb5KEECIN9Jk+uyJ5zNXHsFYdBcCnTkpyNKI3BAcOJ+pI1Oqm6vLBJ2M0mjC4hzL3tSXEYrFkhyOEEKKHSbIrWkZ1o65MQgOHJTcY0TsMBgIjEosQOnduAl0/zQNSi8lsIWor4pU33iEejyc7HCGEED1Ikt10F4/h3Nm0PLA6ERT5kUgX/tIJAJgbarBUHUlyNL3PYrXRaMhn/lvvoadZsi+EEOlEMps0Zzu0B1PAB4CvD/VcFT0vnF9E1J3oO+soT/0FJjpitTupi2XzxkJJeIUQIlXJ7Iw052oqYQgVDD6jSUq6rhOL6cTiiUtc14nHmy5Nt3VdR9cTrTPiTbdP9bG5oigoStM1tNw2GBSMBgVD0+14PEYkphOLxTEadRRZ8a1rFAV/8Tg8mz7EUb6VumlXpOWqeXaHk+pAnLeWvM8Xr7xYfo6EECLFSLKbZnRdJxqLE47EiTY2MmjPNgD2F6jsP1BLJBpvusSIRONEY4n9P7skkstYPJHkxvvCaNj2xMi00aBgNBowGRRMJgMmY+JiNilN1wbMJiNmkwGLOXHbYjJgMRuxmI1YzUYsZkNaJTuBkrF4Nn2Iub4ac00FkZzCZIeUFHaHm0pfnCXvfcisyy9MdjhCCCG6kSS7/Vw0FicYjhEKRwmGYy23Q+EYoUiMcCRxnfg6kcQ256ejvXs5JxYhjsIibzaNOyp7LW6l5Z929HZNlrsgMbocSyyndxYrISYSXwNWiwmbxdh0MWGzJq7t1sTFZjViNPTvSqBwwSCizgxM/gYc5WXUp2myC2B3eThYX8fS5R9x+SUzkh2OEEKIbiLJbh+k6zqRaJxAMEpjqO0lGI4SDMVabkdjZz6yOsa3F4B9jgHE7U5cJgNm42ejnyaTgtn42Qhp4pIYPTUaFYyGxLXJoGAwGBIlBgYFg0JLyUGiJOGzsgRD0/Xpvv/mSoeWEgi9bWlEXNcJh6NUVdeQ4ckElJZSipZR6KaR6cQI9Wcj1uHm0etIYvS6/TMYbnqT4A1ETvscWs3GluTXYTfhtJlx2D67ttvMGA19eKRYMRAoHkvGllU49myl/rzLkh1RUjldmeypqmHZik+49KLzkx2OEEKIbpDWye7ixYtbbm9a+yGfv+ZbvXLecCSGPxghEIwSaLluuh2K0hiMEot3PYlVlETyZW0aiWz+aN5qSXw8b236uN5iMmCPhxnxSqK3bsb5n2P2qBHd/W2eseZa3ZMP/yZErUbCjUbys+xnvDhA8xuLllHwphHxltHwcKzlDUaw6Xbr16Z53zpfx0PJCmC3mXDZzTjtZlwOCy67GZfdjNtpwWo2nlHc3SlQkkh2LTWVabXAxMm4MrIpr6gGSXiFECIlpGWyq+s699xzD/fff3/Ltjl/fYCG+mquveH2s67ZDEdi+Boj+BsjLdeBYAR/YxR/MEIk2rW+nlZL0+hh00fpdqup6eP0zz5et1pMWEydrzd1bt+OEo+hG4wEho85k28zJSiK0lKz2xnNyXHzSHvr0fdAMII/GCXQGCHc9Brr0PJmhtrGE45nMRtxO8y4HRYynBbcDgselwWXw9JrI8KhwqHE7E6MjX4c5VtpOPeSXjlvX+bMyGF3RQ36+x9z2cXTkx2OEEKIs5CWye6DDz7Igw8+eML2+f/5KwDX3fjjUz5e13UaQ1G8gQi+QBhvY+La3xjBF/gs0TkdBRIff9tMOFo+9jbhsJqbrk3YrKYeSXqcuzYD0Dh0JLpV1jnvrNbJscdlPel+iTKUz97wtH7z4wtEiMYSPyPhSIzq+hjV9cF256ElAfY4LXhcVjLdVtwOC4bu/nkwJEoZ3GWf4thTJsluE1dGNnur6ljy3odcedkFyQ5HCCHEGUrbZPdk5v/nrwwZrjJ1xhUEwzG8gTBefxhvINJy29cY6VSZgUFRcNpNOO1mnLbEx9iJ2yYcdjN2i6n7E5dOMAR82A6XA+BvWkVLdC+zyYDHZe0wIdZ1nVDzz1YgQkMgjM8fpqHp60S7Nmjwh2nwhznU6rEGRSHDZSGzKfnNclvJyrCddTlEc7JrrTqKqb6GqCf7rI6XKhzuTA7U1bF46UquvOyCtOrUIYQQqSItk93T+fv/3sv+0LBOTf6yWhIfQ7vsFlwO82e1mXYzdqupT/5xdOzZiqLrxE1mGoeNSnY4aUdRFGxNo/Z5WW3vi+s6/sYI9b4wDf5Q03WYel+opY9xnTdEnTcERz97nNNmJisjkfhmu61ke2zYLJ3/7x0cOJyYzYExGEiM7k6S9lvNnK5MDtXXsWjpCq66/KI++X9aCCF6iqqqk4C/A2OAXcDNmqatPsX+dwDTNU37WqttFwB/AlSgCvijpmlP92jgrUiy24F4U11m8x81q9mI25moq2y+uBxm3A4zZlPyJxh1lXPXFgAah49GN1uSHI1ozaAoLT9j4GrZHtd1fIEI9b5EolvnC1HrDeFvTHSM8Acj+IMRDlX6Wh7jspvJ9tjI8djIybCRlWHDZDxJqzSjkcZho3HtWCfJbgccrkyONtTz1uLlfHHWJZLwCiHSgqqqNuBN4AHgn8B3gAWqqhZrmuZvt68TuAe4E5jXansWsAC4VdO0uU3J81JVVcs1TXvvFOe+CFilaVqk3XYrcLWmafM7+31IstuBq795J+eOH9AyYaizk5f6A6OvHtvRfYCUMPQnBkUhw5mo4R1c4G7ZHo7EqPWGqGkIUusNUtsQosEfBmipFT5wzAsk6oCz3DZyM+3kZSauHTZzy7H8JWNx7ViHteIgRm8dsaalhEWC3eWhMmDipfmL+dqXP4/RmDq/F4QQ4iQuAWKapv296et/NY3cXg280m7f1wAfiVHg1m19hgBvapo2F0DTtA2qqi4HpgNtkl1VVU2AgcS0pveBoaqqVrQ7z2TgRaDTE47SMtn91a9+ddK63a9++1au+/p1vRxR73HsTozqxi02GoeUJjkacbYsZiMF2Q4Ksh0t2yLRODUNQarrG6mpD1LdECQQjKLrUNMQpKYhyM4DiX0dNhN5mXbysxwUZA0mz2LDEA7i2LMN7wTpQtCe3eEkGB7Iv19ZyPVf/TxW68knKQohRAoYBWxrt01r2t7edzVNO6aq6r20SnY1TdsEfLf566aR3guBOR0c47+Bp1p9vf8kcS05beStpG2yazQa27QeA5j97duYfcNtSYqqdzR3YQgUjwFjWr78Kc9sMpyQADeGolTXN3K8tpGq+kZq6kPEdZ1AMMr+Y172N43+GuxFjAmXo2zfSH3JFDKcFvnIvh2LxUrMOJw5Ly/mm1++lIwM9+kfJIQQ/ZMTCLTbFgAc7XfUNO3Y6Q6mqqqHRFnEWk3T3uxgl6eBHSRGdpcB1wK1re7XSYweb+5M8M3SMttRFIX77ruPgoICbrstkdx+77bfcMWXemdRiWQx1VdjPX4YAH/phCRHI3qT3WpiUL6bQfmJxCwWi1PjDVFV20hlbYDjdY1EonG22wczpr6czJrDPL9iG3Gnm/xsB4XZTgpyHDhblT2kM6PRhDNvJC+8/j5fnXU+BfnpvRCHECJl+QF7u20OwNvVA6mqOhx4i8Qkt290tI+maTrwQdP+xcABTdO6tjhBB9Iy2W125ZVXttw+Z0rq99F0NI3qxuxOgkXDkxyNSCaj0UBepp28TDujh2e3dHmoqsok8s5HmOMRRvoPsME0iv1Hvew/mvi95naYKcxxMiDXSUGWA5PpJBPe0oCiKLjzR/DakjVcPn00pSXyf0oIkXK2A7e326YC/+nKQVRVnQwsAv6tadr/7eTDKoBbVVWdSiJfNZAY2VUAXdO0To9QpnWym26cu5tKGErGgUEm14jPGBSF7Awb2Rk2wsWjMe/ezHRjJfrIC6moDlBZGyAW15v6Tdex62AdBkUhL8vOgFwnA3KceFzpV/KgKAqe/GLeW72HI0cruWjGeWn3HAghUtoywKqq6u0kJp7dCOTThZpZVVULgMXAw5qmPdyFcz8NzG56bPuR5NP3hm1Fkt00Ya6uwFJTCUgXBnFqgeIxOHdvxlVxgLGFdkYPyyYW16mua+RYTYCjVX5qGoLEdZ2KmgAVNQE2chynzcTAPBdFeS7ys+0YDekz6puRU8SuygaOvLaYa790GRaLtPQTQvR/mqaFVVW9Cvgb8DsSJQjXaJrWqKrqU0373NLuYTptk9H/BnKBu1VVvbvV9sc0TfvNKU7/VeA6TdMWne33Iclummge1Y06PYQGDElyNKIvaxwyEt1gRInHsB3YSWDkBIwGhfxsB/nZDs4ZkUswHOVYdSLxPVrtJxSO4Q9G2XUwMeprMioU5jgpynNRlOfE2oUFLvorhzODSNTOsy8v5kuXT2NAYUGyQxJCiLOmadoWYEYH29snuc3b72v39e9IJMpd5QX2nsHjTpD6f4EE6HpLy7HAiHGgpM+Im+g63WIlWFSM/eAuHPu2Exh54mRGm8XEsAEZDBuQga7r1DSEOHLcx+HjPmq9IaIxnUOVPg5V+lCAvCw7gwvcFOW7UnqSm8lkxpU3kteXbuS8sQOZMml8skMSQoj+6nHgIVVV/1vTtJqzOZAku2nAXFOBub4aAH/JuCRHI/qDwPBR2A/uwn5gJ8Sip2xTpyhKYpU2j43xI3IJBCMcqfJzuNLHsZoA8bhOZW0jlbWNrNtRSXaGjcEFLgYXuJtWiks9nryhrN9dzZ7973DV5dNxuVynf5AQQojWvgxMAqpUVa0Fwq3u0zVNG9jZA0mymwYc5WUARJ0ZhAsGJTka0R80Dh0FvIkhHMJ2ZB/BwSM6/ViHzcyIQZmMGJRJJBrnaJWfQ5VejlT5Wxa8qGkIsmlXFdkZVgYXuBlS4MZmSa1PHJwZOYTiWTz32gdMGFnA9GlTZPKaEEJ03t9OcZ9MUBNtOfZsBSBQPFZKGESnxNyZhHIHYK06in3fji4lu62ZTQaGFLoZUugmFk9MaDtU4eVQpY9QJEZNQ4iahhCbdlWR5baS5QS3J4rblBq/mgwGA5kFJew46kN78W2uuGgyg4oGtNlHEmAhhDiRpmnPNt9WVdUMRJv68HaZZD4pzlR7vKULQ0BKGEQXNA4bDYBj33bQz+j3SxtGg8LAXCfnjS3kKzNLuGTKIEqKPFjMiTZ4td4Qe46FeOuj/Sxbe5Dyw/WEI7GzPm9fYHe4sGaX8MxLSzEYDBgMBsrLy5MdlhBC9Gmqqt6iquouEqu2Fauq+rSqqg+qqtqlUQJJdlOcozwxqhuzuwgVShcG0XmNwxNLn5u8dZirK7r12AZDolvDeWML+erMEi6ePIhhA9wYm34jVdQE+LTsGPM/KOfDjYc5VOkjHj/7hDuZFEXBk13Y8vW7y1dRXX1Wcy6EECJlqar6P8BvgIeBCInShWXAj4D7u3IsSXZTnHNPol43UDwG0qjvqTh74dyBRJ0ZQNPobg8xGBQG5DqZOjqf6aNcfG5cAYPyXRgUhXhc52Clj5UbD/P6B+Ws31FJrTfYY7H0pkZjPi8t3sDc+e+wd9/+ZIcjhBB9za3AjzRNexqIAWiaNhf4DvC9rhwoNQrjRIdM9dVYqo4CUsIgzoCi0DhsFO6yT7Hv2079uZf0+CkNBoVB+S6GDcwkHIlxsMLL3qMNHK9tJBSJoR2oRTtQS6bbyvCBGQwfkNFve/gqikJW3iDiwJJP9mP/dBtFeRlMGKeSl5eb7PCEECLZhgBlHWwvJ7FIRaf1z78SolMcTaO6MZuD4MBhyQ1G9EuB4aNxl32KtfIwRn8DsaaR3t5gMRspGZRJyaBMfIEwe482sPdIA/7GCHXeEBu042zaWcWgAhclRR4Ksh39drJXRlY+AMcaY2jvbMZmCJGbaUMtGUxpyXCMRlneWwiRdjaRWEXtT+22/wjY0JUDSbKbwprrdQPDx4BB/liKrgsWFRM3WzBEwtj37cA39rykxOFyWBhfksu44hyO1zay50g9Byu8RGM6B455OXDMi8tuprjIQ3GRB7u1f/5qMxiNZOUmWkf6gRWbq3hvlYbLbsLlMOOyWxg0IJfBgwbidrv7bXIvhBCd8H+ARaqqXgJYgXtVVR0NjAZmdeVA/fMvgjgto7cWa+VhQEoYxFkwmmgcXIpzTxn2vduTluw2U5TPli2eMiqf/ce8lB+qp6Yh+P/Zu/P4Nq/rwPu/BztAgAB3ijspklcSte+SZcfybtnxEseJkzZN0k6XNJnM5G2Tbknfmck0nbYzmbaZxpO8bZImcZw4dmInXrR4t2zt1kJquRLFXRJXgOCGjQDePx5SkWRKAiSSAMH7/XwokQ/B+xwKInhwcZ5zGAlEONbcT+PZfsoKnNSWe+b0bi+A0+UBlweAEBCMxOk8Ncwbh/ZhiIWxmA1YzEYsJiNmiwGryYjRqGHQDBgMYNA0DAYNk8mEpk001YjHiRMnHo9DHGqJWFcAACAASURBVKKxmD7IPh4nHmfiTb8YMHbxmH7byUsEL/0XjRNHAwxGw2XnHR+PcP78OWIY8LizyXLYsdlsWK1W7HY7BnUNgaIo1yCl3COEEMDngSCQDewCHpFSnktmLZXsZihHywkAolYbwdLqFEejzGWBqsV6snuuBS0SIm62pjokAMwm48XhFb7hIGe7/LRdGCIyHqOzd4TO3hFcDgu15W5qSn7T4mwu0zQNR5YLR5brsuMx9GQ4BBOXcfxGPB4nFvvNQW0yVZ14EqBp2vQ8IbjivJFIhN5QiMOtEeLxXqKRCPFYhHhsHGLjmM0aVpMRi9mI1WzEbDbgsJnIy8mmuDCfnJwcbDbbzcelKMqcJaXsAf76ZtdRyW6GmpyaFqhafM1Rr4pyPYHKeuKahhYdx9bZTKCmIdUhfUCOy8baxTZW1hfQ0T3Mmc5BvENBhsfCHJZ9HDvTT+WCbOorPOS45lcCpWkaxhQ8BmiahtFkwmZ3YLrOkJDJRH04GKejLUDwxBlikVFMhhh2qwmnXS/hWFCUS0VZCW63e07v2CuKcn1CiDLgL4ElwORs+ckf/LiUcnOia6ksKAMZR4ewdeutjMYWpl9ioswtMXsWoeJKbBfacLSdSstkd5LJaLhYtzvgD9LcNUj7hSGisTgt5/y0nPNTmGNHVOZQUqC3N1PSh6Zp2GwObDbHZccvlnCcHuXtI4cwRAO4siy4nVYKc7OpW1hBbm6uSoAVJbP8BCgBnkUvY7iUGhc839knShhiZiuBshsb86oolwpULcJ2oQ172ymIxeZEz+Y8t408dzEr6wtoPefnTOcgI4EIvb4Avb4AWTYzdRWey6a4KelLL+Fw4shyXjw2Anh7Qhw6fQRjPIjbaSU324aoraCivEzVBSvK3LYGuEVKeeRmF1LJbgbKmujCEKhaBCZziqNRMsFY9WJy9mzHGBzD2tNJaEFlqkNKmNVsZFFVLvWVOVzoG0V2+OjxjjEajHDkdB9NZ/upKfUgKnNw2tXPy1xjsVixFJQC+lZPfyRO694O4m81kuOyku+xs1jUULKgWO38KsrccgQonfj7pszbZFe/8jj+gY/n+oOhYWwE64U2AEbT+OVmZW4Z9+QT8eRjHuzH3npyTiW7kwyaRmmhk9JCJ4PDIU53+mg7P8R4NM7pDh9nOnyUF7lYVJVDntue6nCVG6RpGtmefCCfGHrv4tNvnsYUf58Ct536mhJEfe1164gVRUm5zwLbhRAfAlrQr8W9aGKyWkLm9U/7woULicViPP3cy4SjceIjXZjMBswm/S0Wg9FAmLHgOMEIGK0uslxuTGm8W+poPYEWjxMzmQlW1KU6HCWDjFUtwn1kN/YOyeDmpFocph2Py8r6JcWsqC3gTNcgZzp8BMNROnqG6egZpsBjZ3F1LiX5WXP+CfB8ZzAa8eQVAUUEgPdODPLmgR3kuS1UleSzasUSrNb06DCiKMplPg9UAZ8Gxqb4vEp2r+fSX2Cf/OgD1719KBSip7ePjq5uuvt76fMFMTnyyXK5ZzLMpDla9XrdQEU9cbPlOrdWlMQFKgXuI7uxeHsxDg8Snej/OpdZLUaW1uSxuDKHtgtDnGr3MTQapm8wQN/hc7idFpZU51FR5MJgUElvJshyechyeYgBJy8EeP/UaxS4LdTXLGDpkkVqWp2ipI/fBT4lpXzqZheat8lusqxWKxXlZVSUlwEQjUY5Jc8gW87T6wtgsOfpDeBTSAsHsXW1ABCoWZLSWJTMEyquIGa2YoiEsHecTvmAielkNBpYWOahptTNhf5RTrZ56fUF8I+E2dN4gWNn+llclUN1qRuTUV30lCmsNjtWWw0R4MDpIfYc2U6hx8bKpQuprqpUu/qKklp+4NB0LKSS3RtkNBppWLKIhiWLiEajyNPNHD3ZjnfMgCe/NCUPkvb202ixKHGDgUCFmPXzKxnOaCJQXqsPmGiXGZXsTtI0jZICJyUFTvoHA5xo9XKub4TRYISDp3ppbBlgUWUOdeU5mE0q6c0kDmc2OLMJArv2d2Hee4Kaslw2rluphlsoSmp8GfhnIcSXgWYgcuknpZThRBdSye40MBqNLFksWLJY0NvXz7v7jnLeG8KVVz6r9b2O1pMABEuqidnUBTbK9AtW6KODbV0tEB3P6IEl+R47t60qxT8S4kSrl/buIULhKEfP9HOyzYuozKW+3KPalmUg18QFbu2DYY4/8zrFOVbWrhBUVpSlOjRFmU/+N5ALHJ7ic3Eg4QffzP1NlSKFBfk8+uCdjI2N8c6e92k5N4g9pxyLZYYvgIiOY2+XAIxVqxIGZWYEKuoBMIyHsZ1vI1ie+X2c3U4rm5YtYHltPifbvJzt8hOOxGhs7udUmxdRkUN9ZQ5WlfRmHLPFQk5RDcF4nFfea8H2XiPLFpWxanmD6uGrKDPvielaSCW7M8ThcHDvnVuIRCK89e5+Trd34cyvmLGdXtu5VgyREACB6sUzcg5FiTrdhPOKsQx0Y+84PS+S3UlZdjNrFxexpDqXk20+znYNEhmP0dQywKl2H6Iyh0WVOWqnNwNpmkZ2TiEAh1uGeb/pFeqr8tm8YTVmc/p251GUuUxK+SaAEEJD78rQBRiklKFk11JPTWeY2Wzmrttv4Xc/fif5Zi++7hZi0ei0n8fRchyAUGEpUWd6dYhQMsvk7u7kKwnzjcNmZs2iQj58aw2LKnMwGjTGozGOtwzwq3daaDrbTzgy9c/4kQPvXHz/6MHdsxWyMo0cWS6yChbS6rXyr0/v5JVdbzM2NlVXJEVRboYQwiSE+Dv0tmPNQAXwIyHEU0KIpGo1VbI7S2w2G9vu+RC/85FbcdKDr7f9sqEWNyUew96m1+uqEgZlpgUq9YsfzYP9mPzeFEeTOnariVWikIduq2FRlZ70RsZjNJ4d4NfvtHC8ZYDIuN4DPR6P8+yPvsUPn/zvF7/+37/9dZ790bem73FAmVUWqw130UL6I7n84Nk3eXnX2wQCgVSHpSiZ5K+Bh4CHgQB6ne6TwCbgfyWzkEp2Z5nL5eKRbXfw8W3rMIy2M+Trvek1LT1dmMZGAAioZFeZYaHicmIW/ep0W8fpFEeTejaLiVX1+k6vmNjpDY/HONbcz6/faeFUu5dnf/gtfvnUtz/wtb986ts89+P/k4KoleliNJrwFNUwEMnl+z9/g1defZtgMJjqsBQlE/w28Dkp5U70RBcp5RvAZ4DHkllIJbspkp+Xyyceu4+ta0oJDDQTGBu94bUmuzBE3HlEcgqmK0RFmZrBSGCiVne+ljJMxW41sVoU8uCWGuorPBg0jVAkyssvvsDzTz951a/75VPfZv/unbMYqTITJpPevlAO33vmNXa8tptwOOHOSIqifFARep3ulfoBZzILqWQ3xUTdQj77xDYWlYC/p5nx8cj1v+gKk1PTxqqXgGqCrsyCyVIG2/lWtBv4P5vJHDYTaxYV8eCt1VSXZNP42vUnWv7gX76uyhkyhMlkxlO0kJ5ANt/72U7e3XuIWCyW6rAUZS56F/jDSw8IISzAVyc+lzCV7KYBg8HALRvW8Lsfv5scQz+DfZ0J/+Iz+fowD/YDqguDMnsCFXUAGMYjWM+3pjia9JRlM7OhoRibRTW9mY9MZgvZhbWcugDff/plTpxUJT+KkqQvAh8TQjQBNuDfgBbgNuBLySykkt00YrVa+fD9W3n0ruVEh1oYGxm87tdM7upG7U5CReUzHaKiABBzuAgVlAD65D5lapqm8dkvfO26t/vM57+mRtNmKLsjC3t+Lbsb+/jRz1/m/IXuVIekKHOClPIUIIBvAv8EHAX+G1AvpTyezFpqyyENLSgu4lOPb+Pw0SYONDZjz6nAZLZMeVtHy2QJwyJQTc6VWRSoqMfadx57x2l8qQ4mja3fcg+P/tYfT3mBGkD9xo8Tz1nOWDCCw6Z6tmYqpzuPeDyXF14/TmnuSe69YzNW6wwPG1KUOUwI8Q3gKSnl9252LZUdpSlN01i9chmf/fg95Fl8U5Y2GEf8WHv12m3VckyZbRdbkPkHME2U0ihTe+y3v8Cjv/XHHzjecOsnqdv0BC3n/Ly4u5Vjzf0X25UpmUfTNNz5pQzG8vn+M7s4+P5RVautKFe3CTgqhDgmhPhzIUTljS6kkt00Z7FYeOCeD/HY3SuI+i8vbbC3nQIgZrYQLK1JVYjKPBUuLCNq1ft6q1KGa9M0jY9+6j/y6T/+TUnDZz7/Nf7sL/6K1YsKsZgNRGNxjrcM8OLuFs6e8xNTSVDGMpnMZBfWcqQ1wA+feYmenptvQakomUZKuRUoBb4D3A80CyHeFUJ8QQiRVOsplezOEUVFhXzqY9tYVeNgaKJrw2S9bqCiHmZoDLGiXJXBQHDiQjW76rebkBVrt1x8f/maLRgNBhZV5vLhLfpgCoOmEQxH2X+8mx172+nxqslcmczh9GByL+S5nUd45dW3GR8fT3VIipJWpJQ9Usp/kVJ+CCgHfgV8AziXzDqqZncO0TSNNauWs3SJYNcrb2DragFUCYOSOoEKQdaZY3oLskiY+FVqy5Vrs5iNrKovpK7Mw5EzfXT2jDA4HOL1g52UFjhZVV+AK0v922YiTdPwFFbQEwjxvZ++wt1bVlBdVZHqsBTlIiHEKvTd1SXAGeCPpJT7rnH7LwGbpZSP3+gaV6xXgD5E4nFgC3AI+Eky34Pa2Z2DrFYrG3KdaPEYcU3DW7Ag1SEp81Sgoo44Glp0HNu5llSHM+c5HRa2rCjlrnXl5GbrU+rO9Y3w8nutHDndp+p5M5jFYsVZUMf295r59fY3iERU/2ol9YQQNuDX6G2/3MA/A78SQmRNcdssIcTfA/+TiYlnya5xxXqfE0K8DlwAvgC8Bggp5WYpZVKjJ1WyO0d5DxwAwLN8GQ212fh7molG1UtgyuyK2bMIF5YCanTwdCrIcXDPhgo2Li3GbjURi8PJNi8v7m6h5ZxfXdSUwdx5JXgjeXzvZ9s5c1b1sFZSbisQlVJ+R0oZlVJ+H+gBtk1x218AC9F3cLUbXONSfw7sB9ZIKZdKKb8hpWy7kW9CJbtzUGx8HN+h9wHIXbeWDWtX8tmP3YUr3ot/IKkyFkW5aZMDJuydzSmOJLNomkZ1iZsHbqlmSXXuxXrefce72bW/gwF/INUhKjPEbLHgKqjjtf3t/OqV11Utr5JKi4ATVxyTE8ev9Gkp5WPAlVdcJrPGpaqklH8upTwqhCgUQiwQQtxQ3qqS3Tlo6MRJoqP6hSu569cCYLPZeOSBO3jwtsWEvGcJjA2nMkRlHgmW1wITLciGvCmOJvOYTQZW1BXwwC1VlBXq4+AH/EF27utg3/FugmGVCGWq7NxivON5/OCnr3DuvBpGoaREFnDllbJjgOPKG0opr/afNOE1riSE+LIQYgDoRr8orV8I8TfX+7orqWR3DvLuPwiAo7ICW1HRZZ8rLyvhM09so6HMxFDvWcbHVd2XMrNCheXEzHpzfJva3Z0xToeFW1eWcvuaMrInLlZrOefnpd2tnOn0qVZlGcpiseIoqONXrzfy1u59qoRFmW2jgP2KYw4gmR21G13jq8BXgL8CVgJrgK8BfyCE+PMkzq+S3bkmHo/j3b8fgNz166a8jaZpbFy3is88fidurQ9fX5d6gFRmjtFIsEzv86yS3Zm3IC+L+zdVsbK+AJNRIzwe4+DJXnbubad/UJU2ZCp3QTnNfUZ+9MxLDA0NpTocZf44iT6y91KCD5YlzMQafwD8gZTy/0opj0kpD0sp/wX4w4m3hKlkd44JdHYSmmhAnrtu7TVva7PZeHjbHTx651LGrxhIoSjTKVA+UbfbdRZi0RRHk/kMBo3FVbk8cEsNlcUuAHzDIXbt72D/8W5CYXUfZCK7w4khu4annn+HxuOnUh2OMj+8DlgnBjmYhRC/CxQCO2ZhDQ/QNMXx40BSbahUsjvHTJYwmD0enHW1CX1NyYJifudj21i9MIvh3mbC4dBMhqjMQ5N1u4ZwEEuvukhytjhsJjYvL+GOteUXSxvOnvPz0rutqmtDhjIYDLiLFvJeYy8v7XiTaFQ9sVFmjpQyjD697BPAAPB54CEpZUAI8aQQ4skpvizOJa3HrrXGdU5/CH1390q/DxxJ5vtQQyXmmMlkN3fdWjRD4s9VNE1j9cplLGtYxOtv7+Ps+fNk51diSGINRbmacXcekexczENe7B1nCBerpvizqSjXwf2bqpAdPprO9hOK6F0bWs77Wbe4CLfTmuoQlWnmyimkLxjghz97mUe33YbH4051SEqGklI2ArdMcfxzV7n9f010jev4MvCmEGIrsA+9ndkGoJ7rty27jMp05pDw4CDDp/VeppNdGJJlNpu5984tfPLDm7GEOhnyqit8lekxubur6nZTY7K0Ydvm6otdG/p8AV7Z08bRM32MR9VAikxjsdmx5Nby01/v5vhJmepwFGVaSSkPAKuAt4AqoAjYjj5Y4p1k1lI7u3OI7+AhiMcxWCy4Vyy/qbU8Hjcfe+ReWlrbeXtvE+OWfBxOtTOg3LhAeR2u4/ux9naihQLErVdefKvMhiy7mVtXltLVO8KhUz2MBcc50eqlvXuYdYuLWJB/zaFFyhyjaRrZhQvZfbSbjq4e7r1zi3rFTskIQohngK9JKf/kZtdK6idCCFEihNgqhHAIIYpv9uRKciZLGNwrlmO0Ts/LkjXVlXz6iW2sXuhgpK+ZUFBdza3cmGBpDXHNgBaPY+tSo4NTrazQyQObq1lclYumwWggwpvvd7Gn8YLqzZuBXDlFdI9m8eOfv0wgoB7HlYxwJzAtD1YJ7exOzC/+HvA4etFxPfBNIUQe8KiUsm86glGuLhoKMXjkKHD1lmM3arKed8WyJbz93gFOtZ7HmV+J0ag2/pXExa02QsXl2C60Y+88Q2BhQ6pDmvdMJgMr6wuoXODiwPEeBoaCtF0Y4nz/CKvqC6kuyUbTtOsvpMwJVnsWMUs1P3x2Fw/euZ7SErUnpcxp3wS+J4T4R6AFuOxZnJQy4Rn1ie7s/j1Qhj7abQw94f1zwAb8Y6InU26cv7GJWEjvopC7ds2MnMNoNLL11o185vE78Gh9+HrbicVUnZ+SuMm6XXvnGVCdANJGjsvGXRsqWLOoUO/NG4mx73g3bxzqYngsnOrwlGlkMBpxFdbzq9ePcvjoVF2bFGXO+DpwK/AccBg4dcnbyWQWSjTZfRj40qVZtJTyJHpT3/uSOaFyY7z7DwDgrKvDkpszo+ey2+18+P6tfPLBDdjGzzPYf061MFISMtlv1zQ8iMk/kOJobtx4JEwwMMrI8CB+Xz++gR58fefw9Z1j0NvL2Ogw0ejcKgUwaBr1FTlsu6Wa0gL9ArYe7xivvNfGyTYvsZj6Gc8k7oJK9p/y8cqut9WmhTJX1VzjbWEyCyX6OnU2MNXIlhhgTuaESvLisRi+A4eAG+/CcCNycjx89MN30dPTyxvvHcYXsODOS6qPszLPhAtKiVrtGEMB7J1nGPbkpzqkq4qEw4wMDRCPjGEzG7DbTNhtJhw2Ey63HWeWHZvVjd1mxWazYjabMRgMjI6O4hscwucfZiwQJhwZZzQQwTccJGbMwuUpSOsSoCybmVtXltDVO8LBkz0Ew1GOnO6jo3uYDQ3FeFyqTVmmcHkK6B4b4yfPbufxh+/EOk3XeijKbJBStgEIIVYDi4EocHRiszUpiT4i7wT+Sgjx2ckDQoh89PKGXcmeVEnOyNkWwl4vMP31uokoKirkiUfvpb2jk3f2NTESzSI7p3DW41DmAIOBYNlCss42YetsZnjZplRHBEwktv4+tGgQt9NCttNCXqGT2g0N5OXlYTQaE17L7XZTUlLygePxeJze3j5Onm6hzzuKdziIZsnB6c6dzm9lWmiaRnmRi6JcB4dP99Fyzo93KMj2vW00VOexpCYXo7qiPyNYbQ6i5gr+/ZntPPbAbeTN8CuDijJdhBAlwPPAWsALGAG3EOJV4HEppT/RtRJNdr8I/BLoAxzofc7K0GsmPnuNr1OmwWQJg7WwAEdl6pr1V1aUU1lRTnNLG3sPnVRJrzKlYHmtnuyea4HoOKRglzMUDDDi78VhiuHJtlKRn82iTSvIy8ubsQuyNE2jqKiQoiL9ZyIejyNPN/N+Uwu+gBFPfumMnPdmWMxGNjQUU1nsYv/xHkaDEZpaBujoGWbj0mLy3Kp9XCYwGk1kFdTzzIvvce9ty6ipUkNflDnhu+gXpdVKKVsAhBD1wPeBfwF+O9GFEv0t5JNSbhBC3AEsmfi6E8AuKaUq9JphF0sY1q1Liyuna2uqqK2p4mxLG3sOnWJ43I47tyjVYSlpYrJu1xAJY+3pJFRSPePnHI+EGfL1YDeNk5dto7Y0h8V3bMblcs34ua9G0zQWiToWiTr6+gfYve8o/r6Oi5+Px+PE4/G0+Jkuzsvi/s1VHGvu53SHj6HRMLv2dbCoKpdlC/MwGtUu71ynaRruooXsePc0631+1qxaluqQFOV6bgc2TSa6oHdgEEJ8Hng7mYUSTXabhBCPSSlfB15P5gTKzQn19THa2grMbr1uIhbWVLGwpoqW1nbeO3iS4YiV7NzitPjlraRO1OUh4inAPNiHvePMjCS78XicocE+CA+Rm22lvMDN0lvWkpOTni/RFuTn8ci2rdx3xyZuWbeI0x1+3IXlqQ7rMmaTgTWLCqksdrG3qZvhsTAn27yc6xthQ0Mx+R61y5sJ3PllHDzdx4DvXe7eulk9XivprBOoBRqvOF4AJDX+NdFk15LMosr08U7s6hrtdrIblqQ4mqnVVFdSU11JR+c53jvYxMCIAU9BmXoQnccC5bWYB/v00cEb75mWNcPhECO+C7isUJjrYMvmasrLSufMtChN07Db7dy9dQvrBv28tOs9RnHjzE6vmt58j537NlXSdHaAU21ehkbDvLq/A1GZw7LafExql3fOc3kK6PQP8/MXdvLYh+9KqmZdUWbRPwDfmShdeAd9wMRq4GvAvwkhLv5ykVLuvNZCiSa7PwF2CiGeZurGvt9NPHYlGb6D+tQ0z6qVGMzp3fiioryUivJSBga8vL3nMOe9YbLzy9P6ynRlZgTLa8lu3IOl7zyGwCgxe/IjauPxOCNDg0QDXvLdVqoW5LB86xacTucMRDy7PB43n/zofRw+2sS+Y80486vS6ufEZNSHUZQVOtl3vJuh0TCn2n2c6xtl41K1y5sJ7A4XYyEzP/75yzzx6D2qU4OSjv514u+/neJzX73i42s+C0/00fXj6MMkHrrK51WyOwOiwSCDx/Sm4Lnr0quE4Vry8nJ59ME7GRkZ4e0979PRPYwlewE2myPVoSmzJFhaQ9xgRItFsXWdZaxueUJfF4tF8fWfw2mOUpBjZ92qChbWrM/InafJyYWLRS0v7dpN/5A17S74zPfYuW9jJY0tA5xq9TI8pu/yLq7OZenCPNWxYY6zWG1ETdX88JntPPHIHSmtcVeUK0kpp+0BJqFkV0pZNV0nVBI3ePQY8UgENI2cNatSHU7SnE4n2+6+jfHxcQ68f4yTLS1EDNm43Onbe1WZHnGzhVBxBbbzrdjOXTvZDQUDjA1247BGyY4P8MAdd1JeXjaL0aaW3W7now/dzfGTkrcPtpBdUJVWJUBGo4GVdQWUFzrZ26Tv8p5o1Wt5Ny5dQG62LdUhKjfBaDRhz6/jx794g4/cv4miwoJUh6QolxFCaEwx00FKmfD4x4RfNxNCuIBPo3djMAISeEpK2ZPoGkpyvPv1EgaXqMfsdqc4mhtnMpnYtH41G9fFOXO2lfebztI/FMOTX4YhA3fsFF2wbKGe7Hadvey4Xp7gIxb0UZBjo7Y0j+X3bgXg+PHjFBTMzydDDYsFebk5PL9jL878hWn3s5HntnPvxkoam/s51e7DPxJm5752ltbksaQ6D4MhfRJ0JTkGg4Hsojqe276f+1RrMiVNCCFuB74N1PPBMoU4ei6akISSXSHEUvTBEuPAgYmvexD4SyHEbVLKE4meUElMPBbDd2iy5djcKWG4Fk3TqK+tob62Br/fz96DjbRdGMRgzyfL6Ul1eMo0C5QtxLP/VcxDPjRfLwORMA5zhHyPjXWrKqhduPGyi8uCwWAKo00PxUWFfPrxu/nZC6+CvQyLLb1qY01GA6tEIaWFTvY1dTMSiNB4duBiLa/bqeo+5ypN0/AULWTH7lNsGR1jWcOiVIekKN8FjgN/whXXiiUr0Z3dfwJeBX5PShkBEEJYgH8DvgncdzNBKB80craFiG8QgJwMSXYv5Xa7uffOLcRiMU6dOsOx0x0MDEVx5ZViMqX3hXhKYgazPBSazBjHIyzoO8E9n3ycvLy8VIeV9ux2O596fBu/euUN+oezyHKlXzu1whwH922q4uiZPs50DuIdCrJjbzsr6gqor/CkVRmGkhx3QQW7j54nGAyzbk1itfaKMkNKgAellKdvdqFEi383AX87mejCxVqJvwW23GwQygf5DuglDNbCQhwV6dWPczoZDAaWLBE88cjdfPojWyjJGiLka8XXd45YLJbq8JQkxKJRfP3nGek/i338AmvrHeSt1H9ZFgdGVKKbBKPRyKMP3oVYYGTYdyHV4UzJbDKwdnERt68pw241EY3FeV/28sahLkaDkesvoKQtd14Jh5sH2b3nYKpDUea3XwIPTMdCie7s9gKl6OOBL1WC3qVBmWbeiWQ3d92aebNL4nQ6uev2WwDo7unl4JETXOgfJWZy43TP3JhX5caNDvsJjw3gyTJRlJvF3WuWUlhYcPG+Ot/RweDBQ/iPNRGPxdDU1ftJue2W9WQfO87epnNk56XfuGGABXlZbNtcxcGTPbR3D9PjHeOV99pYVZ+PTVMDNucqp6eQk10DBN94lztv35zqcJT56S+Bo0KIT6C3vb30ASUupfxkogslmuz+CPiuEOKLwL6JY5uAfwSeSvRkSmJCAwOMtuhT0zKx8aiOogAAIABJREFUhCERxUWFPHhvIfF4nJbWNhpPtdHrGyNmzMblyVeJb4qEwyGGfd04rXHy3TZWLCmmvm415qv0gPas0Hd2x4eHGW1rw1lTM5vhZoSVyxvQDAb2HEvfhNdiNrJ5eQmlhUMcPNFDeDzG/hO9FGSbyMmNYjKlTw9hJXFZ2Xm0+QZ5aedb3HnbhlSHo8w//wrEgFZg8qKOOKBxeeJ7XYk+Av13oBh9S3ny6rcI+lVyf5bMCZXr801MTTPYbLiXNqQ4mtTSNI2FNdUsrKkmHo/T2XWOYyfO0uMdZTRiIhZTSe9MioTDDPt6sJki5GbbqCp0s3zrLQkPdrCXlWLJzSXs9TJ45JhKdm/QiqWLAdh77ByuNE14ASqLsynw2Nl3vJvugTH6hsbZub+TjUsXUJyX/GARJfUcWR56AyM8//Lr1FakVx9oJePdCnxISnngZhdKtM9uCPh9IcSX0VtABIFmKaUqYZgBkyUMOatWpP3UtNmkaRoV5WVUTPRg7ejo5OWdrxMfieALgiUrjyzX3G3Rlg6CwTHG/H3YTFFyJpLbhtvW477B1neapuFevoy+N9/Cf/QYZR95ZJojnj9WLF2MQdN492j67vACOGxmbl9dhmz3cvRMP4FQlDcOdbGoMofldflqEMUcZLM7GR2J8fruQzQ0zO8NGGVWNQPT0uIl0dZjdvQZxc1Syn+cOHZCCLET+EoyjX2Va4uGQviPNQKQs3Z+ljAkqrCwgHWrltLQ0IDRaOT0mbOc7eimfzDIWBjsrgLsDrWbdDWxWIyR4UGigUGys0y4nRbqK3JZVJf4zm0iPCuW0/fmWwydOEksHMZgsUzb2vPNZDuodE94NU2jtsyNMTZGc/c4gyP6uOHugTE2LVuAx6ValM01FpuDmKOSZ3/1Kr/1+AMZOdVQSTtfB34ghPgWeuJ72ZWvUsqdiS6UaBnDt9BrdH96ybGvAH8H/E/gi4meULk2/9FjxMJhfWra2jWpDmfOMJvNNCxZRMMSPRkYGxvjdHMLnee78Q2HGBqLYrbn4Myen22R4vE4o8ODhMcGcVg13E4LbqeValFKRfm6q9bcTgf3imUAxMJhhk5JPMuXzdi55oNlDYswGDTeOdyV1gkvQJbNyJ1riznRNsjJNi+DIyF27GtnpWpRNieZLVbC1kKe/sV2nnj0XlWLrcy0n038/b+v8vmEXyZK9H/qI8A9Usr3Jw9IKV8UQvQCL6KS3WnjPajX67rq67B41EvyN8rhcLBy+VImOl8RDodp7+iktaOb4dEQ/tEwY8EYZruHrGzPZcMN5rpgcIzAsA8tGsTpMOF0WMjOslBZW0xF+Wqs1tndVbPm5WEvKyPQ1YX/6DGV7E6DhsWCUCjMgVM9uHKKUh3ONRkMGivrC1iQn8XepguMBcd5X/ZyYWCUDQ3F2K0qYZpLLBYrUVM5P3luO5/4yL0z+kRZmd+klNP2iznRRxkDU49lCwNqMPo0icfjFy9OU7u608tisVBXu5C62oUXj4VCIbrOXaCt8zwjYxFGA2FGAxFC4xoGaxYORzZmizXtdp/i8TihUIBgYIRocBSLOY7TZsZuM5FlM5NfkU115SpycnLSJnbPimUEuroYPNZIZaqDyRCrVy5jZHQ/8ryPrOz0GzxxpaJcB/dvquLAyR46uoe50D/KK3va2NhQTEnB9JXNKDPPbLEwrlXw1LPb+eRj92JRpUnKNBFCWCZLYyeGl11VMiW0iSa7vwa+JYT4jJTy1EQQdcA/Ay8nejLl2kZbWgl7vQDkrlf1ujPNarWysKaKhTVVlx0Ph8P09vbR3dvPoN9LIDxOMBS9+Hd4PAoYwWDBYLJgsdqxWK0YjaYbSi7j8TjR6DjR8XEikRCRcIj4eJh4LIzJABaLEZvZiM1qwmYxYrOZyF3gojC/lvz8vFnfqb0R7hXLufDSK4w0n2V8ZBSTU9VST4fbblnP8I436R4bnRP16Razkc3LFlCSn8XBkz2EwlHeOnyO+goPK+sKMBoz5xWWTGcyWxjPruKpZ3fwWx9VCa8ybYJCiGIpZS+/aTc2lThTb8JOKdFk90vAL4ATQojJDgwOYAfwHxM9mXJtk10YLPn5OCrV/leqWCwWyspKKSubuh5S31kNEQgEGBkZxT80jH94lHB4hGgsRizGxN9xorE4k/mvhjbxt/6HyWjAaNAwGDSsVgs2qwVnVj4etwuHw4HD4ciYi0DcSxvAYIBYDH9TE3kbVc/O6bLtng/x8xd2MhY2YbGk/xMfTdOoLnGT77Gz59gFBoaCnO4YpMc7xi3LS3A70/97UHQmkxnNU60SXmU63QH4Lnl/WiTaeswrhHgcKASWAIsnPnVQStk3XcHMd76LU9PWps3Lz8oHaZqGzWbDZrORk5ND5g5znj6mrCxcdbUMy9MMHj2mkt1ppGkaj334Lp569hWixiqMxrlRA+tyWLhrfQVNZ/s53urFPxJmx952VotCFpa51WPgHGE0moi71Q6vMj2klG9O9f7NSug1IyHEI0AnsAA4DHwZ+Djw84mpaspNCg14GWk+C+gjghUl07gnpqn5jx5LcSSZx2g08vFH7ibkbSEWi6U6nIQZDBrL6wq4c205dquJaCzOgZM97D56nlAkmurwlASZTGaM7ip+8twOIpHI9b9AUWZZogVSXwf+Wkr5KvB7QKeUsgF4AvjPMxXcfOI7dMnUtGVLUxyNoky/yS4MgXPnCfUPpDiazGO1Wvn4w1sZ7jub6lCSVjhx8VpZoX6hWlfvCNv36CPClbnBZDJjyK7iqee2q4RXSTuJJrt1wNMT738YeGHi/Ub03V7lJnn36yUMnhXLVdN9JSO5FomL/7f9x9Tu7kxwuVw8eMdq/H0dqQ4laVaLkS0rSli7uBCDQWMsOM7rBzppPNtPLB5PdXhKAkwmMwZnJT9RCa+SZhJNds8Dq4UQq9Frdl+aOL4NaJmJwOaTaCh08aVd1YVByVQGs5nshiUADKpShhlTXlbKxmUljAzOvcspNE2jrjyHezdU4s6yEAeazg7w+sFOxoIqeZoLTGYLmrOSp3+xg/Hx8VSHoyhA4t0Y/gH4+cT7+6SUu4UQ/wX4S+B3piMQIUQTUA1MFpy1SSk/0H1eCGEFvo0+6CIC/LOU8hvTEUOq+I816lPTUP11lczmWbGcwcNHGDx6jHg8ri5CmiGrViylb+BduoZGsNnnXg9bj8vKPRsrOSx7ae7y0+cL8MqedjYuLaZU9eRNeyazhYijgp/+cgef+Mh9GdNVZr4SQqwCvoO+2XkG+CMp5b4pbvcJ4G/Qmxm8AfzeRAsxhBCb0dvV1gEXgP8qpXx6ijWeRm8rNvnLYfJlnSs/Rkr5yUS/h4R2dqWUTwIb0C9Km2wFsQNYJ6X86VW/MEFCCDsggDIppWvi7Wpjlv4GKAeqgC3Af5joFDFneScGSTjr6rB4PCmORlFmzuTo4IhvkEBnZ4qjyWx3b92MI9rHeCThvutpxWQ0sG5JMbcsL8FsMhCORHn78Dnel71EY6qsId2ZLRai1lJ+/sLOOXXRpHI5IYQNfdbCvwFu9IT1V0KIrCtutxx4Ej1PzAe6ge9PfM4IPA98Q0rpBv4D8O9CiIopThmaeAuiJ7hPAAuBAaAHKAM+Bowm830k3KNGSnkYvRPD5Md7kjnRdSwDuqWUvuveEn4beEJKOQwMCyH+D/AZfrPzPKfE43F8BydajqkSBiXDZVVVYXI5GR8ewd/YhKNiqsc6ZTpomsZjD93Fv//sFYz5dXN2F72i2EVutpX3Gi8w4A8i2330+cbYvLwEl0Nd35DOzFYbgXgRv/j1qzz20N1z9v/gPLcViEopvzPx8feFEF9CL2O9NO/6LeB5KeUBACHEnwF9QogC9Ffs8wGzEEJD350NAR9ouSKl/Mzk+xO7vF+XUv6/l95GCPEX6JudCZu1cTVCCKMQwjPFWzawCogIId4TQvQKIXYIIRZNsUYO+vb4iUsOnwY+cNu5YrSllfDAxNS0dSrZVTKbZjDgXqp3Gxk81pTiaDKf2Wzmow9+iKHeudeh4VJOh4W71lWwuCoXAO9QiO172mnvHkpxZMr1WG0O/LE8Xnj5NeLqQsO5aBGX51wAkg/mXeLS20kpvYAXEFLKAfTy06eBMPA28AUp5bnrnPth4MdTHH+OJAdOzGb38a3AzimOtwH/A9gPfAXoBb4GvCyEWCKlvHRc3OS2+aX9aMbQp7klLBQKJXPzGdX7nr5Bbs7Lw1BcRDB4rel4yqUm78d0uj+V63MsXsTAnr34GxsJjI2hGfTn3Or+nBk2m5XbNwhe3XsWd37ZrJ138uKk6bxIaWlNDvluK/tP9BCKxHjv2AW6+0dZWZenRg3PsJu5P80WKz2jWbzw4qvce9cWtcObBpJ4nM3i8pwLps67rnq7id3cMeCjwK+Ae4CfCCEOSymvdbVyK/AR4O+uOP5p4GSi3wDMYrI70aP3Wo9G373k/b8SQnweWAFcWgQ9+Q9pB0Ym3ndc8n5Cmpubk7n5jAq9+x4AsepKTpy48smTkoh0uj+V64vZ9HGw0dExml57HUPJ5d0L1f05M5yaj/aWAHane1bP6/V6p3U9A7Cqxs7JriD+0Sgt54fo8Y6wpNyOw6oS3pl2M/dnX98o53/0DBvWqF7yc8goes51KQcwfMWxqRLgyfzsMWCDlPIrE8dfFkK8iN7g4E+vce4vAy8IIR4EjqD/+G9An+J7fzLfRFrMlRRC/AFwVkr52sTHJsCMXqB80cTY4l707fPJvjoCOJ7M+Wpra7FaUz9/Pez10XihG4Dqu+/C3dCQ4ojmllAoRHNzc9rcn0pi4vE4jU8/Q8TnoyAQpHji/726P2dWQ0MDv3zpNcaMHszmma91HR8fx+v1kpubi8k0/b9qykrinGj1caLNx2gwxvstY6wRBVQWu6b9XMp03Z+FjA4N4BsKsGWTKttLpcnH2wScBL5wxTEBPDXF7cTFGwiRD+ROHN8IXPmgHkXvqHVVUsqXJy58+130ThAx9AqBj0op2xIJflJaJLvogym+KIS4D/2Ku78DTkopj05x2x8D/0UI8VH0gufPo2f/CbNardhstpsM+eYNNuk1iwabjYLVq9QwiRuULvenkjjPimX0vfk2oydPYfvYRy/7nLo/Z87jD9/LD3768qxesGYymWYk2QVYUV9IUV4WexovEAxH2X+il35/iDWLCjGpsoYZcbP3pzu3iLM9vWQ3SdavXTGNkSkz5HXAKoT4Anr7sU+hXzu144rbPQ28JYT4HnAI+FvgZSmlTwixC/iGEOIzwL8Dt6G3j916vZNLKU9OXOxWBXQCBill0rVu6fJo8Dfo/3D70VtLVKP/QwAghBgWQtwy8eFX0S9KOwW8A3xXSvnc7IY7PdTUNGW+ci/TW5ANnThJTE1amjUmk4mPPHAbQ72ZMwuoOC+L+zZVUZynv4Lacs7Pzr3t+EdU7Xe6cuUU8v4ZL43HT6U6FOU6pJRh9JKBT6BvRn4eeEhKGRBCPCmEeHLidkeB3we+h57HFQOfnfhcI3q97n8CBoFvAb8jpXz/WucWQpiEEH+HXkpxBqgAfiSEeGqiZW3C0mJnV0o5DvzJxNtUn3dd8n4Q+NzE25ylpqYp85l7uV6zFwsGGTnTTPaSxSmOaP7IzfFw+4Z63j58DldOcarDmRZ2q4nbV5dxotVLY3M//tEwO/e1s3ZxEdUls1ujrCQmO3cBu490YbVYqK+rSXU4yjVMJKu3THH8c1d8/HOu0gZWSvki8GKSp/5r4CH0rgy/QG9Z9iR6z9//Bfxxoguly87uvHNxapqmqalpyrxjKyzEVqwnWoPHGlMczfyzWNRRu8BCYOzKa0zmLk3TaKjJ44615ditRsajcfY2dbPveDfjUTXUIB2588t4dd9pOjq7Uh2Kkp5+G/iclHInE5PTpJRvoM9WeCyZhVSymyLeA3oJg7OuVk1NU+alyd1df6Pqt5sKd9y2CXu0j2h0+lqDpYPCXAf3bbyirGFfO0OjqqwhHXkKqnjpjaN09/SmOhQl/RQBUz0T6geSmhuukt0UiMfj+CZGBKtBEsp8NVm3O3xKElW9dWedpml85ME7GBvInPrdSTariQ+tLmNZbT4a4B8Js2NvO20X1BCKdJRdWMMvtu/F71f3j3KZd4E/vPSAEMKCfu3Wu8kspJLdFBhtaSU80atQ1esq89Xkzm58fJzhk+pClVSw2Wxs27oGf19nqkOZdgZNY2lNHlvXlmOz6GUNexovcOBEN1FV1pBWNE3DXVTHT194XQ1WUi71ReBjQogmwIZeq9uC3s3hS8kspJLdFJgsYbDk5+OorExxNIqSGhaPB0dFOaBKGVKpvKyU5XW5jI4MpjqUGVGU6+C+TVUU5uhlDc1dfnbt72B4LJziyJRLaZpGVn4dP/nFzmmduqfMXVLKU+i9e78J/BNwFPhvQL2UMqn5CirZTQHv/gOAXsKgxiYq85l7uV7KMHhUXaSWSpvXr8Zj9DMeycwE0G41sXVtGQ01eQD4hkPs2NtOZ0/mXKCXCQxGI0ZXFc88v5NYTO2+z3cTPXvNUsrvSSn/VEr5n6WU30Xv+/uLZNZKi9Zj80mor5/Rs3qNXO6GdSmORlFSy718GRdefJmRs2eJjl05Vl2ZLZqm8fC2rfzgme1kzeLAidlk0DSW1+ZT4LGzp/ECoUiU3UfPIypyWFFfgNGQed/zXGS2WAjFinnh5dd55IE7M/L/onJ1Qojb0KfkauhdF04IIa4s5l4M3JXMuirZnWXe/fsBMDocuJeq8cDK/OZuaACDAWIxvW7XpsYEp4rFYuGhuzfyy12HcRdkbnnVgvws7ttUybvHLtA/GEB2+Oj3B7hlRQlZNnOqw1MAq82Bd3ScXW+8xz13fKC9q5LZ/MBfXPLxF9FHC0+KAyPAnyazqEp2Z9nAPr2EIWfNKgxm9cCqzG8mZxbOmmpGms8y3HQc1q5OdUjzWnFRIeuWLODw2QGysvNSHc6McdjM3Lm2nKNn+jjV7mPAH2T7nnY2LVtASX5WqsNTAHtWNm39/by77xC3bFC96OeLiUls1QBCiDeBR6WUvptdV9XszqLxkVGGmvSa6tz161McjaKkh8m63eGmEymORAFYu3o5ebYAkXBm1u9OMhg0VolCbl1ZgtlkIByJ8tb7XRxr7icWj6c6PAVwuvNpah1SY4XnKSnl7cAdQogHJ48JIf4/IcQjya6lkt1Z5Dv0PvFoFM1kImfNqlSHoyhpYTLZDXR0EB8dTXE0CsBD999O2N9GfB4kfWWFLu7bWEmOSy+hOd4ywJuHugiEVEeAdODKWcDuwx20tWdeezzl2oQQ/w/wAyD/ksNe4IdCiD9KZi2V7M6igX16va57aQOmLPVSmaIAZC9ehGbSK6pibe0pjkYBMJlMPHzPJob658f94XRYuHt9BbVlbgB6vGPs2NtGr09dNJkO3AUVvPzmMfoHvKkORZld/wn4hJTyB5MHpJR/BvwOSdbsqmR3lsQiEQbfPwxA7gZVwqAok4w2G676OkAlu+mksLCAdUtKGBmaHwmG0Whg3ZJiNi1bgNGgEQhFef1gJyfbvPNihzvduYtqePbFdxhVr/7MJ3nAmSmOnwBKk1lIJbuzxN/YRDQQACB3vWo5piiXmixliLW2pTYQ5TJrVy8nzzqasf13p1K1IJt7N1aSnWUhHocjp/vYffQ84Uj0+l+szBhN03AW1vHT518jEomkOhxlduwDviKEME4eEEIY0Ds0HEpmIZXszhLvRAmDs3Yh1vzMvcpZUW7ExdHBXh/hgYEUR6Nc6qH7byfoa51Xu5tup5V7NlRSUewCoKt3hB172/EOqVG2qWQwGDC71dCJeeRLwMNAmxDi10KIF4E24HH0EoeEqWR3FsRjMbz79RHBqoRBUT7IVV+PNtGKb/i46sqQTsxmMx++eyP+vo5UhzKrzCYDm5ctYO2iQgwajAQi7NrfQXPX4LxK/NONyWwhbC7mpR1vpjoUZYZJKY+hD5j4H0AHcBr4BlArpVQ7u+lm5GwLYa9e96ZKGBTlgwxmM85FAoDh4ydTHI1ypQXFRaxZXMTo0E23u5xTNE2jriKHu9ZX4LCZiMXiHDjRw77j3YxH1c5iqljtWXSP2nn73f2pDkWZYVLKfuB54Dngq8DzUsqk53yrZHcWePfuA8BWXISjsiLF0ShKenI1LAFg+PjxFEeiTGXD2pV4zEOMj8+/esk8t537NlaxYGLgROv5IXbua2dodP7UMqebLFcOJzoCHG1ST44zlRAiSwjxM6AT2AUsAP6vEGK3EKIgmbVUsjsLvPv1qWm569epOd+KchWTyW64r59gT0+Ko1Gm8vC2rQS9rakOIyWsFiMfWlXK8tp8NMA/EmbH3nY6e5LeZFKmSXZuEXuOdKoevJnr74Ey9FKGMfRRwX8B2IB/TGYhlezOsMCFC4x16D+Iql5XUa4uq6YaLBYA/McaUxyNMhWLxcK2O9bh75ufyYWmaTTU5HH7mjKsZiPj0Ri7j57nfdlLLKbqeFMhu6CCV946xoB3fpXYzBMPA1+SUp6ePCClPAn8IXBfMgupZHeGeffpu7oml4vsxYtSHI2ipC/NZMJQUQ6Av1GVMqSrstIFLK3xEBjxpzqUlCnOy+K+TZXke+wAyHYfrx3sYCw4/0o80kF2YQ3PvfQ2waDqlpFhsoGhKY7HAHMyC6lkd4ZNthzLXbcGzWi8zq0VZX4zVFUCMHisUV3xnsa2bFqLPT5ANDp/R+o6bGbuXFvOosocAPoHg2zf0073gBp6MNs0TcORV8tPn99FNKr6IWeQncBfCSFMkweEEPno5Q27kllIJbszKDI0xNApCUDuelXCoCjXY6iuAiDi8xE4dz6lsShXp2kaH3nwDkb752f97iSDQWOVKGTLihLMJgOhSJQ3DnXR1DKgnqzNMoPRCI5ynn/pdfVvnzm+CNQDfYAD2I7egiwX1Wc3fXgPHIRYDIPFgmfVilSHoyhpTysqxJjlAMDfqOp205nNZuPuW5fj7z+X6lBSrrzIxb0bKvE4rQA0Nvfz1uFzhMJql3E2Waw2BiPZvPH23lSHokwDKeV5YCPwGHpy+y/AI8BaKWVXMmupZHcGDbyn/8C5VyzHaLOlOBpFSX+awYBrid6Vwd/YlOJolOtZWF1JfZmdwJh66d6VZeHuDRVUl2QDcKF/lO172xjwB1Ic2fxid7o5cyHCkWOq7j8TSCnjgB8YBHqAzoljSVHJ7gwZHxll8MhRAPK3bE5xNIoyd7gaFgP6RWpxNRI07d1x2ybM4QtqfCtgMhrYuHQB65cUYTBojAXHeXV/B2c6fOql9Vnkyilkz7FzqiXZHCeEKBFC7AcOoLcaexI4LoTYKYRwJ7OWSnZniHf/fuLj42gmE7nr1qY6HEWZM1wNDQCMDw1dbNunpC9N0/jIA7cz3NeS6lDSxsIyD3evr8BpNxOLw8FTvexpvEBkXD0hmC3uggpefvMoXt9gqkNRbtx3gQD6eOB8KWUOes/dLPSShoSpZHeG9O9+D4Cc1aswZWWlOBpFmTts5WWY3fpLwapud25wOp1s3bCIIW93qkNJG7nZNu7dWElpgROA9u5hdu5rxz8SSnFk84e7aCHPvvgWoZD6N5+jbge+IKW8+Ex6oufu54GHkllIJbszYHxkhMGjxwDIu2VTiqNRlLlF0zSyl+q7u6pud+5YJGqpyNcIBcdSHUrasJiN3LqyhJX1BWgaDI3qU9faLkzVOlSZbpqmYc9byDPP71JlNnNTJ1A7xfECIKln1irZnQED+yZKGMxmctevS3U4ijLnuJctA8DfdJy46ps5Z9x3563ER8+p+tRLaJrG4qpc7lhbjt1qJBqLs6fxAgdO9BBVCdiMMxpNjNtKeHHHm6kORUnePwDfEUL8mRBisxBivRDij4AfAD8VQtwz+Xa9hVSyOwMG3t0DQM6qlZgcjhRHoyhzj3vZUgCio2OMtralNhglYQaDgUfvvxV/7/zuvzuVwhwH926sojBH/53Q3DXIq/s7GRkLpziyzGe1OegZsfPu3kOpDkVJzr8C+cDfAruBvcC3gQXAV9H77k6+XZPpejdQknN5CYPqwqAoN8JeWoIlN5ew14u/sQln7cJUh6QkKCfHw+ZVVbzX2JvqUNKO3Wpi65oyGs/2c6LVi3coyPa97WxauoDSQmeqw8toWdk5NLZeIC+nmUViqlfGlXQjpZy2DVm1szvNLi9hUF0YFOVGaJp2cXdXXaQ296xctoTCrBDjEbVreSWDQWNFXQEfWlWKxWwgMh7j7SPnOHK6j1hMlX/MpOzcBbyx/zS9vX2pDkVJgBDik1c57hBCfDOZtVSyO80G/n/27js8rvO88/73TME0TEEHCBKdfNh7J0WxNzVKslVsy47j9cYt2StxNs7mTZxks7HX3vhNNt5EsTe2Yie2ZMmymiWSEkVKlNjFXg8bCtH7YIABBoOZ2T8GpCiIEgERwAFm7s914RJx5nDwGw1A3PPMfe5nX/8UBmlhEOKOeGf3F7tnzxPt6zM4jRiqzetW0NN2Vfp3P8KErFQ2Ly0iwxPfcOh8RSu7j14j2CPf6yPJk1XMCzsOEAzKhZTjwE+UUr9WSmVcP6CUWgecBh4Zyh1JsTuM+jo7aT8hLQxCDIfrK7vRnh46L18xOI0YKovFwor5U+hoqjI6ypjlclhZt7iAKQU+AJrautlxsIL6FtmRbqRomoYrs5RnX3qTiFz8OihKqXlKqcNKqU6l1HGl1JKPOO9xpdTV/vNeUUpl33TbRKXUb5VSfqXUNaXU7w/iS88D8olvJPG4Uupfge3AS8Tn7Q6aFLvDqOXgYWKRiLQwCDEM7Dk52LLj/1bKCLLxKT09jXlTs+nqaDM6yphlNmksmJrDitl5WMwmQr0R9hyt5syVZlkVHyEmsxlck3jptT3y//g2lFJ24BWnbsGRAAAgAElEQVTgJ4AX+EfgZaWUa8B5s4nvcPYo8YvK6oGn+m/TgBeBs0A6sAn4K6XU0o/72rquXwCWA7uAXwCfB7bquv5Huq53DuVxSLE7jFr2X99IQloYhBgON/p2T0nf7ni1cN4sfCkB+vrCRkcZ0wpyPWxaWogv1QbA6SstvHWsmp5eaWsYCSk2O629qezdd9joKGPdGiCi6/qPdF2P6Lr+FNAAbB1w3meBF3VdP6Lreg/wLWCzUioLWEJ8gsKf9t/HOWAZcPHjvrBSKhf4D+ItC/8/8A7wnFLqq0N9EFLsDpNwIPB+C8NyaWEQYjhc79sNXNCJ9srFTuPVA1tW09Mq48hux+NKYcOSAkryvQDUtwTZcaCSpjbpLx0JzlQfF6q7OXteNzrKWDYVODfgmM6H2wjUzefput4KtPafN5/4qu7/UkrVKaV0YGn/OR9HB2b0n/vHuq6vA/4r8F2l1JBepUixO0xaDx2RFgYhhtmNvt3eXgL6xy4CiDEsJSWFrWsX4W+6ZnSUMc9iNrFkRi5LZuRiNml0h/p4871rnC9vlbfcR4A7LZe3j5ZTV99gdJSxygUMfLUVBAa+ff1x56UTXyFuAiYBvwP8UCm18jZf+++AhbquH7t+QNf1fwWmA7WDfwgyZ3fYNO+TFgYhhpstIwNH/gS6a2ppP3X6RvErxp+J+XnMKqlGr/PjSPUaHWfMK8n3ku6xs+9ULR1dvZy41ERjW5Cls/KwWc1Gx0sovqwiXnr9EE88vA6Xy3X7v5BcugDHgGNOIDDg2K0K4OvnhYBWXde/13/8gFLqeeAB4ptF3JKu638DoJSaQHzl+BDg1nW9Ftg2lAchK7vDIBwI4O/fSCJzxQqD0wiRWLyz+7cOlovUxr0VyxbioJVIRPpQB8PntrFxSSGFeW4Aapu72HGggub2bmODJaDUrDKefWm3TGj4sPPEC82bfaBl4VbnKaUyia/onifejmBRSt1cc952sVUp5VJK/QqoJn6RWh7wY6XUu/29wIMmxe4waNl34EYLQ9qiBUbHESKheGfFi93Oi5eIdMsv+fFM0zQeumcNwWbp3x0sq8XEspl5LJqeg8mkEezp480jVVyolLaG4WQymdBSZULDLewGbEqpbyilrEqp3wWygZ0DznsaeFgptaJ/gsN3gdd0XW8D3iC+8vuXSimzUmo58ZXZ527ztb8PTCTe9xsEYsCfAnbgH4byIKTYHQYNu94EIGPpYmlhEGKYeWfNACAWidBx/oLBacSdstvtbFw1B39LjdFRxg1N0yib6GPjkgLcTivRGBzXm3jnRC2hsKxEDheZ0PBhuq73AluAx4EW4OvA/bqudyulnlRKPdl/3kngy8BPiU9ryAW+2H9bN7AaWAw0Ep+w8Pu6rt/uf/QDwB/q+vsXbOi6fh74PWDzUB6H9Ozeoa6KSjovXQYgZ/06g9MIkXisHg+u4iK6yivwnz5D2vx5RkcSd6i4qICp12q52hzA4XQbHWfcSHPb2bS0kMPnGqiqD1DT1MmOAxWsmD2BTN/AtkrxScQnNNSTeV5nxrSB794nJ13XTwMf6tHUdf2rAz5/jo9YrdV1/QrxonkoPEDHLY5HAetQ7khWdu/Q9VVdW3bWjd5CIcTwknm7iWf1yiWk9DYSlR7JIbFazCyflceiae+3New6UsX5CmlrGC7utFz2vneV+oZGo6Mku9eB/08pdWNhtr8X+PvEWyMGTYrdOxANh2l6620AstetRTPJ/04hRsL1F5KdV8vp6xzSxjlijNI0jYfvW0Og+arRUcYdTdMom+Rj4+J4W0MsBicuNrH3eA2hXnnxMBw8WUW8uPMgwaDMODbQHwBTiI8scwI7gCriF779l6HckVRnd6D18BH6Ap2gaeSsW2N0HCESlmfGdDCZIBrFf3bgRcBivHI6naxfMZOO1iGNzBT90jx2Ni0tojD3g9MaZBOKO6dpGqmZpTz70psyocEg/SPGlgIPEy9u/5n4hW0LdV2vHsp9Sc/uHWh4I97C4JszG1vWkKZgCCGGwOJ0klpWSufFS/hPnSZjyWKjI4lhMrm0mKrqOipau3A4ZcbpUFktJpbNyiM73cmxC40E+zehmFWaybTidEyaZnTEcctkNoNzIq/seItt98g1OUbQdT1GfCLE7ju5H1nZ/YRCTU20nzgJQM4G+SEQYqTd6NuVebsJZ+2qZVh764hGo0ZHGZfen9ZQiMeVQiwGpy4389bRarpDMtP4TqTYHTR1O3n3wHtGRxF3QIrdT6jhzT0Qi2Fxu0mXVSYhRpyvv283WFlFb3u7wWnEcNI0jYfvXUOgSfp374TPbWPTkkJK8uM71DW0Btl+oIK6li5jg41zLncaZyo6uKBfNjqK+ISk2P0EYtEojW/uASBr9SpM1iFNwBBCfALuaVPRLPHOK//pswanEcPN5XKxfsUM6d+9QxaLiSUzclk2Kw+LWSPUG+Gto9WcuNRENCrTGj4pT/oEdh+6SFNTs9FRxCcgxe4n4D91mlBjfCSJzNYVYnSYbTbcagoA/tMygiwRTS4tZvIEO91Bmbhxp4ryPGxeWkSa2wbA+fJWdh2pojPYa3Cy8cubXcxvtu+jp6fH6ChiiKTY/QSuz9ZNnVyGq6jQ4DRCJI/rI8hk3m7iWrtqGSm99TJ/dxi4XSlsWFLAlII0AFr8Pew4WEll3a3m9Ivb0TQNV2YZz760S/rLxxkpdocoHAjQcjC+w132urUGpxEiuVy/SK2nrp5QU5PBacRI0DSNh+6V+bvDxWwysWBqNqvm5WOzmgn3Rdl/uo5DZ+vp65OCbahMZjMR+wRe3fmW0VHEEEixO0RNb79DLBzGlJJC1qqVRscRIqm4p0zGlJICyFSGROZyudh412z8LdK/O1zys1LZvKyI7DQnAFdr/Ow4WElrh7wlP1Q2u5O6Tjv7Dx8zOooYJCl2h6hxV3zUW8byZVhcMhNSiNFkslrxTJ8GQPspKXYTWWlxIVMnOekOBoyOkjCcdgtrFk5kdlkmmgaBYC9vHKriQqVsNTxUqZ50Tl1u4+IleQdiPJBidwj8p8/QVV4OyGxdIYxyc9+u/IJObKtXLsEeaZL+3WFk0jRmlGSwflEBLruVaCzGcb2Jt47JTN6h8mTk8+aB8zS3tBodRdyGFLuDFIvFqPrlMwC4Skvj25cKIUbd9WK3t6WFnro6g9OIkRSfv7uWzuYrRkdJOJk+B5uXFVKYF99quL4lyPb9FdQ0ySSMofBkl/D8q+8QCoWMjiI+hhS7g+Q/eYqOc+cBKPjMo2iyBaMQhkgtKcbsivcdtp+UqQyJzm63s3XNfPzN1UZHSTgpVjPLZ01g6cxcLGYToXCEvcdreO98A30RuXhtMDRNw5lZyrMvviETGsYwKXYHIb6q+ysAUqdMJm3BfIMTCZG8NLMZ74wZgMzbTRYFkyYyuyyNrk7ZOW8kFE/wsmVZIRleOwCXrrWz82AlbXLx2qCYzRb67BN49fW3jY4iPoIUu4PQfvwEAV0HoOAzj8mqrhAG886ZDfT37cpqSlJYvng+PksHfWHZFGEkpDpTWL+ogBklGWhAR1cvrx+q5Hx5K1Hpjb8tm91JfadNJjSMUVLs3sbNvbruaVPxzZ1jcCIhhK+/2O0LdNJVXmFsGDEqNE1j29Y19LRXyIWJI8Rk0phdlsm6xQW4HFaiMThxqYk9710j2BM2Ot6Y53LLhIaxSord22h77yidly4DsqorxFjhmJhPSno6AO0nTxmcRowWq9XKto3L8DdVGB0loWX5HGxZVkjxBA8AjW3dvH64msZ2KXhvRyY0jE1S7H6Mm1d1PTNn4Ou/ClwIYSxN094fQSbFblLJzs5i6exJBNplB72RZLWYWTozjxWzJ5BiMRHui3K+uoeDZxoIhWUU3Me5PqGhp0d6nscKKXY/Ruuhw3Rdjc/VLfjMowanEULc7HorQ8e580R7pY8zmcyfM5MJnjC9Pd1GR0l4BblutiwvIifNAcC1xk627y+ntrnL4GRj140JDS/tkgkNY4QUux8hFo1S9XR8AoN3zuwbV38LIcYG75z4ym60t5eOC7rBacRou2fTaghWSzExCpx2K3fNzaMsz4bZpNEdivD2sWqOnKsn3Cf//2/FbLYQtefz8vY9RkcRSLH7kVoOHCJYUQlAweOyqivEWGPLyMAxcSIgrQzJyGQy8fC9qwk0ycVAo0HTNPIzUtiwaCIZnviIssvVfnYcqKCpXVbYbyXF7qCpx8XefYeNjpL0pNi9hXAgQOXP/wMA3/x5eKZNNTiREOJWrrcyyOYSycntdrNh5Uw6WmqMjpI03K4U1i8uYFZpBpoGnd1hdh2u4rjeSEQ2ovgQV6qP89eCnDkn7z4ZSYrdAaK9vVz4zvfoqa9HM5sp/OzjRkcSQnyE6/N2O69coa9TtjlNRmUlRUwvdBOUDSdGjcmkMbM0k41LCvG4UgC4UNnGjoOVtPhllXcgd1ou7xwrp6a23ugoSUuK3ZvEolEu/e//c2Nb4LJvfI3UslKDUwkhPop35nQwmSAaxX/6rNFxhEHuWr4Ir9kvG06MsnSPnc1LC5lWlH5jI4o3DlVx8lITEeml/gBvVhEvv3GEQCBgdJSkJMXuTSr//Rc0v7sPiM/UzV672tA8QoiPZ3G5cE8uA6D9lPTtJitN09h2z1pCbbLhxGgzm03MnZLF+sUFuJ1WYsC58lZ2HqykVbYb/gB3dim/emk34bDMKx5tUuz2q3ttBzW/eRGA7PVrmfjIpwxOJIQYjBtbB8tFaknNarXy4JYVdMiGE4bI9DnYvKwIVZgGgL8zvt3wyUtN0svbz2QykeIr5rmX3pApIqNMil2g9fARrv7fnwDgmzuH0q/+nuyUJsQ4cf0ite6aWkJNzQanEUbKzMzg7kWldLRKb6QRLGYT81U26xZNItVpJRaLr/LuOFhJs0xsAMBiTSFkyeHVnW8ZHSWpJH2x23nlKvrf/T1Eo7iKi1Df+mNMFovRsYQQg+RWUzDZbIC0MgiYPnUKUybY6A5Kb6RRstOcbFlWxNTCtPd7eQ9XcUxvpE9WebE5XNR3OWQk2ShK+mK37revEQ2FSMnIYNpf/BkWp9PoSEKIITBZrXhmTAfALyPIBLBm1VJcsWb6+qQ30igWs4l5KpsNSwrw9k9s0Cvb2L6/gvoW2X3N5U7jXFU3J8+cNzpKUkj6Yjd362ZyNq5nxn//S2wZGUbHEUJ8Ar7Z8d3U2k+dkguUBJqm8fB96wm1lsv3g8EyvA42LStkRsn7c3n3HK3m4Jk6QuGI0fEM5UnPYf/xKiqrqo2OkvCSvth1Ty6j7OtfxTkx3+goQohP6PpFauG2drqvXTM4jRgLrFYrD91zFx1N5UZHSXpmk4nZZZlsWlJIev/ua+W1Hby6r5zKuo6kfkHizS7k1T0naGltMzpKQkv6YlcIMf65igqxeDwAtMtUBtEvIz2NNYun0NFaZ3QUAaR57GxYXMA8lYXZpBHqjbD/dB17j9fQ1Z28LSfenFKee2UvXV3S3jFSpNgVQox7msn0fiuDFLviJlNVGVMnOunu9BsdRRDffW1qYTpbVxSTmxG/Rqa2uYvX9pdzvqKVaDT5Vnk1TSM1ezJPv7CL3l7ZGGUkSLErhEgIN+btnj5LtK/P4DRiLLl75WK8Fj+9vSGjo4h+qQ4rq+dPZNmsPGxWM32RGCcuNrEzSceUmUwmUtJKeOaF14lExlYvs1JqnlLqsFKqUyl1XCm15CPOe1wpdbX/vFeUUtm3OCdHKdWolLpn5JO/T4pdIURCuD5vN9rTQ+fFSwanEWPJ9R3WooFKGeY/hmiaRlGeh3tWFFOS7wWgvTPEG4erOHyuPukuYLNYrEQdE3n+lV1jpo9ZKWUHXgF+AniBfwReVkq5Bpw3G3gSeBTIBOqBp25xlz8B0oFRfYBS7AohEoI9Jxt7Xi4AbcdPGJxGjDUWi4VH7l9LZ9MVo6OIAWwpZpbMyGX9okl4U+Njyq5U+3n13XLKa/1jpvAbDSk2O4FYJq++/rbRUa5bA0R0Xf+RrusRXdefAhqArQPO+yzwoq7rR3Rd7wG+BWxWSmVdP0Ep9RWgExj1q4il2BVCJIy0+fMAaJdiV9xCamoq965bgL+pyugo4hay0pxsXlrE3Mn9F7CFIxw8U8+uI9do6+gxOt6ocThd1AVs7HnnoNFRAKYC5wYc0/uP30zdfJ6u661Aa/9xlFJTgD8CvjpiST+GFLtCiITh6y92Oy9fIeyXC5LEh03Mn8Cy2fkE2hqNjiJuwWTSmFaczj0risnPSgWgub2bnQcree98A71J0trgcqdxsTbMvoNHDY8CBAccCwIDd+D6yPOUUhbg58A3dF03ZMaaFLtCiIThnTkDzWKBWIz2EzKVQdza3NkzKMkx09PdaXQU8RFcDiur5uVz97x8Up1WYsCla+389t1yrlS3J0Vrg9uXxZmKLg4eMfSdqi7AMeCYExi4H/etCmAn8baFvwBO6Lr++k23acMZ8nak2BVCJAyz3X5j6+C2Y8cNTiPGsvWrl+OKNROWUU9j2oSsVLYuL2J2WeaN1obD5xp4/VAVTW0DFxITjzstmxOX/Rw5atiL9/P0tyLc5AMtC7c6TymVSfxCtAvAI8BjSqk2pVQbUAA8o5T6kxFLPYBltL6QEEKMhrT58/CfPEX78RPEolE0k7ymFx92fUvhn/3qNczpZZjk+2TMMptMzCjJoCjPw/GLjVxr6KS1o4ddR65RkOtm7uQsXA6r0TFHjCc9h6MX6zBbzjB/zszR/vK7AZtS6hvAj4AngGxg54DzngbeVkr9FDgKfBd4rb93d9rNJyqlyoGv67r+2kiHv05+uoUQCSVt/lwAwn4/XeUVxoYRY5rFYuHRB9bS2XjZ6ChiEFwOKyvn5LN24SR8qTYAquoDvLqvnFOXm+nrS9yxcp70PA6fa+Lk6YELqiNL1/VeYAvwONACfB24X9f1bqXUk0qpJ/vPOwl8Gfgp8WkNucAXRzXsx5CVXSFEQnFMmkRKRga9LS20HTtOammJ0ZHEGJaamsq2zUt54fX38GbL98p4kJPuZNOyQq7W+Dl1qZlQOMLZqy1crfEzuyyTogkeTNqotoSOCk96HgdO12A2m5k5fWBnwcjRdf00sOIWx7864PPngOcGcX/Fw5ducGRlVwiRUDRNe38EmfTtikHIzclm7RKFv6XW6ChikEyaRtlEH/euLGZqYRomDbpDfRw6W8/OA5XUNXcZHXFEeDLyefdEtZE9vOOSFLtCiITj629l6Lig09eVmL/0xPBSU0qZW5ZGV0eL0VHEEKRYzcxT2WxdXsyk7PiosvbOEG8dq2bP0cScz+vJyOf4ZT+7946JObzjghS7QoiE45s9G0wmiEbxnzptdBwxTixbPI8J3jDdQXmBNN64XSmsnJvP+sUFZPrsANS3BNlxsJIDp+vo7A4bnHB4pfqyuNIEr2zfnRRj2O6UFLtCiIRjSXXhmRrvaZMRZGIotm64G1e0UUaSjVNZPgfrFxWwcs4E3M74hIaKug5effcq751voDvUZ3DC4eNK9dEU8vKr3+ygry9xHtdIkGJXCJGQfPPirQxtx07IyocYNE3T+NQDG4gGKohGkmO3rkSjaRqTctxsXV7MwqnZ2FPMRGPxTSleeecqJy42EUqQndjsDhehlHz+/dnt9PQkXsvGcJFiVwiRkK5fpNbb3Ex3dY3BacR4YrFYePyhjXS1XJYXSuOYyaQxuSCN+1aWMGdyJikWE5FojPMVrbzyzlXOXG0h3Df+i15rSgpWXwk/+/UbXL5aYXScMUmKXSFEQnKVFGP1egBpZRBDZ7fbefS+1XQ0yAze8c5iMTG9OIP77iphRkkGFrNGuC/K6cvNvLw3XvT2jvOVXpPZjDtrMrsOVfDbnW9JW8MAUuwKIRKSZjLdaGWQEWTik/D5vNy/YRH+xnKjo4hhkGI1M7ssk/tWljClIA2TSaP3etH7zlXOXGke90WvJz2Xlt50fvrMdioqrxkdZ8yQYlcIkbB88+KtDP6z54iEQganEeNR/oRc1i6ZQkeLtMIkCrvNwoKp2TeKXrOpf6X3Sgsvv3OV05ebCfWO36LXmpJCatZktu+7yPZde4lI77kUu0KIxJU2bw5oGrFwmI4zZ42OI8YpNaWURdOy6WxvNDqKGEZOe3/Re1cJqvD9ovfM1RZe2nuFYxcaCfaM35Fl3ox8GoIefvyL7bz42h7KK6qStgddtgsWQiQsq9dLamkJnZev0HbsOGkL5hsdSYxTC+bNIth9hAs1Lbg8GUbHEcPIYbMwX2UzrSidCxWtXK5upy8SQ69q49K1NoomeJlWlI7HlWJ01CFLsdlJySmjKxZjx8EKrPvOMCE7lRlq1HfsNZSs7AohEpqvfypD27ETBicR491dyxdRmAHdnX6jo4gR4LBZmKeyuX9VKbNKM0ixxkeWXa3x8+q+ct45UUNja3Bcro5qmoY3LRtHRjEt4Qx++coBoyONqjGzsquUOgMUA9H+QxW6rs+6xXmZQCNw8xY3/67r+tdGPqUQYrxJmz+P6md/TU9tLd11dTjy8oyOJMaxDWuW88qOPTQFLTicLqPjiBFgs5qZWZrJ1MJ0rtT4uVDZSrCnj+rGTqobO0lz21CFaRTkejCbNKPjDllTfTV/9o1H2fjee0ZHGTVjothVSjkABWTrut52m9PnAWd0XZ898smEEOOde8pkLG43fYEArYeOkL/tfqMjiXFM0zTu27yG5156ne6QGavNbnQkMUIsFhOqMI3Jk3xU1negV7bRFgjRFghx8Ew9Jy81M3mSj7KJXmwpY6Kcui1N09C08Veg36mx0sYwC6gfRKEL8WL35AjnEUIkCM1sJn3RQgBaDx02OI1IBJqm8fB96zH31NAXlm2FE53JpFE8wcumpYWsXTiJ/KxUALpDfZy63MyLe69y4HQdze3d47LFIRmM2ksRpZQZcN/ipijxAjaslNoPlAHHgf+i6/qFW5w/DyhSSp0HvMBrwDd1XZcmKiHELaUvWUTj7j10XNDpbfeT4vMaHUmMc2azmcce2sS/P7sdzVeM2Tw+VvbEJ6dpGjnpTnLSnQS6etGr2iiv9dMXiVFR10FFXQdpbhuTJ/kozPVgsYyV9UQxmj+da4DXb3G8AvifwGHgT4j34/4F8JpSarqu6wM3e24HdgPfB2zAz4B/AR4fbJCQzNtMCNefR3k+E8NIPp+OaVPRUlKI9fbSeOAAmWtWD/vXEB+ULD+fD92zil++8AaO9MmYzGaj44yY6ztyyc5ccQ6bibmTM5hR7KOyvpMrNX46usK0BUIcPtfA8YtNFOSkUpznwedOGVOtA31JOHdXG6tL7kqpdmCTruuHbnPefOAdXdcHdaXA0aNHx+YDFkKMqN5nniN68RKmKZNJeezTRscRCSQUCrFz7wlcWVMwmWQ1LxnFYjH8wQi1LWGaO/q4udBw2U3k+qzk+CxYx8Bqb3NjLd/70yd47733WLBgwdipwkfQmHjfRSn1n4Eruq6/2f+5BbACPQPO04DvAP+i63pl/2EHMKSmqbKyMmw22x3nFsYKhUJcvnxZns8EMdLPZ/PaZiovXiJWXsHU0lLMdrmwaCQl28+nUopnXnoLV+bkhCx4+/r6aG1tJT09HYtlTJQOY04OMKU43stbWRegvC5AZ3eYrp4oV+pDlDeEmJDpoiDXTW6G07BJDrFIYr/bcitj5Ts2D/gDpdRmoAX4HnBe1/UPXIim63pMKbUUKFRK/SfAA3wXeGooX8xms2GXX3QJQ57PxDJSz2fO8qVU/vhfiYXD9FzQyVi6ZNi/hviwZPn5tNvtfOGRTfzyhTdxZU0ZU29bDyeLxSLF7m24LRZmltmZUZpJU3s3V2v8VNUHiERjVDd1Ud3URYrFxKQcN0V5HrLSHKP6/WJJ4HabjzJWXn7+LbCTeN9uA/F5u9uu36iUCiilVvR/+lnADlwDzhCfzPCtUU0rhBh3rF4vnqkKkKkMYmSkpqby6P1rCDRekqvyBZqmkZ3mZOnMPB5cXcri6TlkpTkA6O2LcqXGz5vvXePlvVc5rjfKNIcRNCZenum63gd8s//jVre7b/pzLfDQKEUTQiSQ9CWL6Th3ntYjR4lFImhJuMIhRpbX6+Gx++/mmZfexp0zOWFXeMXQWC1mSif6KJ3oo6snTGVdB5X1AdoDIYKhPi5UtnGhsg2HzcLE7FQm5bjJ8jkwjcNNK8aisbKyK4QQIy59ySIA+gIBOs7farKhEHfO5/PyyP2rCDTICq/4MJfdyvTiDLYsK2Lr8iKmF6fjdlqBeL/vpWvt7H7vGi++fYWDZ+qoqg8Q7ku+CQrDaUys7AohxGhw5OXhLJhEsOoaLQcP4505w+hIIkGlp/l47IG7eealt3DnJG4Pr7gz3lQbcyZnMbssE39nL9WNAa41dNLeGSIUjlBe20F5bQeaBlk+JxOyXORnuXA7x9Y4s7FOil0hRFJJX7KYYNU1Wg8fpvhLvyO/MMSI8fm8PL5tDU+/uIfU7MSc0iCGh6Zp+Nw2fG4bM0szCQR7qW7opLa5k6b2bmIxaGwL0tgW5MTFJpx2y40NLnLSnTjtVqMfwpgmxa4QIqmkL1lM9XPPE2poJFhZiauoyOhIIoF5vR4+9/A6fvGbXTKHVwya25nCtOJ0phWn0xuOUN/SRU1TF3XNXYTCEYI9fTdWfa+fn5PuJCvNQZbPgdNu+cgX8ieOvDOaD2VMkGJXCJFUUstKSclIp7elldZDR6TYFSMuNTWVzz28gV/8ZhfOjLKE3mlNDL8Uq5mCXA8FuR6isRhtHT00tAZpaA3S1NZNJBojEOwlEOzlcnU7AA6bhUyfg0yfnSyfA1+qDZNJ4/n/+D+88It/NvgRjT4pdoUQSUXTNNIXL6Z++w5aDh1m0qOym5oYeS6XK17wPv8G9oxSzGb59SuGzpE72DYAACAASURBVKRpZHgdZHgdTC/OIBKN0tweL34bW4O0dvQQicboDvVxrSHAtYYAAJoGFUee5fTeXxr8CIwhP21CiKSTvmQR9dt30HXlKqGmZmxZmUZHEknA6XTy+Uc288vf7CSaWoQ1JcXoSGKcM5tMN/p2ASLR+Mpvc3s3ze3dNLV309Mbofbi/qQtdEFGjwkhkpB35gzMzvgvh9bDssGEGD02m40nPr0Va6iaUE/Q6DgiwZhNGpk+B1OL0lk5N59td5dy313F6Ht/YnQ0Q0mxK4RIOiarlbQF8wBoOSjFrhhdFouFxx7ajFdroTsYMDqOSGCapuGyWzEn+eYUUuwKIZJSxtIlAPjPnKW3rc3gNCLZmEwmHrxvPXmpQTo7Wo2OIxKYpmn8ztf/wugYhpJiVwiRlNIWLcTscEA0StPed42OI5KQpmls3XA3k3NNBNqbjI4jEtjilRt58LNfMzqGYaTYFUIkJbPNRsbyZQA0vfW2wWlEMltz11Lml3nxt1QbHUUksIc/942kLXhlGoMQImllrV5F45u76bpaTrCqCmdBgdGRRJJatGA2Pm85uw6cx5NVLDv7iWGnaRqfeuL38Xgz+Nk//82g/55Sah7wI2A6cAn4iq7rh25x3uPA3wLZwB7gS7quN/bfthL4AaCAZuD7uq7/+A4f0qDJyq4QIml5Z84gJTM+dqxxj6zuCmNNLivm4U2LCDReIhqNGh1HJKg5C1cO+lyllB14BfgJ4AX+EXhZKeUacN5s4EngUSATqAee6r8tDXgZ+Htd133Ap4HvKqXW3fGDGSQpdoUQSUszmci6+y4Amt7eSywSMTiRSHbZ2Vk88fA6etsuE+7tNTqOEGuAiK7rP9J1PaLr+lNAA7B1wHmfBV7Udf2Irus9wLeAzUqpLKAQeEXX9WcAdF0/Tnzld/loPQgpdoUQSS179d0A9La04j9z1uA0QsR3W/v8I1ux99XSHew0Oo5IblOBcwOO6f3Hb6ZuPk/X9VagFVC6rp/Qdf0LN06Mr/TeBZwYkcS3IMWuECKpOQsm4SotAeRCNTF2WCwWHtm2iQJfiEBbg9FxRPJyAQN3PwkCzk9ynlLKS7wt4j1d118ZxpwfS4pdIUTSu76627z/IJFQyOA0QsRpmsaGNStYPisHf2M5sVjM6Egi+XQBjgHHnMDA3VBuVQA7gRtvTSilioH9xC9Qe2h4Y348KXaFEEkvc9VKMJmI9vTQKjuqiTFm1oypPLxpIV1NF4lE+oyOI5LLeeItCjf7QMvCrc5TSmUC6f3HUUrNBw4C23Vd36br+qiuKkixK4RIeik+H2nz5gDQKK0MYgzKzs7iC49sxhSsojvYZXQckTx2Azal1DeUUlal1O8SHy22c8B5TwMPK6VW9E9w+C7wmq7rbUqpHGAH8He6rv/xqKbvJ8WuEEIAWf2tDO0nTsr2wWJMstlsfObhLUz0dNPRKn28YuTput4LbAEeB1qArwP367rerZR6Uin1ZP95J4EvAz8lPq0hF/hi/918ifg4sm8rpQI3fQx+2O8dkk0lhBACSF+yGLPDQaS7m6a975L/wH1GRxLiQzRNY9O6lVzQL7Pn0AXcWSWYTLJuJUaOruungRW3OP7VAZ8/Bzx3i/O+A3xnxAIOgvyECCEE/dsHL1sKyFQGMfZNVWV87sG7iXZclbYGIW5Dil0hhOiXtSbeynB9+2AhxjK3280Tj9xDoa8Hf0uN0XGEGLOk2BVCiH6yfbAYbzRNY/2aFaxfUkJHwyWZ1iAA6OsL09Zch7/hCqH2SrrbKuhsLqej8Qrtzcn3Ql56doUQop9mMpG9ehXVv/4NDa/vYtIjn8LsGDhiUoixZ3JpMZPy83h5x9u097pI9WYaHUmMot7eEJ2ttaTaTfhSbWSkOZmycAbZ2VlomnbjvFgsxpUrV/jvf2JgWANIsSuEEDfJ3bqFmhdfpq+zk4ZdbzLhvnuNjiTEoNjtdh7ZtokTp89x4PgV3JlFmMxmo2OJERKNRmlvrsVj76NsYgYLN6zBbrff9u+VlpYSDAY5d27gqNzEJcWuEELcxJaRTtbqVTTu2k3tS6+Qu2UzJov8U5loYtEo0d5eNLM5/pFAEw3mzprO5JJCXtn5Dh0RD6medKMjiWHU6W+F3lYm5XjYvGUemZkZg/6711d5b17tTQbyL7gQQgyQv+0BGnftJtTUTPO7+8levcroSGIQon199La0EGpsoqexkVBjU/yjuZm+ri4i3d39Hz1Ee3o++JdNJkwWC5rZjMlmw+rzkuLzYfV5sfp8pPh82LIycUzMx56Xh9lmM+ZBDpLL5eKxhzZz7MRpDp2SVd7xLhaL0d5cQ7ozyqo5xagpy5KuYL0TUuwKIcQAzkkTSV+yiNZDR6h54UWy7r5LfrGMMZFQiGBFJZ1Xr9J1pZzOq1cJVlYR6/uEF2j1r/QCRLq7Cbe3E6Ty1udqGvacbBwTJ+KYmI+ruAi3moI9N3fMfZ/MnzsLNbmE7W/up9lvxZOea3QkMQR94V46W6uZkGFnw6a5ZGdJL/YnIcWuEELcQv6D22g9dIRgRSXtx0+QNn+e0ZGSWqS7m45z52k/dRr/qdN0VVRCNPqR51s8HuzZWdiys7FlZWJJTcXscMQ/nP3/tdmIRSLEIhGifX3E+vqIRSJEunsIt7fT2+4n3N5GuN1Pb1s7ocbGeEEci9FT30BPfQNt7x39wNd0q8m4lcKtpuBWU8bECrDL5eJT92/g8tUK3tp/GrM7H5vdaXQs8TF6gl2Eu+oozU9jxbo1OORC2Tsixa4QQtyCZ9pU3NOmEjh/gZoXXpJid5TFYjE6L12m7egx/KdOE9AvEotEPnSe1evFVVpCakkxrpISnJPysWVljcgUjVg0Sqipme6aGoLXqumuqaH7WjWdV64SDYXo6+ig7chR2o7EC2DNasUzfRpp8+bimzcXZ2GBoSu/ZSVFlBQV8Pa+w5wvr8eTVSS7r40xXR1tmPvamFE2gYXzt2CW1pNhIcWuEEJ8hPwHt3Hh/P+MF1uXLuOeXGZ0pIQWi0TouHCBlv0HaTlwiN6Wlg+d4youxjtnFt4Z03GVlpKSnjZqBaRmMmHPycaek/2BFz+xSISuykoC+kUC+iUCuk5PbR2xcBj/yVP4T56Cf/s51rQ00ubNJX3JInzz5hqy6msymVhz11LmzfKzc89BWruteDMmjHoO8b5YLEZHWwNuaw/LZxQzfdrSMdcOM95JsSuEEB8hfdECHBMn0l1dTc0LLzL1T/7Y6EgJJxaL0XHuPE1vv0ProcOE29s/cLstJxvf3Ln45szCO2smVo/HoKQfTTObSS0pIbWkhLwtmwHobffTfuIk7cdP0H7iJOH2dsJtbTTu3kPj7j2Y7HbSFswjY9ky0hfOH/V5zj6fl0cf3ETVtRr2HjxFMOYh1Tv4q/rFnYtGo/ibrpHl0bhn5QwKJuUbHSlhSbErhBAfQTOZyH/wAS7/8J9oOXCI7ro6HHl5RsdKCKGmJhr3vE3jm3voqa//wG3OgklkLFtKxrKlOIsKx+UqV4rPS/bqVWSvXkUsGiVYWUXb8RO0HXmPjvMXiPb00LLvAC37DqBZraTNn0vW3XeTvmgBppSUUctZMCmfz03K59z5ixw4fpGYPQenyz1qXz8Z9faGCLZVU5Dt4t77l+Dz+YyOlPCk2BVCiI+RdfddVP3iaXpbW6l96RVKv/KfjY40bkV7e2k5cIiGN3fjP3UaYrEbtzkLC8i8a2W8wJ2YWCtcmsmEq7gIV3EREx/aRm9bGy0HD9Ny4CD+02eIhcO0HjpC66EjmF0uMlcuJ3vNatxT1agV+tOnTWHa1MkcOXqKk/oVTM4cHM7UUfnayaKrs4NYdyOTCzNZsWkDKaP4oibZSbErhBAfw2S1knffPVT+7N9pfHMPkx57lBSf1+hY40qoqYn6Ha9T//ou+jo6bhy3uFPJWrWK7PVrcBUXj8sV3E8iJS2NvC2byNuyiXBHgNbDh2na+y7+U6eJdHXRsPMNGna+gT03h6w1q8lZtwZbVtaI59I0jcUL57Bw/iyOnTjNKf0qEWs6LresPH5S0WgUf0staY4oS9REZk5fKBcFGkCKXSGEuI3cTRuofu55IsEg1371LKW/92WjI415sViMSHkFV7a/TvvRY++PCTOZSJs3l+x1a0lfvBCT1WpsUINZPW5y1q8jZ/06Qs0tNO19h6Y9bxGsukZPfQPXnv4V1555lrT588jZuJ60hQtGfEc/k8nEwvlzWDBvNmfOXeDY6at0Rl0j+jUTTU9PkJC/jonZTjZvHtouZ2L4SbErhBC3YXG5yH/wAap+8TT1r+0g666VeKZPMzrWmBTt7aXxrb3UvPQy4eoarl9uZvF4yN24ntzNG0dllXI8smVmMPGhbeQ/+ABd5eU07n6bprfepi8QoO3oMdqOHsOalkbOujXkbFyPPSdnRPNomsasGdOYOX0qZ85dYPuufbTFuknPLcRslvJhoGgkgr+lFo89wrTCbBZu3Yg1yV/MjRXy3SqEEIOQ/+ADNL+7j2BlFZd++M/M/Ye/GxMbBowV4Y4A9Tt2Uvfb1wj7/TeOO0uKyb/vHjJXrhjVC6/GM03Tbkx3KPrC5+J9zm/swn/qNOG2Nqp//Ruqn3+BtAXzydu6Gd+8uWgj+Na4pmlMLi2mtyfIpEmTOH76IpV1fjRHFq7UsTcdY7QF/M2Ywn4m5rjZsnUBGRnpRkcSA0ixK4QQg2CyWin7/a9z6k/+Gz21tVx75lmKvvCE0bEM111XT+3Lr9C4a/eN7XYxmUhbsoiuaVOZunGD7P50B0xWK1mrVpK1aiXddXU0vL6Lxjf3EPb7aXvvKG3vHcWem0Pu5k1kr1+L1T2ykxQ8Hg+b1q0kGo1y5twFzlysoq0zgittAikpyfHiLxaL0dnRBr1tZPkcLF5QTGnJiqTpOR+PpNgVQohBck8uI3/b/dT85kVqXnyZjOXLknajic4rV6l+/gVaDhy80Y9rstvJ2bCOCffdA14vZ8+elQJgGDny8ij6whMUfOYxWg4cpH77TjrOnaenvoGKf/s5Vb98hsy7VpJ37xZSS0pGNIvJZGL2zOnMnjmd7u5ujp44Q2VtA22dEdzp+VgTbBU/FovR0d6EuS9AdrqTxfMLKS1ZKhebjRNS7AohxBBMeuwRWg4eoqe2jss//Cfm/OD7SXORVSwWw3/6DDXPv0D7iZM3jlvT0phw3z3kbtqAJTU+rqqnp8eomAkvvtp7F1mr7qKrvIK67Ttoemsv0VCIxjd30/jmbjzTp5F3zxbSly4Z8QvaHA4HK5ctYiUQDAY5evwMVfX1+Lv6sDjScLl94/JFT3ewi+6ORjxOExleOyuXl1AwaeK4fCzJTopdIYQYArPNRtk3vsaZP/sLgpVVVD//AgWPPWJ0rBEVi0RoOXSYmt+8SOelyzeO2ydMYOLD28i6e1XSFPxjjau4iLKvfYWizz9B45491L26nZ66ejrOnafj3HlSMtLJ3byJnI0bRmVkntPp5K4ViwEIh8NcvlrBlfIaWvw9BHpiOD3Z2B1jb7JDLBYj2BUg1NWKMyVGhtfB9NJMpk5Zg91uNzqeuENS7AohxBB5Z0wnd+tm6l/bQfVzz5OxbCmuwgKjYw27+GSFt6l54SV6autuHE+dXMbEhx8kffEiNLPZwITiOkuqiwn33UvePVtpO3acule3037sOL0trVT94mmu/eo5MleuIO/eraPWemO1WpmmJjNNTQbiq776pSvUNjQSCPbiD/QQjtlwuNNxOEevAI5Go3R3BQgF/VhNYXxuO97UFOZOy6K4aCZOp3PUsojRIcWuEEJ8AoVPfI62944Samzi8g//idnf+07CFH59nV3U79hJ7W9fJdzWfuO4b+4c8h9+EO+smfJW7hilmUykL1xA+sIFdNfUUvfadhrf3EOku5umt+KjzNxqCnn3bCVj+dJRXZF3Op3MmzOLef2fx2IxOjs7uVJeSUNTM909fXSH+giG+ujujYApBZPZhtlqxZpiw2pNue3Is0ikj1BPD72hbmKRXmKRXjQiOO0WnHYrTruFVFcKeSWZ5E+YjnuEL+gTY4MUu0II8QlYnA5Kv/YVzv3V39B56TL6//oBU775h+P67fyehkbqXn2Nhtd3Eenujh80mchcsYz8h7aN+EVPYng58idQ8uUvUfDZz9DU3+LQXVNLQL9IQL+I9SkfORvWk7tpIzYDNj3QNA23283c2TM/dFssFiMQCNDZ2UlXsJvOriCdXd309oYJ90VuerGlcf2PmgZ2Wwo+byoedw7uVBdOpxObzSYvzpKcFLtCCPEJpc2bS/5D26j5zYu0HDjE+e98j6l/+l/H1fzdWCxG4IJO7cu/peXgofcnK6SkkL1+LfkP3Ic9N9fglOJOWJwO8u7ZSu6WzbSfPEXdq6/R9t4xwm3tVD/7a6p//RvSFy8ib8smvHNmj4nCUNM0PB4PHo/M8RV3TopdIYS4A4Wf/xymlBSuPfMs7ceOc+6v/wfT/vy/YRnjfX/RcJiWAwepffm3H7jozOr1kLtlM3lbN2P1jvwFTWL0aP1bNafNm0t3XT31O3bS+OZu+gKdtB48ROvBQ9gnTCB380ay16zG6pG3+EVikGJXCCHugKZpFDz+KGaHg4qnfkbH2XOc/fZfM/3bfz4mi4XumlrqX3+Dpj1vEfZ33DjuLCxgwv33kbVqpex0lgQcebkUf/EL8Zm9+/ZT99pOOi9doqe2loqf/huVP/8PMpYtIWfjBrwzZxgdV4g7IsWuEEIMg/xt92N22Lny5I/pvHSZM3/+bWb89bdJSUszOhrR3l6a9x+k4Y1ddJw5+4Hb0hYuYML99+KdPWtMvH0tRpfZZiN77Rqy164hcOky9Tt20vzOPqKhEM3v7KP5nX3Yc3NJX72KWF6O0XGF+ESk2BVCiGGSu2kjJpudS//7hwQrqzj5zW8x6bFHyF67esQH+w8UDYdpP3GSlv0HaDl0hEhX143bUtLTyV6/lpz1a7HnSAEj4tyTy3BPLqP4S1+kee+71L++i64rV+ipr6f2mWdB07g4aw+5a9eQsXQJZtkGWowTUuwKIcQwyl69CrPDjv79H9Db0sKVf3qS6ueeZ+KnHyZ7zd0jOq0hEgrRfvwELfsP0nrkPSLB4Ps3mkykLZhHzoYNpC+cnzBj0sTwszid5G7eSO7mjXRevUrDG2/S9NZeIsEggVNnCJw6wxXbj8lYuoSs1avwzZkt309iTJNiVwghhlnGksXM/YcfcO1Xz9L87n5CjY39Re+v40Xv6ruHpS+2LxgkcEGn4+w5Os6dJ3DxErG+vg+c456qyFi+jMwVyw0ZLyXGt9SSElJ/r4S8xx/lzEsv4yyvpOPESaKhEE1v76Xp7b1Y3G7SlywiY9lSfHNmj+vxeyIxSbErhBAjwDlpIuqP/4hJj3yaa88+11/0NnHln/6Fqz/6V5wFk0gtLcVVWkJqWSmuosJbFgmxWIyw30+ooZGe+gZ6GuIfXeUVdJVX3BgVdoOm4Zk+jYzly8hYtgRbhhS44s6ZUlIwT59G2ac/hTkUovnd/TS9vZeAfpG+QIDGXbtp3LUbs9NJ2sIFZCxbgm/uXCxOaXUQxpNiVwghRpCzYNL7Re9zv6b5nX3E+vroulpO19VyeKP/RJMp3teraaBp8YvFTBqxcB/R3t6P/xqFBXhmTMczfTreWTNI8flG/oGJpGX1esm7Zwt592yhu66elgMHaT14iIB+kUgwSPPed2je+w6a2Yx7qsI3by6+uXNILS1BM5mMji+SkBS7QggxCpwFk1Df/EOKfufzdF68ROflK3ReuUrnlav0dXRANHrbotbscGDPzcGWnY0jfwKeaVNxT5uKVbY8FQZx5OUy8aFtTHxoG6HmFloOHqLlwEE6zp0nFonEW2zOnqPqP36JxePBN2cWnmnTcE+biquwQHp9xwGl1DzgR8B04BLwFV3XD93ivMeBvwWygT3Al3RdbxzKfYwUKXaFEGIU2TIysC3LIGPZUiDeptDb3ExXZRWxcB+xWBRiQCxKLBbfCMCWnYU9JweLO1XGg4kxy5aZwYR7tzLh3q2EAwH8p07TduwE7cdP0NvSQl9Hx41xZgAmux23moJnqiJ1ymRcxUWkpKfL9/gYopSyA68AfwP8K/B54GWlVImu6103nTcbeBLYAJwGfgg8Bdwz2PsYSVLsCiGEgTRNw5aVhS0ry+goQgwbq9tN5orlZK5YTiwWo/taNW3HT9Bx5iwdF3T6OjqI9vTgP3kK/8lTN/6exZ2Ks7AQV2EhzqJCnBPzseVkk5KWJi0QxlgDRHRd/1H/508ppf4Q2Ao8d9N5nwVe1HX9CIBS6ltAk1IqC1g4yPsYMVLsCiGEEGLEaJqGs2ASzoJJ5D9wH7FYjJ7aOjouXCBwXqfj/AW6a2ogFqMv0BkviAdsfqJZrdizs7Dl5GDPySElPQ2rz4fV6yXF543/2efFlJIiK8PDaypwbsAxvf/4zRSw/8YJut6qlGrtP2+w9zFipNgVQgghxKjRNA1H/gQc+RPIWbcWiM+IDlZdI1hZSVdFJcGKSroqq+L97EAsHKa7ppbumtqPv2+zGbPTgdnhxOx0YHE6MdntmKzW+EeKFa3/z5rFgmYyxVeMTSY0s/n9z+NB379YVNPgAzX0+5+Mx+I6HA5DUcFgTnUBwQHHgoBzCOc5B3kfI0aKXSGEEEIYymyz3djB7WZ9nV30NDbcNHqvkVBjA71t7YTb/YT9fmKRyI3zY5EIfYFO+gKdo/0Qxh37t/9sMKd1AQPnxzmBwIBjtyper58XHOR9jJikLHbPnj17+5PEuCHPZ2KR5zOxyPOZWAx7PlOsUDAx/tHPBNiMSZNMzgPfGHBMAb+4xXnqxglKZQLp/ce9g7yPEZN0xe6CBQvG3/sNQgghhBCjbzdgU0p9g/josCeIjxbbOeC8p4G3lVI/BY4C3wVe03W9TSk12PsYMXJpoxBCCCGE+BBd13uBLcDjQAvwdeB+Xde7lVJPKqWe7D/vJPBl4KdAA5ALfLH/ttBH3cdoPQ4tFouN1tcSQgghhBBiVMnKrhBCCCGESFhS7AohhBBCiIQlxa4QQgghhEhYUuwKIYQQQoiEJcWuEEIIIYRIWEkzZ1cpNY/4fLfpwCXgK7quHzI2lRgspdRK4AfEB1E3A9/Xdf3HSqk04qNO1gB+4K91Xf+pcUnFUCilcoDTwBd1XX9Vns/xSSk1EfgX4C6gg/jP5w/l+RyflFLLgX8EJgN1xJ+3p+X5HF+UUouBF3Rdz+///GOfP6XUd4EvEa8Nfw78ka7r0VEPPgKSYmVXKWUHXgF+Qnwnj38EXlZKuQwNJgal/wf0ZeDvdV33AZ8GvquUWgf8X+K/XLOBTwHfV0otMSysGKqfEN9l5/oMRHk+xxmllAa8CJwl/lxuAv5KKbUMeT7HHaWUmfjz+R1d173AfwJ+ppQqRJ7PcUEppSmlfhd4HbDedNNHPn/9Gz5sBWYB04AVwDdHM/dISopil/irmIiu6z/SdT2i6/pTxIcebzU4lxicAuAVXdefAdB1/TiwB1gOPAD8pa7rvbquHwF+CXzesKRi0JRSXwE6gWv9n6ciz+d4tATIA/60/9/Xc8BSoBZ5PscjH5AJWPtfyMSAEBBBns/x4s+APwD+B6DBoP59fYL4glKDrusNxHdA+53RDj5SkqXYnQqcG3BM7z8uxjhd10/quv6F65/3r/TeRfyHOKzresVNp19EntcxTyk1Bfgj4P+1d/9BVpV1HMff/BAQMyrHysjSmeQbhGXU2FQjWTpOaPSLJjLUplHIX0nMMJs6oaMUAosCg1FqNeIYOaONNoNLgz9A0TSltSaKPsiA46ggKRhbKwLu9sdzbh2u9+7d1WXvnruf18yd2XPOc875PvvM3v3O9z7nuRfldp+Ax7OIJpCqus0RsT0iBHyaVOX1eBaMpJeB5aSvf90HPAxcChyNx7MofinpJGBDbl+t99fg4Dxpc7avIQyUZPcIoL1sXzswsg6x2FsQEaNIU1I2kKq75V836HHt5yKiNB/sUkm7c4eOwONZRO8ifXr2T+BYUjVoGR7PQoqIwaRx+gZwODAZWAocicezECTtqLC72t/j4bnj7WXHBkfEsN6PsO8NlAfU/sP/B7RkJNBWh1jsTYqI44FVpAcMpwIfAUaUNRtJ+mjc+q85wJ8lrck+JoVUpW/H41lErwG7JC3Ith+LiN8C1+LxLKKvA5+S1JRtt0TEKuAaPJ5FVuv9NZ/4lo4dkLSvD2I75AZKZXcTbyzHl5fsrR+LiAnA48BqSV+V9Bop6R0WEcfmm5I+UrX+65vAtyJiN7CLNCf7DtIceo9n8fwDGJpVBEuGAq14PIvoA8Dwsn2vA3/C41lk1f5flvKgTRw8JaWhcqRBnZ2dtVsVXFaG3wrMJy0/di4wDzheUnlZ3/qZ3PJUzZKay47dBewFpgPjgdXApGzyvRVARGwDLpHU4vEsnmy1m6dJSxpdS3pg7ffA6UATHs9CiYjxpGliFwIrgImk1XA+T3rwyeNZEBFxKnCnpKOz7arvr9lqDDOAScAB4F7gN5Kur0fsvW1AVHazMvwk4GzgZeAS4MtOdAvjfNLTwVdFRFvuNZf0R3sY8BxwFzDbb7yF5vEsGEl7gVOBk4GdwO3A9yU9gcezcCRtJM3XnQm8Qpp/fZ6kVjyeRZSvaHY1fsuB3wFPkKr164Eb+jDOQ2pAVHbNzMzMbGAaEJVdMzMzMxuYnOyamZmZWcNysmtmZmZmDcvJrpmZmZk1LCe7ZmZmZtawnOyamZmZWcNysmtmZmZmDcvJrpk1lIjoiIgz6h3HWxURz0TE9w7BdddFxHW9dK1jIuKPEbE3In7cG9c0M+ttQ+sdgJlZL3svsLveQfSCTg7+9qP+eN3vAKOBE4GXeumaZma9ysmuqKMZvQAABHhJREFUmTUUSTvrHcMAMgrYIunpegdiZlaNk10z69ciogOYCswBPkT6zvYLgHnA14AXgBmS1uXaf1HSmohYBzwIfBI4nVR9vErSrVXuNRFYDIzN2t4iaW527EjgemAycBTwPLBI0k+z4+uA1cApwBeAbcA5wCRgFtABzJO0NNf+YeAz2WsTMFPSI1Vi+yFwMfBOoBWYJempWnHXEhHfBa4E3gf8DbhC0gO1+hwRtwLnZe06gOMkPdude5qZ9SXP2TWzIriOlOh9DvgE8BdSwjeBlKAt7+LcK4BVwDjgbuDnEXFUeaOIGJIdvxf4MHAhcHlETM6aLAZOAs4CAlgBLImI0bnLzAHuAD5KmkrxACkB/SxwI7AoIo7JtW8C7s+u+yjQEhHvqRDbxcAM4Pyszw8B6yLi3d2Iu6qIOBNYmMVxInAbsCoixnejz5dlffoDaerIc7XuZ2ZWD052zawIlkl6RNKTpARyi6TFkjYDNwNjImJQlXPvk3SzpGeAHwHDSIlduVGkqumLkp6V1AKcBjyZHV8PXCCpVdI24CfAEFKCmb/X7ZK2ACuza16Uxbkoaz8m136tpPnZ8R+QqrLTKsR2OdAk6X5JWyRdDWwEpgNvrxL3hiq/j/LrLpB0t6Stkm4kJc4za/VZ0h6gHdgvaaekjm7cz8yszznZNbMi2JL7+VVga9n2YOCwCud1AptLG5Lash/f0FbSLlKlcllEvBARtwDDJe3Ijq8AjouIJRHRApQ+sh+Su1c+znbgJUn/zs5/Nds/PNd+fe7+HaRq9dh8XBHxNuD9wG0R0VZ6kaZmjJG0u0rc2yv8PsqNA+aWXXcKWULejT6bmfV7TnbNrAj2l233ZDWBfRX2VawCS7qM9HH9YuAE4MHS8l8RsQJYBuwBfgWc3I04a1U7Xy/bHlplH6SK78dyr3Gk6Qddxl3DEGB2hetOg2732cysX/MDamZWNIdiOS6yubJXA7MlNQPNEfEzYGpE3AmcC5wi6dGs/bjs1GrTJ2oZBHw8d/+h2fb8fCNJr0TEDmC0pHty7X8B3Jc96FYxbuCmGjFsIj1Y9r9KeUTMA7ZHxEp6v89mZn3Oya6ZFU1PEq1BPWi/C/gKMCwiFgDvACaSHvzaA7QBUyLieeCDwJLsvNK0hJ7cq2RKRMwgPXA2CxhBmutbbiFwTUS8CDxFmqs7LYuhq7gryce4EFgZEQLWklZdaALOrNHnET3sp5lZ3Xgag5kVTaUvRahW7e32FyhI2g98iTQNoJW0jNhDwBxJB4Bvk5LAv5Mqpr8GHietDlHpXrXu3UlKbM8mJbBjgdMk/atC26XADaRlwP5KegBtsqSNXcXdxX1Lfb6H9DBaE2lVi+nAOZLWZNet1ucJ3eyjmVndDers9PuUmVlfi4i1wGOSrqx3LGZmjcyVXTOz+ngz0x7MzKyHnOyamdWHpwCYmfUBT2MwMzMzs4blyq6ZmZmZNSwnu2ZmZmbWsJzsmpmZmVnDcrJrZmZmZg3Lya6ZmZmZNSwnu2ZmZmbWsP4LVr4OJ4FRQ+kAAAAASUVORK5CYII=" alt="" />
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAskAAAHLCAYAAAA6FQV7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8VOW9+PHPmX3Nvi8kgYTDJnsEWaqgKOBSC4paa2u91Vsrttfrq7e17U9crrWtrbXVanvbWrcutrW1ahGVqhWVHUEMcAgBQvZ9mSyzn98fk0QSAgTIJCF8369XXsycOfM8T3KY5DvPfJ/vo+i6jhBCCCGEEOJThuEegBBCCCGEECONBMlCCCGEEEL0IUGyEEIIIYQQfUiQLIQQQgghRB8SJAshhBBCCNGHBMlCCCGEEEL0YRruAfSlquotwA81TUs+zuNxwM+Ay4gE+euAr2ua1jx0oxRCCCGEGP1UVZ0B/AqYBBQDX9U0bXM/590APASkAO8A/6FpWu1A21BVNRHYClyhadqermMW4EfAKsAKfADcoWlaWRS+1WOMqJlkVVXHAo8CJyre/BjgBPK7vmKBx6M/OiGEEEKIc4eqqjbgVeC3ROKtnwOvqKrq7HPeVOAp4DogCagGfjfQNlRVXQC8D+T0GcJ3gFnANCADqAD+MKjf5AmMmCBZVVUj8BzwS0A5wakG4AFN09o0TWsFfgPMG4IhCiGEEEKcSxYBIU3TfqVpWkjTtN8BNcDyPufdCLysadpWTdO8wLeApaqqJp+sja4A+S9EZqH7xn8O4EFN0+o0TfMBTwJzovOtHmvI0i26gmB3Pw+Fu4LdbwO7gdeB/zheO5qmfbHPoauAnYM1TiGEEEIIAcAEYE+fY1rX8aOpwIc9J2hao6qqjV3nnayNT4BcTdN8qqo+1+skTfufPs+7ikisOCSGMid5EfBmP8cPq6p6LZF3IbOB8wfaoKqqdwMrgbmDMkIhhBBCCNHNCXT0OdZBZIZ3oOc5TtTGQNeUqap6HXAPsGwg5w+GIQuSNU1bTz/pHV25KtuAr2ia1qGq6knb6pqVfoxIgHyxpmn7B3m4QgghhBDnunbA3ueYA/D0OdZf4Nx9XscA2zguVVW/RSRAXqFp2oaBPu9MjYTqFoVAHvDPrgDZBDi6pumnappWfvTJXUH1S0QSuOec6grH7du3n2hRoBBCCCHEOWHWrFknWgMGsBdY3eeYCvy+n/N6ZjlVVU0CErqOxw6wjWOoqmogUhXjEmChpmlDlmoBIyBI7npHcPQKxwuBvx6vBByRH1YSkR9W2+n0OXnyZGw22+k8VYwgXq+XoqIiuZ6jhFzP0UWu5+gi13N06b6eA/A2YFVVdTWR+OsmIiXe3uhz3h+Bf6uq+jSwHXgYWKtpWpOqqgNtoz9rgMXAXE3TagYy4ME07EFyPxT6lIBTVdUDLAUOE/nheoGqo1Iz6jRNGzuEYxRCCCGEGNU0TfOrqrqMSOWx7xOpcXyVpmmdqqo+1XXO7Zqm7VJV9VbgaSANeA/4ctfjvuO10U+XPfGfqqom4G4iseqBo2I+HUg9zvMH1YgLkjVNe5fIO4yjjx1dFWPElK0TQgghhBjNulIc5vdz/PY+9/9CpJTbgNvo5zzjUbeDgOtUxzuYJOAUQgghhBCiDwmShRBCCCGE6EOCZCGEEEIIIfqQIFkIIYQQQog+JEgWQgghhBCiDwmShRBCCCGE6GPElYAT5w5d73/zQ0U52QZAQgghhBDRJTPJYliVlJRgMBgwGAyUlJQM93CEEEIIIQAJksUwUhSl16xx3/tCCCHEqdI0jbvuuosFCxYwY8YMLrroItasWUNzc3PPOTfddBPnnXceM2bMYObMmcycOZMVK1bw1ltvDelY33nnHRYvXgzAtm3bem6LkUGCZCGEEEKMCjt37uSGG26goKCA119/nY8++ogXXngBr9fLLbfc0uvcb3/723z00Ufs2LGDHTt2cPvtt3PXXXdx4MCBYRn77Nmzefvtt4elb9E/yUkWQgghxIAFgmHqmzuHpK+kODtm08Dn8+6//36++MUv8rWvfa3nWFZWFg899BCPP/44Ho8Ht9vd73OXLFmC2+3m4MGD5Ofn93rspptuYv78+axdu5aysjLmz5/Pl7/8Ze677z4qKiq46KKL+PGPf4zBYKC5uZmHHnqIDz74AJvNxvXXX89tt90GgM/n48EHH2TdunXExsayZMmSnj42b97MN77xDTZt2kQ4HObnP/85b7zxBjU1NcTExHD77bdz3XXXUV5eztVXX81//ud/8uyzzxIOh7nyyiu55557TuVHKwZAgmQhhBBCDEggGOaOn/yL2saOIekvJcHBL7918YAC5crKSvbu3csTTzxxzGMmk4m77rrruM/1+Xy88soreL1epk2b1u85L7/8Ms899xwmk4mlS5dSWlrKb3/7W8LhMFdffTUbNmzgwgsv5H/+539ISEjg7bffpqGhga9+9askJSWxYsUKHnvsMUpKSli/fj0+n49bb7213zTDV155hfXr1/PCCy+QmJjIq6++yve+9z2uuuoqANra2qioqOCdd95hz549fOELX2DZsmVMnz79pD8nMXCSbiGEEEKIs15tbS0AqampPcd+8pOfUFhYSGFhIdOnT+cf//hHz2OPPPJIz2MLFy7k73//Oz//+c97Pf9oV155JSkpKSQkJFBQUMDll19OSkoKaWlp5OfnU1lZSV1dHRs2bODb3/42NpuNzMxMbrnlFv785z8D8Prrr3PbbbcRFxdHamoqt956a7+Vni655BKeeeYZEhISqK6uxmKx4PP5aGlp6Tnn1ltvxWw2M23aNMaOHUtpaemg/BzFp2QmWQghhBADYjYZ+OW3Lh6R6RaJiYkA1NXVkZ6eDsDdd9/N3XffDcDKlSt7BaTf/OY3ufHGGwc8lri4uJ7bBoOhV9qGoiiEw2GqqqrQdb1XGkU4HO55bn19fa8gPCMjo9++AoEADz74IJs2bSI9PZ2JEyf2tNUtISGh57bJZDpuWVVx+iRIFkIIIcSAmU0G0pOcwz2MY2RnZ1NQUMBf//pX7rzzzmMeH4ogMiUlBZPJxIcffojZbAagtbWV9vb2nscrKiqYNGkSADU1Nf228+ijjwKwYcMGLBYLlZWV/P3vf4/6+EVvkm4hhtW6dev6vS2EEEKcqv/93//l2Wef5Re/+AUNDQ0AlJeX8/DDD7N///5es6/RkJaWxqxZs3jkkUfw+Xw0Nzdz55138thjjwHw2c9+lqeeeoq6ujrq6ur49a9/3W877e3tWCwWjEYjTU1N/PCHPwQgGAxGdfyiNwmSxbDQdZ01a9awevXqnmOrV69mzZo18pGREEKI0zJt2jReeuklysvLWbFiBTNmzOCGG26goaGBF198kc985jNRH8Ojjz5KQ0MDixcv5rLLLiMtLY17770XgDvuuINZs2Zx+eWXc8011zB//vxj9gsA+PrXv86RI0coLCzkc5/7HLm5ueTk5PRsuiV7CgwN5VwLSLZv365PnjwZm8023EM5p61Zs4YHHnig38fuvfde7r///pO24fV6KSoq4kyup2yNPXIMxvUUI4dcz9FFrufo0n09Z82aJX/sTkBmksWQe+mll44bIAM88MADvPTSS0M2HtkaWwghhBB9SZAshpSu671SLI5n9erVQ5J2IVtjCyGEEKI/EiQLIYQQQgjRhwTJYkgpitLvbkh9PfHEE1GZ0dV1vd8vIYQQQoijSZAshtzKlSt7Vvr2595772XlypVR619ykIUQQghxMrKZiBgW9913H8AxC/jWrFnDmjVrotZvfznIQgghokMqCImzmcwki2GhKAr3338/v/jFL3qOPfHEE9x3333yy1MIIUYR+fROnK0kSBbD6rLLLuu5vXTp0mEciRBCiMEmFYTE2UyCZDGqyUI9IYQYXuvWrev3thAjnQTJYtSTj/qEEGLo6brOmjVretXGX716NWvWrBl1kxWbN29m7ty5wz0MMchk4Z4Y1UbiQj1ZyCKEOBfcd999/e6u2n3s/vvvH+ohCXFKZCZZiGEgs9tCiNHspZde6jdA7vbAAw/w0ksvDXq/jzzyCAsWLGDevHl85StfoaysjKamJu6++24WL17M9OnTueqqq9ixYwcAf/vb3/jqV7/KPffcw8yZM7nsssvYtm0bd999NzNnzuSKK65g3759ADz++OPcddddfOlLX2LGjBmsWrWq57G+tm7dysqVKyksLGTVqlV8/PHHPY8988wzLFq0iDlz5vCFL3yBoqKiQf85iMEhM8kiasLhMG1tbXR0dNDS2kZraxue9g4CwTDBYJhgWKeyorzn/Nfe/JDk1EN0T6gq9NxAUcBoUDAYFIyKAYMRQsEglRXl1DW24XY7cTpsuJwOnA47DocDm82GxWIZhu/8xGQhixBiNNN1vVeKxfGsXr2aFStWDNrvv40bN/L666/zz3/+E5fLxZo1a3jiiScwmUwYDAbWrVuHoih8//vf5yc/+Qm///3vAXj33Xd57LHH+P73v8+3vvUtbr75Zn7605/ygx/8gO985zs89dRT/OxnPwMiOdWPPvooTz/9NL/85S/52te+xhtvvNFrHJWVlXz1q1/lRz/6EYsWLeLNN9/ktttu44033qC5uZmf/exnrF27lvT0dJ544gl+8IMf8Pzzzw/Kz0AMLgmSxRnp7OykqrqGsooa2jp8eH1BOv1BvN4Q3kAIDFYUkxWzxYLFasdsju/5hagrOp0Gb09bIWsKuiOT7ii5b1JCqM/9IEE6zAo1vgRq/RCs9hEIeAgGAhAOEA75UQjR3FDT85zX3vwAk+nTD1A+3LQdq83ac7+xsZHU1FRsNhsmk7w8hBDibGGxWGhsbOTPf/4zF198MQ8++CCKolBfX4/NZkNRFCoqKnC73dTUfPp3ITMzs6e6UmFhIbt27WLJkiUAzJkzhxdffLHn3Hnz5rFs2TIAbr/9dp577rmeWelur732GnPmzOHiiy8GIpWb/vCHP/DGG2+wYMECAoEAf/rTn1i6dCl33HHHgN5QiOEhUYAYkFAoRFV1DQcOHqHF46WtM0Bbp59A2IjZGoPTHYvBGAsWMFjA4QLHANpNzRjDC6/vOaOxKYqCyWTCZDJjszuPeTwQ/nQ2OWxLw3/UY3W+WD7a8G7P/Ud+8TyfWXwFejiIQdExmRTMRiMmo4LRaMBkVCK3DQbMJgMmowGDQcFqMeFw2HE57LhdkVlsq9UqwbYQ4pyjKApPPPEE11xzzQnPe+KJJwb1U7RZs2bx8MMP84c//IGf/exnZGZm8p3vfIekpCQeeughSkpKGDt2LLGxsb3WhsTGxvbcNhqNuFyunvsGg4FwONxzPzs7u9djKSkpNDQ0kJiY2HO8srKSDRs2UFhY2HMsGAwye/ZsMjIy+PWvf81vf/tbnn32WWJjY/nGN77BihUrBu3nIAaP/PUWx9B1ncbGRvYVH6KusY3Wdh+ejiAGixtXbAJGYxyKC9yuk7d1IsOVYrBz64ae288+9RAfb/v0/l+efZxgMMTKL6zud3whjprR1oFg5Ga4M0Sg3k8w0EjAX0U4HETRg4RDQUwGHbPJiNmkYDZFguvG+k9nMQ4cPExMTAxutxur1SqpF0KIs97KlSu59957j5uXfO+997Jy5cpB7bO6upq8vDyef/55Ojs7eeGFF/jGN75BamoqN9xwAzfffDMAL7/8Mvv37+953qn8zq2tre25HQwGqa2tJS0tjUAg0HM8JSWF5cuX88Mf/rDnWHl5OXFxcTQ2NuJwOPjNb36D3+9n3bp1fOtb32LhwoUkJyefwXcvokGCZAFAU1MTRfsOUF3fSlOrD59uxR2bjNmShikG4mOGe4SD4/WXn+OtV37fc//oALnb33//JADX3HTngNs1GI1YjXasNvtJzw0AHcqnySPbtGYO1H1COODFpIRx2EyRL6sJt9NGRnoKGempOBwDmZsXQoiR4b777gM4JlBes2YNa9asGfT+du7c2ZPfm52djdvtJjY2lvb2dmw2GxBZNP2b3/yGYDB4Wn289957bNy4kdmzZ/Pkk08SHx/PjBkz2LJlS885y5cvZ9WqVWzcuJG5c+eyfft2brvtNp588kmcTie33HILzz//PJMmTSIuLg6bzYbdfvK/HWLoSZB8jgoEAuzZt5+DR2qpb+7Er1twx6VgsmTiTIJjkxZGh6MD5BP5+++fZEyeyvkLLo3yiMDhdBOfmN7rWABoAZpaQ+ytrCbg1bAYw7gdFtwOMwlxLvLzsklOTpaZZyHEiKQoCvfffz+pqanccccdQCTFovv2YFu6dCn79+/n85//PG1tbYwbN47HH3+c+vp6Hn74YR555BHS0tJYsWIFjz32GC0tLSddSN33/rRp0/j1r3/N6tWrmTJlCv/3f//X83j3v7m5uTz22GP8+Mc/5vDhwyQkJHDPPff01FG+++67ufPOO2lsbCQzM5PHHnusV4qHGDmU0VbQ+2S2b9+uT548uedd5bmkqamJXZ9oVNV7aPQEsLmSsTvdwz2s09b9UVdKSsoJ835rKo/w37dcdtzHjyc2Polf/OG9qAShR4/p0affIDVjzCk9P+D309bagCHUQazLQrzbSl5OBmNzx4zIih4D4fV6KSoq4lx9fY42cj1Hl9O9nrquU1JSQkFBAQDFxcWMGzfurHxz//jjj1NcXMzPf/7z4R7KGeu+nrNmzTr7LsQQkpnkUa6hoZHtu/ZSVefB4zcRk5CKyRFH/Dn0yf1ofCNotliIT/p09rkxpFP+cT3rP9yP22EgMcbGhIIx5OXmYDQah3GkQohz3bhx43otfhPibCFB8ih0dGDcFjATm5CGOS6RhOEe2Fnm5jv+31kz26EoCk53HE53HAAtus6/tlcT/mAvCTFWUhNdzJg6sdcqbiGEiLaz5XfoQEhN+3OPBMmjhNfrZdtHuzlY1kCrz0RcYjrmuETih3tgQyQU1vH5g3j9IXz+EMFQmEAwTCgUZuP6N07eQB8XX/0V8qYsxNPhx2YxYTadXZtTKoqCOzYBYhMIAUdaAxS9shm3LUxmSgyzpkUWjAghhBgYqWd87hlxQbKqqrcAP9Q07aS1UFRVfQ6wa5p2bfRHNvKEw2GK9mrsO1BBbYsfZ3wmltjcUTdjrOs6vkCIto4AbZ0B2jsj/3rafbR3+gnsO0QgeOxHebqus3/jnyje9GI/rR5fwQXXYcu7nPVbjvQcMxoU7FYTNosRh92M227G5bDgcphx2S3YrcYRPcNgMpmJT4nkPVe2B9n7ypZIwJzs5vxZ5xETM0rKlwghhBCDZEQFyaqqjgUehV77PRzv3GuBzwN/i/a4RprGxiY+3LqLirp2DPZknK4s4kfJuhifP0Rzm4+WNl/Pvy1t/n6D4BMxGRW0DwcWIGcWFFJRvBWAGUtuJ3fGMoKhMEenMofCetcGKgFo8R7ThtGgEOuyEu+2Eue2EueK/Gsx958PfHSt5l3b3ufSqz5/St/fmTAaTSSkRgLmqs4gz7+8kQSXwsT8DM6bPFFymIUQQghGUJCsqqoReA74JfAfJzk3A/g+8FsYdROn/QqFQuzavYe9JZU0dxqITczEnXx2pQD0FQyFaWz10tDspaGlk4YWLx2+E9euNBkNXbO3ZhxWI8GAl6SEWBx2CzaLEZvFhNViZNsHb/HyB3866RhuvuP/MXXWgp5KEzfdcDWpGWPQdZ1AMIzXH8Lri6RxeP1BOn3ByEx2RwBPZwB/IFLvOBTWaWz10tjaO4B22s0kxdpIjrOTFG8nxmnh77//RU8tZoBnn3yQ1paG425gEk1Go4n41Bx0YFtxK5t2vU5GkpPzZ04mLTVlSMcihBBCjCRDFiR3BcH91RsLa5rWCnwb2A28zgmCZFVVFeAZ4HvABEZ5kNzS0sL7m3dSXuPB5EzF7soh/iwtp+gLhKht7KCmsYO65k5a2nwcr/CE3WoizmUl1m0hzmUlxmnBZTdjMX+a1vBpCTh3rxJwuq7zzC8eHNCYzps5v9/jiqJgMRuxmI3EOI9fUs0fCNHWGaC13U9zm49mT+SrsyvYb+9KDymt9gBQvOlPaB8eG7yfzgYmg83higFXDB5d529v7SbGFmDaxBymTJowolNJhBBCiGgYypnkRcCb/Rw/3JU6cSMwGzj/JO3cCTRomvaiqqr3De4QRwZd19l/4CAffVJCg0cnNikLd0rqcA/rlAWCYWqbIkFxTWMHzR5fv+c5bSYSY+0kxtpIiLGdME1hpLGYjSSYjSTE9M538fmDNHl8NLZ6qW/2UtfcSemeDf0GyN2GcgOTE1EUhbjkTAA27Wtmy661FOQkM7dw+llbg1kIIYQ4VUMWJGuath44Jj9AVVUbsA34iqZpHaqqHrcNVVUnAV8HCs9kLD5f/8HacPP7/WzdsZsDR+oJGuNwx2XgToSwrhM+zS00h1pbR4Cqhnaq6iOzxeE+M8WKAvFuKynxdhJibCTGWLFZ+/431Ae0ZWj3Of2de9NXv8MTD//3SdsI9andGQyFTnu70qMZDZAUayUp1sr47FjC4TBf/9VvT/q8X/30PizJ08hKdRHrtAz7DK7V5gKbi/01Xna98DpZKQ4Wzp0Rld2hul+XI/X1KU6NXM/RRa7n6CLXcWBGQk5yIZAH/LMrQDYBDlVVG4GpmqaVH3Xu1UAqcLDrXBtgUFV1p6Zp0wfa4YEDBwZr7IPC4/Gwa89B6lvDOOIzMVvcEArRWVs73EM7KV3Xae0MU98SoMETotN/7AI7l81AnMtInNNErMOIyagAIdDbaW1pp/UMx9DY2HjMsZyCaVxy1U2sf+X5Ez63oaHhmPuK0XqGIzqWrusc846hH2FdZ8/hJvaWNmO3KCTFmEmKMeG2G4Y9YEZxU1wTYvtvXyHJrTNzSgFO5+BvYD7SXp/izMj1HF3keopzybAHyZqmbQB6/tKqqnoh8Nf+SsBpmvZ9Igv2us9dA0w51RJw+fn5WK2DHwidqtIj5WzdtZ/GNojNmkX8WVJVQNd16lu8lNe2U1HXRqcv1Otxs8lAWoKD9CQHaQkOrJbofF/BYJDGxkYSEhL63Zb6C7d+E6fTyT/++Mtexy+58vOsf/UPACQmJvZ6LDExkZSU6CxY+9Id3zvp7PaSa+/CYTPR6QvR6dcpq/dTVu/HaTORk+YmJ82Ny2GOyvgGKi0tnXAoxM6SMjISOvnMBTMGpYScz+fjwIEDI+b1Kc6MXM/RRa7n6NJ9PcWJDXuQ3A8F6DXlpqqqB1iqadoH/Zx/ynsOW63WU9p7fjCFw2F2flzE7v3ldIadxMSPJeksKFGr65HqDYerWimr8RwTGLsdFrJSXGQkO0mKtWMwDN2sp8lk6jdIBlj1pW8QF5/Ms09GFvJ1V7PoDpJNfd6YmIzG47Z1pi64cBkVRw70qmxxtM/d+DWuuWFVz8+6rKaNsloPbR0B2r1B9hxuYs/hJpLibOSlxzImzT18udsmE0kZ+XhDIf6ybjtZyTaWXDgHh+PM9zsfztenGHxyPUcXuZ7iXDLigmRN094FUvoc668qBpqm3T8UYxoMfr+fDzfvoLi0AcWRgiM2j+GdDxyY9s4Ah6taOVTZgqcj0OuxGKeFMaluxqS5iRkB+bP90XWdgkmfZuLkj80l0FrRc98WqkM5KqA3B2oxeo2Ewzp+f4hOf5BA2IDB7MDucGG1Oc7o+1z5hciOTX0D5RU33sGKL9wBRBbORRYy2plWkESzx8ehqlZKq1rx+kPUN0cWA27fV0t2mouCrDiS4uzD8vM3GI3Ep+bhCYV49qV3yc+K5aIF52M2nw3/u4UQQojjG3FB8mjT2trKex/uoLyuHVtcFs7kccM9pJMKBsMcqfFwqLKF2qbOXo+5HWZy02PITnUT6xpZH7kFA348zXWY8OKyW3DazbgcZhILPp2qv/6zFwLwrf+K3L900dxebSy7+ALGjet9jXw+H01NTVTX1lPX0Ehru49mj5+OgILDnYTdMfC8XEVRuOamO4mJTew1u73kyv43E1EUhfgYG/ExNqYXJFPd0M6hqlbKa9sIh3VKqzyUVnmIc1nJz44jNz1mWLbQNhiNxKaMpaLNx9MvvsnU8enMmT0dg+HsruUthBDi3CVBcpRUVFaxcdsn1LSEiU3MIiYlbbiHdFJNHi8l5S0crmrttcOdxWwkJ81NXkYMCTG2ETNj7PN20FxXhtvYRlKCi+wEFxPnTiMxMbHXGEtKSs6oH6vVSlpaGmlpva9he3s7xSWHKK+qobG1k9ZOHVd8BhbLyd88TJu9oOf21FkLTnDmpwwGhYxkFxnJLvyBEKVVrRSXN9PSFqnRvG1vDTv315GXEYM6Jh73Ceo7R4vFYsWSPI49Fe3sKV7LvFkqEycUDPk4hBBCiDMlQfIg0nWdvXv3s2PPITx+KzEJWcSnjIyA8niCwTClNR5KypppOGq3OEWBzGQXeRkxpCe5MA5hjvHx6LqOp7UR3dtEcpyNnIxYJqSMpbCwcFhy5JxOJ9OnTmH61Mj9jo4Odu7ey5GqWhpbA1hdydid/WYKnTGL2UjBmHjys+Oob+6kuKyZshoPwVCY4rJmisuayUpxMTE3gaQ4e1TGcCJ2hxMc+by3q5qdRSUsXTyX+Pi4IR+HEEIIcbokSB4EwWCQrTs+Zs+BKsLmBJwxucQO96BOoq3DT3FZMyUVLb1mjV12M+OyYsnLiMV+TP3ioRcOh2ltqMJmCpASZ2Pu7Bzyci/AYDDg9XopKioa7iH2cDgczJszi3lAIBBgz779FB8qp6bZjzM+c0AzzKdKURSS4x0kxzvw+oIcrGxh/5FmOn1BymvbKK9tIynOxsTcBDKTXUP+KYA7LpmwnsQfX9tMQZaLRQvnRG1hpBBCCDGY5K/VGWhvb2fDxh0crmrBGpOBPXFk5xvruk5tUyf7jzRRUdvWUxZEUSArxUV+VhypCWe2MG2wxulprscYaiUzxc2ll00jJTlp0No+0f3BYjabmXbeZKadNxmfz8fW7R9TUlZJW9BKXGJ6VPq0WU1MyktEzUngSHUrew830tLmp77Zy4adlbgdFqaMS2RMmhvDEF5jRVGIS8mhwuPl6T+tY97MfKZMmjC48x1+AAAgAElEQVRk/QshhBCnQ4Lk01BdXcP7W3dT0xQgJimbmJRjSjqPKKFwmNIqD/tKI0FTN6vFSEFWHPnZcSNi1rjd00LYW09aooOF8wvIzsqMSsA+btw4wl077em63itnWdd1dF0f1H6tVisL5hWyAKiqqmbrzr2U1B8ZtPb7MhoU8jJiyU2Pobqhg72HG6lp7MDT4Wfj7io+Kaln8thEctJihrRUn8Vqw5Kcz8aiBnbvW8cVS+bjdkcnHUUIIYQ4U8MfGZ0lwuEwn+zZx8f7ymj1mYhNzCQ+dfjzdE/EHwhxoLy55+P3bgkxVsaPiWdMmhvjMFcfCIWCtNSXk+Q2MndiFpMnFka1IoKiKMcEwPn5+T1Bc7Slp6dxVXoaBblprPmfyLHOzvao9KUoCulJTtKTnDS2eik62EB5bRuejgCbPqmm6GDDsATLzphEQuF4Xnh5AzMmRKpgDPenF0IIIURfEiSfhNfr5YPNOzhY3gTWJJzuHOJG+ORXhzeAdqSJA2UtBEOR4E8BslJdTMhJIDF2+CtUtHmawVtPTnocn7163qDs2HY6huvnYLF8WnliyhgbTc2H6NSdxMRHZ7e/hBgbC6dnHidYbmRaQRJZKUOXs2wwGIhNGcsnR1rYf3Atyy+5AJfzzDciEUIIMbhUVZ0B/AqYBBQDX9U0bXM/590APERkr4t3gP/QNK12oG2oqpoIbAWu0DRtz1HHHwb+g0jM+hzw35qmDcnMlgTJx1FRWcXm7Xuobvbjis/EmZQw3EM6qbYOP3sONXKosoVwV6pt90fvE3LjcTuGviTY0XRdp7m+glhbkPmTcpk0cc6wB+sjweSJ4xk3bhyHDpfy4ba9eIKOIQ6W/by/q5KkuEgt5uT4oQtWHa5YdD2GF9duoSDDSXyM7OQlhBAjhaqqNuBV4EHgN8AXgVdUVR2raVr7UedNBZ4ClgC7gceB3wGXD6QNVVUXAL8Gcvr0vxpYDpzXdeg14G7gkah8w31IkHyUQCDA1h0fU3y4lo6wnZj4DOJGeAk3AE+7n6JDDRyuaqV7HZrFZKBgTDzjs+OwDVK+sRLwEfPRBvxJGXSOnTTg5wUDfjwN5WQm2Vhy2fRBW4Q3EN05xn3vj8TgPC83h7zcHA4eigTLbaGhCZZ37q+jprGD+mYv67eWkZnsYlpB0pBtFqMoCvEpuRxuamHT9q2kZ2SSlZkxJH0LIYQ4oUVASNO0X3Xd/52qqncRCVz/ctR5NwIva5q2FUBV1W8BdaqqJgOzT9RGV4D8F+CbRGaKj3YT8FNN02q62n2YSLAtQXI0HR04VVVVs3nHHqoaOrHHZWKNyxvxJdwAWtp8FB1s4Ei1p6dShc1iZEJuAvlZcYO685ri95Ly2nPYqkvRDUYqr7uTYPyJFyx2trcR6qxhXFY88y9ZPCy1jKH3Qr2zwdi8HMbm5VBy8DAbt++lPezCHRedxaEJMTYWzcqiuqGDncV1NHt8VNS1UVnXxrisWKbmJ2G1DM2vCZvdiT1J5W9v7mDWpCrmnT9zRL6ZEUKIc8gEYE+fY1rX8aOpwIc9J2hao6qqjV3nnayNT4BcTdN8qqr2DZLVPs/d33VsSJyzQTJEdmIrKIjsBvbj37xOWua4s+KPcmu7n09K6imt9vQcs1tNTMpLYGxmLCbj4C58U3xeUl97BmtNWeR+OETChteovfLmSP24Pto9zRj8DZw3PovZM5cN69bEZ8P1PJ5xY3MZNzaX4pJDvL9lDyFLEg7X4L99617gl5booLTaw8fF9bR7Axwob6G02sPU/CTys+KGZHFfpFxcLvvK2zlYuparl31GKmAIIcTwcQIdfY51AH3z8k50nuNEbWia1nwK/XcABlVVLZqm+Y/znEFzzgbJfascGAyGER9QtXX4+eRgA4crW3tmjp02M5PyEsjLjIlKpQqDt5OUV3+Hta4CgPaCqTiLP8ZefgD7oT10jp3cc66nuQ4bHuZOyWPKJMk3Pp5TTQEpGJdH/thcduzczbaiYizuLKy2wd9FT1EUctNjyE51sb+0mU8ONhAIhtm+r5YDZc3MnJBCWqJz0Pvtj90VSzjs5vm/vccF03OYMW3KkPQrhBCil3ag7x8cB+Dpc6y/wLn7vI4BttGfvs91AMGhCJDhHA6SzyYd3gBFBxsoqWjpyTl2WE1MHpfI2IzYqM3wGbwdpL7yNJb6KnQUGi+6mraJszB0tmMvLyHh/bVUZhfQ4mnEbfZySeEExo3NjcpYRptTTQFRFIVZM6Yy7bxJvPfhVrTDlbiScjAaB/8lbDQYmJiXQG5GDLuK6zhU2UpLu593tpeTleJippqC024e9H77MhgMxKWNY9v+Bg4dWc+VSy/EbI5+v0IIIXrsBVb3OaYCv+/nvJ40CFVVk4CEruOxA2zjeP1PIFL1ovt5fVM3okaC5BHMFwix51AD+480E+4qV2GzGJk8NpFxmbEYBzmt4miGznZS//FbLI016IpCw6KVtE+YAUDTgiuw/flxTG3NxGx+lXm3fpGcMdlRG8tocyYz7CaTicWfuYALCjt5852NVNTrxCZmRGXW3m41MXdKOvlZcezYV0tDq5fy2jaq6ts5Lz8JdUz8kKRgOGMSaQv4+d2f1rJ88flkZUZnx0IhhBDHeBuwdlWZ+BWRhXQpwBt9zvsj8G9VVZ8GtgMPA2s1TWtSVXWgbfTnBeCbXW0EgXuA58/82xqY4d1JQvQrGAqz51ADr244yL7DTYTDOhazkenjk7ly4VjGj4mPaoBMKBiZQW6sQVcM1F98bU+ADFCvh2idEPn4O37vblJkdm/I2e12Prt8MVcvnkyguYSOthOldJ2ZpDg7S+aMYc7kNKxmI6Gwzs79dbyxqZT65s6o9Xs0k9mCK0Xl1Xc+YcOHW6O2nbgQQohPdaU1LANuABqAO4CrNE3rVFX1KVVVn+o6bxdwK/A0UAOkAV/uesx3vDb66bLvL/cngX8AW4AiYAPw6GB+jyeinGt/bLZv365PnjwZm81GSUkJ+fn5ADz69BukZowZ1rGFwzqHKlvYXdLQs0Oeyaig5iQwMTces8k4JOOwHdlP6mvPAlB36fV05EfKE7Y01hBj7mThnPPISIxnx9e+TqCpifjC2Uz63j1DMrajeb1eioqK6L6e5ypd19n+0cds+6QMR8IYTObo1cP2BULs2l9HSUVLz7H8rDimFSRhMZ/Z/89gMEhtbS0pKSmYTMf/kKujvRV7qJ6rl1+I0zk0OdLi1Mnrc3SR6zm6dF/PWbNmyeKhE5CZ5BFA13Uq69p4feNhtuypodMXRFGgIDuOKxaMZWp+0pAFyACOQ3sB8KVk0pF/Hm0tDQSbD3LpnBxuvGYpY7IzMTkc5N78RQCatm6jcdv2IRuf6E1RFGbPnMYt119KvKmB5vryqM20Ws1Gzp+cxiWF2cQ4I8H4gfJm/vnBIcprB7IG48w5nDHozhyee+ltSg6VDkmfQgghzj0SJA+zJo+Xd7aX8++PKmhtjyzWHJPm5vL5ecyemIp9kDYCGTA9jL0rSG7JyMPbWMKC85K5adWyYxblJV+4kJhJEwE49OunCfuHZLGpOA6LxcKVSxdx9eIp+JpK6OxoP/mTTlNyvIOlF+QyNT8Jo0HB6w+xYWclH3xcic8fjFq/3QxGI7GpBby18QD/fn+zpF8IIYQYdBIkD5NOX5DNRdWs21hKTWOkBGBynJ1L54xh/tSMYdtC2lJbgakjMiOYs2AaX75+OZMmju93YZiiKIy97StgMOCtrqbyldeGeriiHxnpaXz5+ssZnxqmueZg1DZSMRoUJo9NZNm8XFLiIxV6jlR7+OcHhzlSPTSzyjGJmRTXKvzxb+vwer1D0qcQQohzgwTJQywYCvPJwQZee/8gB7vyOl12MwumZXBxYTaJsYNf/3agAn4/xqLIhjnW1FRmXLLopFUTnHm5pC65BIDad/4d7SGKAVIUhYXzCvn8VfMxdhyhrbUxan25HRYWz85m9oQUTEYFXyDEBx9X8v6uSry+6M8qO5wxhOzZPPuXNykrr4h6f0IIIc4NEiQPEV3XOVLtYe0Hh9h9oJ5gSMdiMjBDTWb5/DyyU93DtvlGOBSiqeYgaY5WctojwVTinMIBjydx7vkAdJaXE2xri9o4xamLi4vlhpVLKVRjaak5QDgUiko/iqJQMCaeZRfkkpoQqSdfVuNh7YeHhyRX2Wg04U4Zz2vv7mHjlo+i3p8QQojRT4LkIdDk8fL2tjI++LiSdm9kUd74MXFcsXAsE3ISMA5Brdn+6LpOU105znA1X1rxGT4zaRydZeUAJHQFvgPhHj++Z3tqj7Y/KmMVZ2bG1MncfO3FWHzltLXUR60fl8PCollZFE5M7ZlV3rCzks1F1QSC0Un7OFpscjaflHr526vrCUXpDYEQQohzgwTJUeTzh9i6p5o3NpZS2xQpB5iW6GDZBbnMmpCK9QxLZp2JtpYGdM8hVlxyHp+74mJcLheNmyMb2pjcbmImTBhwWyaXE0fXZiKt+7SojFecObvdzqrPXcbcSYlRn1XOz45j2bw8kuMi6UMHK1p4feNh6po6otLn0Zwx8bSSzDMvrqW5ueXkTxBCCCH6ITvuRUFY1ykpb+HjA3X4A5HZM5fdzAw1hcxk57ClVQD4OtsJtVcxb0Y+UybN7/VY4+YtACQUzkIxnloA756g0lF6BI8EySPe1CkTKRiXy6vr3qM54MQVmxSVflx2M4sLs9l3uJHdB+pp7wzwr61lTMpLYMq4pKju1mexWNET8vnjK+9z8QUTGV8wNmp9CSGEGJ1kJnmQ1Td38tbmUrbtrcEfCGMyKkwrSGL5/FyyUlzDFiCHQkFaakrITwlzyw3LmTKp90xxoKWlZxY44fyBp1p0i5kQ2bLds78YXT7mHvF6zyqXRK0ChkFRmJSXyJI5OcQ4LehA0aFG3tpyBE9HdEsGKopCbOo4/rX1sJSJE0IIccokSB4kXn+kpNtbW47Q2OoDIKer3vGkvESMhuH5Ueu6TnN9BW69lpuvXczCeYUY+hlL49btEA5jsFiImzHtlPtxdwXJYa+X9tIjZzxuMTSmTpnITSsuRGkrpbMteqkJCTE2Lpubw/gx8QA0tnpZt7GUw1WtUeuzW2xiBgdq4K+vvEUwGP1qG0IIIUYHCZLPUFjXKS5r4rX3D/WUdIt1RkpizZuagcNmHraxtXuaCbYc5LOLJnH15Yux249fXq5xSyTVInbaeRhPY8tRW3o6ppgYAEm5OMu4XC4+f81SJmSZaK47HLUZV5PRwKwJKVw0Mwur2UgwFGbj7io2F1UTjPKiPrsrlg5DGs/8SfKUhRBCDIwEyWegsdXLW5uPsG1vLYFgGJMxUtJt6VFlsIZDwO/HU1vMzHEOvrhqOZkZ6Sc8P+Tz0fzRLgAS55x6qgVEPtp2q+MBCZLPRoqiMH/OLK69bDa+phJ83ugtsEtPcrJs3qevkYMVLbyxuZTmNl/U+gQwWyzYkwr44yvvc+Dg4aj2JYQQ4uwnQfJp8AdCbNtbw5ubSmlsjezylZPm5ooFeUzISYjqgqQT0XWdptpSkm1N3HL9UmbNmDqgHOjmnR9HtpRWFOILZ592/915ya379p12G2J4JScncfN1y8mK6aS1sTJq/ditJi6alcXU/CQUBVrb/fxrWwWVjf6o5g535ymv31TCh1t2RK0fIYQQZz+pbnEKdF2ntNrDR1otXn9kcZrbYWH2xBTSEp3DOrZ2TzPWUAPXXnY+KSnJp/Tc7qoWbnU8lri40x6De2IkSPbV1OJvasISH3/abYnhYzAYWLJoPnkHD7P+/d04k/IwGgf/V4VBiWxrnRJv58PdVXR4gxRX+vCFapkzOR2TKXrv4WMSMykqbaK27l9cufQijKdYzUUIIcToJzPJA+Tp8PPujnI27q7C6w9hNChMzU9i2bycYQ2Qg8EArTUHmDnOwU2rlp9ygKyHQjRt2wZAwmmmWnRz5ef3lI7z7JNNRc52+WNzuXnVEkydZXS0NUetn+T4SO3w9KRI+sWRmjbe3FJKa3t0q184Y+JpDibw/J/X0tER/frNQgghzi4SJJ9EKKxTdLCB1z88THVD5A9pRpKT5fNymTx2+KpWALTUVxBnqOPL1y0ZcGpFXx5tP4GWSIWBhPMLz2g8RqsV59g8QFIuRgubzcb1K5YyKdtCc230FvVZzEbmn5dGXqoFgJY2P29sKuVIdXS3tLbY7Jhix/LcX9dTVV0T1b6EEEKcXSTd4gTqmjrYsqemZ0bLbjUyU00lO3X46h0DeDvawVvFFRfOJDsr44zaauhKtbBnZuDIyjzjsbknqLQVH5DFe6OIoijMO38mY3NqefXNTVjicjFbLFHpZ0yylTEZSWwqqsHnD/HBx5XUN8czbXxy1LZvNxiNxKSO5+/rP2LhjFzOmzzw3SaFEEKMXjKT3A9/IMSWomrWby3rCZALsuNYPi+PMWnuYQuQdV2nueYg45KD3Hzd8jMOkAEatwxOqkW37sV7bQdKCAcCg9KmGBnSUlP48g3LcVNLW0tD1PpJibezdG5uz5bW2pEm3tlWRqcvujWO45Jz+eDjGt5+b5NsPCKEEOLcDpLXrVvXc3vXtvfRdZ0j1R7++cEhSrpqHse5rCw5fwyzJ6ZiMQ/f4p621kbwHOaGK+dx4YI5/W4IcqoCra14KyMVDOJmTD/j9gDcaiRI1oNB2koODkqbYuQwmUysuPISZua7o1pT2WEzsXh2NhNyIos/65o7eWNTKQ0tnVHpr1tMQiqH6hT+8o83ZeMRIYQ4x52TQbKu66xZs4bVq1f3HHv2yQd59Eff5/1dFT0L86YXJHPZ3ByS4o6/CUe0RbaTPkChGsvnr1lKfPzpV5/oq+1ASeSGouDKHzcobVqTk7AkJgJSL3k0mz1zKiuWzKS9bj/BQHQW2BkMCjPUFOadl47RoNDpC7J+a1nPpj3RYnfF0mlM59kX19LW1hbVvoQQQoxc52SQ/NBDD/HAAw8cc3zHOy+wf+OfSE1wsHxeLhPzhq/mMYCnuQ5boJKbr72YGVMnD3qaR3eQbM/MwOQYvM1Pureo9sjivVEtLTWFL1+/HGe4hvbWpqj1k5Mew5I5Y3DazITDOpuLqtm+r4ZwOHopEWaLBWtCPs+/9A7lFdGrFy2EEGLkOmeD5OMp3vQizs49uByDvzBpoILBAJ7aYhZMTeHaz156wu2kz0Rb8QGAQZtF7hYzsXtTEU1yO0c5s9nMyquWMC3PQUvdkaj1E++2cdncnJ5d+vYfaebt7WV4/dFLiTAYDMSmFfDqO7vZ9cneqPUjhBBiZDong+STefbJ/x224K61sRq3XsvNqy5lclewGS3dM8mu/PxBbdc9IVIdINDUjK+2blDbFiPT+bOnccVFk2mt2U84FIpKH1aLkYtmZn2ap9zUyZubjtDsie521rHJOWz6pJZ//ftDedMnhBDnkBEXJKuqeouqqieMrFRVXaOqaqWqqk2qqr6kqmrsUI0vWiKbguxnceEYPnfFxVit1qj252toxN/YCAz+TLIzLxdDV4kwyUs+d2RnZXLzqktR2kvp7GiPSh/decoXnJeOwaDQ7g3w1pZSKuqimzvsjk/lUIOJv7z8hizoE0KIc8SICpJVVR0LPAocd7pGVdU7gWuA2UAGoAA/Gsxx3HzH/xvSMm+e5jrcei23XL+U8fljh6TPnkV7BkPPBiCDxWAy4SqIzE7LpiLnFpvNxuevWUZOnJfWxuqo9ZObHsMlhdnYLEaCIZ33Pqpg76HGqM70OpwxdJoyePbFtXg80d3kRAghxPAbMUGyqqpG4Dngl0QC3+O5A/impmmVmqZ1Al8BHjmVvr773e8e97HP3fg1zl9w6ak0d9oilSuKWTgtlc9dcTGWKGzQcDxtByL5yI4x2RijMGv96eI9mUk+1yiKwiWL5vOZGRk015RELXBNjLVz2dwc4t2R/787i+vYXFRNKByOSn/w6YK+F/7+LmXlFVHrRwghxPAbsh33uoJgdz8PhTVNawW+DewGXgf+4zhtOIHxQIaqqruBJGAt8I1TGct3v/tdjEbjMRUuVtx4Byu+cMepNHXa2lrqibd2cO2qJdhstiHps1f/UcpH7tZdL7n9cCmhzk6MUVp8KEauSRPGk5qSzN/WbsAal4vJPPhvAh02M5cUjmFTURVlNW0cqmzF0xFg4fQMbJbo/HozGAzEphbw2rtFzJvWwrTzJkWlHyGEEMNrKLelXgS82c/xw6qqXgvcSCSF4kRbv8V3/ftF4BIgAPwJ+Clw60AH4vf7ueeee0hISOC//uu/ALjp9u9yyeXXE4rSoqNu4XAYT90h5kwdw9QpswHwer1R7bMvXdfxFBcDYMsdE5X+LXk5kRvhMA1Fe4iZMnnQ+/D5fL3+FSOP02Hn+s8u4uXX38WjJ2J3xRz33O5c39PJ+Z0zKQWX3czew03UN3fy5uZSFk5Nx+2M3qczzvgM3t9VTWVVHRctPH9Yt6ofieT1ObrI9Rxd5DoOzJAFyZqmraef9A5VVW3ANuArmqZ1qOoJKzp0X9UfaJpW0/X8/wVe4hSC5ANdqQa5ubk9xzJyJlBbWzvQJk6Lt7MdOsr5zPmTMSphioqKotrf8YSbmwl5IgudqoHaKI1DSUhAb2zk0PsfYIpi/NB9PcXINXFsOjt27eVghQlXfOoJz23sWlB6qlJcQJaNfRVe2juDrN9WxuQxduKc0f01t724hd17nuPCC6ZjMg3lvMPZQV6fo4tcT3EuGQm/0QuBPOCfXQGyCXCoqtoITNU0rbz7RE3T6rqOH52fYOLEOczHyM/Px2q19qo/nJiYSEpKyul/FyfRUl/GtInxLJh7ybDPODVt3MxBQDGZmLzoIgxR+sN+cIJK04cbcfv9jJ0cnZnkAwcO9FxPMbJNmTIFbX8J720vISY575jXQTAYpLGxkYSEhNMONlNSIC2lkw8+rsYfDPPx4U4KJ6aQk9ZfptdgSSEQyOKjvYf43LKFxMYef7b8XCKvz9FFrufo0n09xYkNe5CsadoGwNl9X1XVC4G/apqWfJynPAN8T1XVTURmlr8HvHgqfVqtVmw2W68XuslojMosUMDvx99ymBVLziczI23Q2z8dvtJSIFKqzeFyRa0fZ1YmTUCgpjaqedfd11OMfNOmTiYzM52X1m7AkTgOo/HY15zJZDqj12JakptL51h596Ny2joCbNlTS4cvxJSxiVF7g2oymbDZJvG3N7aw/KLp5IzJiko/ZyN5fY4ucj3FuWTEVLc4ikKfEnCqqnpUVZ3fdfceIrnNm4GDQCnwzSEd4QB5muuIM9bz5euXj5gAGaK/aK+bPTMDgM7KKtmEQfRISkzg5lVLMXQciaQgRYHbaeHS88eQHBf5tOiTkgY2fVJNKIpbWSuKQmxqPms37GX7R7uj1o8QQoihMewzyX1pmvYukNLnmPuo2wHgO11fI5Ku67TUHmLejFymj7CV73o4TFvJQWDwNxHpy56eDkCoo4NASyuWuLN+zxcxSKxWK59fuYzX179HWWMH7rjjfXB0Bn1YTCyalcXmompKqz0crmql0xdk4fQMzCbjoPfXLTYpm23766hr2MBlFy8Y9vQqIYQQp2ckziSf1fzeTryNB7juigtGXIAMkVndUEcHQM+GH9Fiy0jvue2trIxqX+LsoygKy5dcyMz8WFrqy0/+hNNgNBq44Lx0JuUlAFDT2MH6rWV0eKO7a547LpkKj4M/vvS6rCIXQoizlATJg8jTVEuSrYWbr1tOYkL8yZ8wDLo3ETFYrTiyMqPal9ntxuSOfAjQWVkV1b7E2atw1lSWLVBpqTkQlbQcRVGYVpDM7IkpKECzx8dbW0ppaYtu8Gp3OAk5xvDMn9dR33B6FTuEEEIMHwmSB4Gu67TUlDB/agpXXHYRRmP0Pso9Uz35yOPGogzBOO0Z3XnJMpMsji83J5tVl8+jrVYjGAxEpY+C7HgWTM/AaFDo8AZZv+UIdU0dUemrm9FowpU8nr+s3cQ+TVaSCyHE2USC5DPk9/voqNvPdVfOZ8qkCcM9nJNqK478oXaOi24+crfulAuvzCSLk4iNjWHZRTMxtB/BF6UFfVkpbhbNzsZiNuAPhnl7ezllNZ6o9NVNURRiU8byzvZS3t2wiXA4jK7rPV9CCCFGJgmSz0B7axMx1PHlGy4nIT5uuIdzUnooRPvBQwC4o5yP3M3eFSTLTLIYCLPZzKqrl5Bs99DWGp0UheQ4O0vOz8FpMxMO63ywq5ID5c1R6etoMQkZfLCrDKPRiMFgoKSkJOp9CiGEOH0SJJ+mlroypuTYWHHlJWfNLlsdZWWE/X4g+pUtunUHyd6qavRweEj6FGc3g8HAFZddxORsK62N0XlzFeO0sGTOGOLcVnRg654aig42RHVmV1EUHM5PK7x4PG1S+UIIIUYwCZJPUTgUorWmmMsvnMgF588Y7uGcku58ZKPTgS19aOo227pyksN+P35ZvCROwfy5s7hwZjYttYei0r7dauLi2dmkxEdqKX98oJ4dWu2QpUC8sn4b+4sPDklfQgghTp0EyafA7+0k2HqQL15zMWOyz74dtbrzkV3jxqEYhubS248KxjurJC9ZnJqJagGfvWQmzdXFUQleLWYjF83MIislsvPk/iPNbNxdFdVNR7rFJI3hX1sP894HWyQ3WQghRiAJkgeovbWJBEsTX1x1OQ6HY7iHc1o8xd077Q1NqgWA0W7HkhCpUdtZIXnJ4tRlpKdy49UX0l63n1Bo8OsbG40G5k/LYFxmJBWitNrDex+VEwhGPz0oNjGD/dVh/vrKWwSD0a3dLIQQ4tRIkDwArQ0VTM6xctWyxRiGaAZ2sIUDATpKS4Hob0fdV0+FC5lJFqcpNjaGL61aiu45jN/bOejtGxSFwkmpTO7adKS6oYN3tpfhC4QGva++HK44Oo1pPPvi6zQ0NkW9PyGEEGVNTNIAACAASURBVANzdkZ8Q6S7/vHiwjzmnT9zuIdzRtoPl6J3zVS5CoZuJhmOrnAhQbI4fVarlS9cu5wYpZ7O9tZBb19RFKYWJDNTTQGgocXLv7YeodMX/Rlek9mCLTGfP/9zI0V7taj3J4QQ4uQkSD6OUChIe91+Vl0xj/EFY4d7OGese6c9U0wM1uTkIe37/7N33/FtXefh/z8XG9wTlLi0SB1rWFuytS3L27Fj13HTNGmStt8kTZOm3zRtkm+b9Ns23yQdv6bpSNK4ie14xEMecWzLsixZw/LUlrWOtkiKlLg3CQ7g98cFKIqmREgkcAHweb9eeBm8uDz3oWCQDw6e8xzPxHCvZCm3EKNjs9m4/55bmJTdS3tLfVSuoSZlc+PsCRgGtLT3sOmDCtq7orPByWDhfso79p/n9c07pE5ZCCEsJknyMHq6u6DtDJ//5J1xu7301WoP1SOnl0+Ledspb5HZ4aL7Qi3B/uh/fC2Sm2EY3LJmOfOmpketRdyUwkxWzC3EZhi0d/Wy6YOKqG9jHZaeXcC5Ni9PrFtPZ2d0dwQUQghxeZIkD9HV3kKGvYFPP3gXLpfL6nDGTMdps41WrHbaG8wbmkkO9vXRXVsX8+uL5LRk0VxWzC2ita4iKuMX+9JZvaAIh92gy9/Hpp2VNLZ2R+VaQ3m8qRhpk3nsuc2craiKyTWFEEJcSpLkQdqb65ic18/9d69N2AV6wwn299NZaf6hTZ1UGvPreyYUQGj2WhbvibE0e6bithXX0VIbnX7DE3JTWbOwBJfDRk9vP5t3VlLbFJvZXZvdTkZBOet3HOWtd3ZK+YUQQsRY8mSCo9TWfJ6F07NYu3pZ0u2C1X3+AsFes6YypTT2SbLN5Rqog5Y2cGKsTZ1cyv23LaIlSr2U87K8rF1cisdlp68/wNbdVdQ0dIz5dS4nM7eYYzUBnn5hA35/bEo+hBBCSJI8YPncUhbOv97qMKKis8L8ONpwOAbascWaV9rAiSiaUODj9+9bTXvdMQJRqHvPSndzy5JSUjwO+gNBtu85R1Vt+5hf53K8aZn0eUt49NmNVFadi9l1hRBiPJMkOWTypBKrQ4iajrNmkuwtKsTmcFgSQzg5l5lkES2ZmRl87sHb6Wk+SV/f2HejSE9xccviUtK8TgLBIDv2n+Ps+bFvRXc5druDdF85r2w9zNvv75byCyGEiLJxmyQHg8FL/sgM/TqZhGeSUyyoRw4b6JUsM8kiijweD3/w4J3QfpaenrEvTUj1OrllSSkZqS6CQXj3QA2nzrWM+XWuJDO/hMOVvTz74utSfiGEEFE0bpNkgGnTphEIBAgEAkyzoOtDrHRWVALW1COHeQvNNnD+unoCvdHvOSvGL6fTyac/cSeenmr8XWNfO+x1O1i7uISsdDdB4P1D5zlWEdud8lLTs+jxFPPosxs5c7YyptcWQojxYtwmyYZhDHtLNoHeXrpDO91ZmSQP1EIHAnSfv2BZHGJ8sNvt/O79t5Npb6K7a+xrhz0uB2sXlZCb6QFg99Fajp5pHPPrXEm4/GLD28d4c/t7SftJmBBCWGXcJsnjRde56oENPFItrLv2+HwYdrsZk+y8J2LAZrNx/8fWMiGlg4725jEf3+W0s2ZhCb5sLwB7j9Vx+HTDmF9nJBm5RZxucPLEuvW0t8duMaEQQiQ7SZKTXLge2eZ24/b5LIvDsNtxFxQADMxsCxFthmFw122rmZoXoKN17BNYp8PG6gXFFOSkALD/eD0HT0Znu+wr8aakYqRP4YkXt3H46LGYX18IIZKRNa0ORMx0hjpbpJSWYFi8QYq3aCLd1dUykyxibu3qZTjf/oAjVXWkZ+WP6dgOu41V84vYsa+amoYOPjzZQCAI10/LjWkJl81mI8M3jbf2nefE6SruunUVDou62QghkodSaj7wc2AmcBz4E631+8Oc9yng+4AP2AL8sda6dqQxlFLZwMPAGqAF+Hut9cOhxxzAj4AHASfwJvBlrXVMPraTmeQkFw+L9sLC21N3yUyysMCq5Uu4fkoq7c21Yz62w25j5fxCivJTATh0qoH9x+stqRNOz/bR1JfHI0+vp+qcvNaEENdOKeUBXgZ+CWQC/wH8VimVOuS8OcDPgE8CecB54JERxkgJffv/AK2YyfUngH9WSt0QeuzLwHxAAaWYk7v/HEHcq5RSzmGOu5VS90f688s0Q5K72P7N+j7QnlCHCym3EFZZtmQBDtt+9p44T3r2hDEd226zsXxuEe8cqKaqtp0jZxoJBILMV/kxXxTsdLlw5k/nt1sPMmtSBauWL0nKhclCiKhbA/RrrX8e+voRpdTXgbuAdYPO+zTwG631TgCl1LeAOqVUPrDocmMopTYAHwfKtdY9wE6l1K+BzwLvA+WAHTNf7QeCQOdwgYZmnW2AAWwFJimlhnYKWAA8BXgi+eFlJjmJ9Xd3D3SSiIuZ5FCHi57GRvq7uiyORoxXSxbNZfGMPFoaxr7sx24zWD6nkNIJ6QDoiib26FrLOk9k5ZVwos7OY8++SnNzbPs5CyGSwnXA4SHHdOj4YGrweVrrRqAxdN7lxpiBmQT3aq3PDHrs2KDxHwImA/WYpRjTgL++TKx/DHQD4QTjbOjrwbe3MUtBIiJJchLrrKwauB8fSXLhwP2umvMWRiLGuwVzZ7NszkRaG8Z+i2ebzWDp9ROZPDEDgGMVzew+al2i7E1Jw5E5jadefoddew5IqzghxNVI5aMzt51AylWclzLCY0NnzQaP7wF+C0zELMeowKxtHs5DmDPfN4e+fiB0P3xbAywG7r3M93+ElFsksfCiPUdaGq6cbIujAVduDjaXi0BPD901NaRNnWJ1SGIcmzt7Bg67je17K8nMLR7TsW2GwQ2zzXKOMzWtHK9sJhiExuPbB87Zv2sHt937+2N63csxDINM3xT2nmri+OkN3HvHKlJTU0f+RiHEeNcBeIccSwHahhwbLnEOn9d5hTE6+Wjpw+DxHwW+qrW+AKCU+gtAK6W+qLW+pOel1joIbAudNxWo0FoHRvj5rkiS5CQ2UI9cWhIX9YiGzYZn4gQ6z1bQdU46XAjrzZqhAKKeKJ+ubuHVZ3/G8feeGXj8Vz/9Hq0tDTzwma/G7PWZmp5Nf38Gj7+wlWXzpzJn9oyYXFcIkbCOAF8dckwBTw5znho4Qak8ICd0PHOYMa4LjXECcCmlSrTW4e1DB5dulHBpEh2uS+4fIe4LwJ8qpRZj5rq20PcZQFBrHdEMhZRbJLGB9m+TrC+1CAvXJXfXyOI9ER9mzVCsml9CS0PVyCdfpXCiXPfhi5ckyGEvPvlTnn/iv8b8uleMyW4nwzeNdw/V89xv36C7uzum1xdCJJQ3AbdS6qtKKadS6o8wyx5eH3LeU8ADSqnloW4WPwTWa62bLjNGPvC61roNeAn4oVLKG0pqP8XFJPxV4B+UUnlKqXTgH4GXtdYjLWx6CPgnIA3oBfxAT+i//kh/eJlJTmLx1P4tLNzhoktaU4k4Es0Z5V1vv8EHmx677OMvPvlTSqcolqy4bUyvO5L0rHy6+vt49NlNrFxcPvBvIIQQYVrrHqXUncB/Az/A7HF8r9a6Syn1s9A5X9Za71dKfQGz3/EEYDvwh6HH/ZcbI3SZL4QeqwLagb8Md8nAbAH3r8BBzFng14AvRRD6/cAntNavjebnlyQ5SfW2tdHT2AjER/u3sPBMcpfMJIs4E41EORgM8uhPvjfieY/+5HssXn5rzMui7HYHGQVl7DhQy+FjZ7nn9lV4PBF1RhJCjBNa6w+B5cMc//KQr9dxaVu4EccIPdaE2V95uMdagP91lSGDWdN8+hq+7xJSbpGkwrPIACkl8TOTHO5w0dfaSl97+whnCxFb0Sy9iGfpWfl0Owt5dN0mDh4+anU4QggxWv+BWcKRM5pBJElOUuFFe87sLJwZ6RZHc5EnNJMMsvOeiE+zZihWzisZk/ZwhmHw+a98d8TzPven37F8ca3d7iDDV8Y7B+tZ95uNdHYO269fCCESwccxNzypV0o1KKVqBt0i7hwg5RZJKh7rkQGcmZnYU1Lo7+ykq7qG9OnlVockxEfMnqno6+vjvUM1ZORMHPkbrmDJitu4/9N/yotP/nTYx8tv/CT2vHkEg0HLE2WAtMw8/P39PPb8FhbPLmHBvOvjIi4hhLgK/32FxyJuFi9JcpKK1yTZMAzcvnw6z5ylp77e6nCEuKx5c2bR29vPnuMXSM8uGNVYD3zG7H40NFFecsvnyL/+Po5XNmMYsED54iIhDXfA2HOyiSMnXuNjty4nKyvT6rCEECIiWutHw/eVUk6gL9RH+apIuUUSCgaDA+3fUuNo0V6YOz8PAH9dncWRCHFlixfO4fqp6bQ1j+7/VcMw+MQf/Bmf+9OLpRef/8p3+bNvfIsphWbyeayimT26Lq52xEtNz8ZIn8JTL7/Djnd2xlVsQghxJUqpLyuljmNuWDJVKfWQUur7SqmIZyIkSU5Cvc3N9LWZm9XE20wygDsvH5AkWSSGZUsWMLPEQ0drw6jHmrtoxcD9OQtXDPRRnjTRXDdwrKKJfcfiK1EO79anLxj86ulXqTl/weqQhBDiipRSXwO+C/wLZp/kIGa/5i8B/xDpOJIkJ6HwLDKAtyQOZ5J94SRZyi1EYli5bDHTCmx0tDaN+dg2w+DGWRMpnWAmykfPNnHgRH1cJcoA3pQ0nNnTeHHTAV7btJ2+vj6rQxJCiMv5U+BLWuuHCO3Op7V+Gvgs8PlIB4m7JFkp9UdKqctOMSql0pVSTyil6pRSF0LT5+5YxhjvwvXIbp8PR8rQ7dKt584zyy26a+NrxkyIK7l51VJKsvvo7Ggd87FtNoOlsydS4ksD4PDpRg6eHP3M9VgzDIOs/BIudGXy8NMbOKpPWB2SEEIMpxQ4NMzxk0BepIPEVZKslJoK/Igrrzz8O8AFFGPu/X098M2oB5dAOga2o46/WWS4WJMc6O6mv0PaTInEcfvaFeS52/B3dYz52DabwbI5hRTlm4nywVMNHDoVf4kygMvlJi2/jG37alj3m420S89zIUR82Y+5695QXwL2RjpI3CTJSik78Bhm244rFVWXA/bQzQACmEXZIiTcIzke65EB3Pn5A/elLlkkEsMw+PhdN5MSrKOnxz/m49tsBsvnTqQwLxWAAyfqOXw6PhNlMDch8buKePzF7bz93i75ZEgIES/+AviuUuoVwA38nVJqJ/BFrmJiNWZJslLKrpTKGuaWETrl28CHmPtyX8mPgbVAK1CPuc/3j6MWeIIJBgJx2/4tzJWdhWG3A5Iki8RjGAafuPdWbJ2V9PX1jvn4dpuNFXMLmZCbAsD+4/UcPds45tcZKza7nUzfVI7WwKNPr6eyavSbsAghxGhord8FFLAH+C2QAbwBKK31jkjHiWWf5DXAxmGOn1FKPQh8GlgELBlhHBfwP8D3MH/o50P3/zrSQPz+sZ8Bihf+2joC3d0AOCYU0B26H2+cOTn01NXRXlNDyjXGGH4ek/n5HE8S7fm8/67V/PqFjbizy7CF3vSNpK+//5L7V1r8tmx2ATsOnKe2qYu9ug4jGGRacfz2Kna6POCaxG/ePMTEjIOsWjYfSJznU1xZor0+xZWNh+dRa30B+NvRjBGzJFlrvYlhZq6VUh5gF/C/tNadSqnLjhFqCP0UMF9r3Qq0KqX+Bniaq0iST5xI3sUm/ceOm3cMg1MtzRiH4rNWsNfrAaD6qKauuGhUYyXz8zkeJdLzObtsAhvfeps0n4poE5CGhoZL7hv2K685nj7Rjt9vp6Wznz3H6mnvaGditnPUcUeXg5N1fRx45DeUl2TGzU6CYmwk0utTjF9KqWLMvHAm5uQqXCzlDWqtl0UyTjzsuLcYmAK8GkqQHUCKUqoRmKO1rhp0bjqQCXgGHesHrqoXUVlZGW53cjbEOH/8JOcAz8SJzJo71+pwLuv0pEk0VlSSEYSps2Zd0xh+v58TJ04k9fM5niTq81lWVs66V98mPb9sxGQw2H9x9iY3Nxefzzfi+Hl5Abbvq6ax1c+xc91kZWYwKdQuLp71+XycqTpDx8Gz3L56IRMnTrA6JDEKifr6FMMLP59J7NdAIfAcMPTj6sTZllpr/RaQGv5aKbUaeE5rnT/MuY1KqfeAf1ZKfQpIAf4v5uxyxNxuNx6PZ+QTE1BPzXnA3Gkvnn/GlAkFNAJ9jU2jjjOZn8/xKNGeT4/HwyfuXs6LG3eR6Zt6xXMdg8oyHHY7DsfIv4IdDlizsIQtuytpbPWz83AtTodjoK9yPPOmZODNy+e1d05SknOa225eJglWgku016cYtxYCy7XW+0YzSNx0txjEYEiWr5RqU0otD335IOAHzgD7MFt5fDuWAcazzkpz4j0eNxEZbGBr6npZuCcS34QCH7cun0lLfdXIJ18Dl9POTQtLyEpzEwTe+bCaqtq2qFxrrBmGQVZeEU2BPB559g127t4vXTCEENG2DxhdLSdxMJM8lNZ6K+Abcix90P1zmImyGCIYCNBVZf6RTon7JNn8oKCnsYlAby82Z7zXWQpxZWVTJ9Pe3sF7hy6QkVMw5uO7nXbWLCpm885KWjt6eHt/NSvnFw+0i4t3DoeTDF8Z+8+0cOj4etaumE9JcaHVYQkhktMfAhtC1QmnMNsFDwjtxDeiuEuSxbXz19UTCK1YTSkttjiaKxvolRwM0tPYiKdg7JMKIWJt3pxZtHfs4nBVI2kZOWM+vsfl4OZFJWzeWUFbZy879p1j9YJiCnJSxvxa0ZKSlglk8sr2I0zIPModNy/F642/nUGFEAntK8Bk4HMMv5eGJMnjTWel2R8Zmw1vYXzP0Ljzcgfu++vqJUkWSWPF0kW0vrGNmvZ2vClpYz6+1+1gzaISNn9QSUd3L9v3VnHTwhLysxIr0czMLaK9v49H173JnPIClt6wAJstHisAhRAJ6I+AP9BaPzmaQeQ3UhLpCtUjeyYUYHO5RjjbWnavF0e6mUDIhiIi2dx5yyrSjYao7MoHkOpxcvOiYrxuB339QbbtqaKhJT57ol+J3e4gs2Aa+oLBI0+v59iJU1aHJIRIDi3A7tEOIklyEgkv2kspie9SizB3nlly4a+rtzgSIcaWYRg8cM8t0F5BYNAGImMpLcXFzYtK8Ljs9PYF2Lq7kqa2xEuUATzeVLy5Zby5q4pnXnyd5uYWq0MSQiS2vwL+Qyk1VymVqpRyDb5FOogkyUkkXG7hLU6QJNkX6nAhM8kiCdntdj553y2015+IWjeHjFQXaxaW4HLa6ekLsGVXFa0dibuTVka2jz5vKU++/C6vb95Bb+/Yb/sthBgX/g24CbMDWhtmr+TwrSvSQSRJThLBYJCuqnOAzCQLES+8Xi8P3LmcltrolRFkpbtZs7AYp8OGv7efN3dV0dbZE7XrRZthGGT7JlPTmc7DT7/Onn0fSss4IcTV+j3gNuDmYW5rIx1EkuQk0dPYSH+nuYAz3tu/hQ30SpYkWSSx/Pw8blk6g9aGc1G7Rk6Gh5sWFOOwG3T5+9iyy1zUl8hcLjfpvjJ2n+jg8Wdfo7Kq2uqQhBAJQmu9NdRSeBtwFngbeHfQ8YhIkpwkwov2ALzFo+6fHRMXk+Q6mSkSSW16+VQWTM+jo7UxatfIy/Kyen4xdptBR7eZKHf5+6J2vVhJTc/CkTWVV7Yd4YWXN9He3m51SEKIOKeUciil/gmz/dsJoBR4XCn1pFIq4lZAkiQniXA9stvnw54gW4aGeyUH/H762uQPn0huSxbNpTA7utfw5aSwYl4RNgPaOnvZsrsSf090Fg7GWmZeEZ32iTz+4na2vPUe/VFaECmESAp/C9wLfByzBjkI/AxYCvxrpINIkpwkEq2zBQzaUATZnlqMD6uWLYr6NQrzUlk+txDDgJb2HrbuqaSnNzkSSpvdTqZvKmcb3Tz81Gt8eOiIfAolhBjOZ4Ava603YibIaK23AJ8HHoh0EEmSk0S43MKbQEmyMysTw2HuZyN1yWI8MAxj4H40k7tiXzo3zp4IQGOrn217q+jtC4zwXYnD5fGSml/Gu4ebeOK516g5f8HqkIQQ8aUAqBrmeD0Q8S5PkiQngWAwSGeFWW6RSDPJhs2GOy9Ul1wrM8kiuQWDwUsS47b6s1FNlCdPzGDJTHMny/rmbt7ad47+/uRJlAHSMnKwpU/hxc0HefHVN+nsHG73WSHEOPQ28KXBB0L9kb8TeiwikiQngd6WFvpCi1kSpbNF2MDivXqZSRbJb9q0aQQCAQKBAJ958HZa6oeb6BjD6xVnsUD5ALjQ2MmO/dUEAslVnmAYBll5RbQbPh59bgtbpV5ZCAFfA35XKXUQ8AC/BE4Bq4CvRzqIJMlJIDyLDInT2SJscIcLIZKZYRiX3KZNmcSi63y0t0T3DaKalM2cMvN1Vl3fwbsf1hBIwjpeu91BVsE0Tje6ePip9Rw8fNTqkIQQFtFaHwUU8CPg34H9wD8A07XWhyIdxxGd8EQshTcRceXm4EhNtTiaq+PKk17JYvxasmgudQ1bqe3qwO2N3mt31tRc+voDHD7dSMWFNuyHDG6YNeGSGulk4fak4PaU887BBvYdWs+tqxZRUOCzOiwhRAwppX4APKm1fng048hMchIIt39LtFILAI8vvOuezCSL8enOW1fh8NfQ3x/dnsZzyvKYXpoFwOnqVnYfrU3qzhBpmbkY6VN4ftMBXnptC11dEe9EK4RIfEuB/UqpA0qpbyulJl3LIJIkJ4FE7GwRFm4D19vUTKA3sXcIE+Ja2Gw2fve+W+msPxnVpNUwDBYoH1OLMgE4XtnM/hPJ/QmOWa9cTGswn0fXvclb7+wkEEiuxYtCiI/SWq8BioCfA3cCJ5RSbyulvqqUyr/yd18kSXISSMQeyWHhcgsAf32DhZEIYR232819dyyjpf5sVK9jGAaLZxZQOiEdgCOnGzl0Kvlfd3a7g8yCaRy/YOORp9aj9QmrQxJCRJnW+oLW+ida69VACfBb4AfAuUjHkCQ5wfW2ttHb3AyAtzjxkuTwwj2QkgsxvhX48lk+bxLtzdF9HdgMg6WzJ1KUb9ZAHzhRjz7bFNVrxgtPSirevDK27qvh189toE7emAuR1JRS+UqpPwGexFy4dxD4i0i/X5LkBNdVdbGFVCLWJNvdbpyZGYAkyULMnT2D0lzo7uqI6nVsNoPlcwopyEkBYI+u5eS5lqheM56kZ+UTTJvEutd288rrW/H7/VaHJIQYQ0qpLyul3gRqgK8CmwGltV6mtf6vSMeRJDnBhRftOTMzcWakWxzNtXHlhRfvJXd9pBCRuH3tChz+GgJR7vVrt9tYOa+IvCwPAB8cOs/Z861RvWY8MQyDLF8pjb05PPLsG7y3c29SL2QUYpz5NvABsFBrPVtr/QOt9ZmrHUSS5ATXmcCL9sIu9kqWJFkIwzB48N61tNefjPq1nA4bq+cXk53uBuDdD2s4V9se9evGE4fTRYavjIOVfTz69HpOn6mwOiQhxOhN1lp/W2u9XynlU0pNVEpddc4rSXKC6xpYtJd4pRZhsqGIEJfyer18bO1iWmqju5APwOW0c9PCYjJSXQSDsONANecbolvuEY9SUtNx50zj9XdPse43G2ltHT+z6kIkI6XUXymlGoDzmIv16pVS37+aMSRJTnCJ3NkiLNwGTmaShbiouGgii2dNjPqOfAAel4M1C0tI8zoJBIJs33uOuubx2Vc4I2cCfncxT7z0Nm9ue1e2uBYiMX0H+CbwN8A8YCHwXeCLSqlvRzqIJMkJrK+zk54Gc3V2MpRb9NTXS02gEIMsWjCHCek99Pi7o36tFI+DNYtKSHE76A8E2banisbW6F83HtlsNrJ8Uzjb7OEXssW1EInoi8AXtdb/rbU+oLXeq7X+CfCl0C0ikiQnsHCpBUBKaSKXW5gzyYGeHvrkI04hLnH3bavpb6+MyRvINK+TNYtKcLvs9PYF2Lq7ipb28dv5we3xkp5vbnH9xLrXpGWcEIkjC7Pd21CHgImRDiJJcgILl1o40tJwZmZaHM21G9wrubtW6pKFGMxut/M7d66ktfZUTK6XkepizcJiXA4b/t5+tuyupK2zJybXjlfmFteTWffabta/sY1e2R1UiHi3G3M2eagvAPsiHcQxZuGImAu3f/OWFGMYhsXRXDtnZiaG00mwt5ee+nooL7M6JCHiSnZ2FquXlPPWvhrSswuif710DzctLObNXZV0+fvZsquSW5aUkuJxRv3a8SrcMq6uu4eHn97A4jlTmD9nVkL/7hUiif0VsFUptQZ4HzCAG4DpwF2RDiIzyQmsKwkW7YH5x0fawAlxZTOvm86kPBv+KG80Epab6WX1/GLsNoOO7j7e3FVFt78vJteOZ06Xi3RfObuPtfH4s+u5cKHW6pCEEENorXcC84FtwGSgANiAuaHIW5GOIzPJCawzCdq/hbnz8uiurpE2cEJcwW03L+fxdesJuKdis0V/jsOXk8KKuYW8te8cbZ09bNldxc2LS3A77VG/drxLzcgmGMzi+Tf2U5rv5LY1y3C5XFaHJYQAlFLPAt/VWn9jNONc1W9ZpVShUmqNUipFKTVhNBcWo9Pf3Y2/1pzBSOTOFmFuX7gNnCTJQlyOzWbjgbtvoq0uNvXJAIX5aSybU4gBNLf72ba7it6+QMyuH88MwyArv8Tcte+Zjew9cEg69AgRH9YCo/7oK6KZZKVUKvAw8CAQxKzp+JFSKhe4X2stmU2MdVWdG7ifFDPJ0itZiIikpaVx64rZvPHeKTJzC2NyzZKCdG6YPYH3Dp6nobWb7XurWL2gGIddKvbA3LUv3VfGrmNNHDy6njtuvpH8vFyrwxJiPPsR8LBS6sfAKeCSxu9a62ORDBLpb7h/BoqB64BOzET524AH+HGEY4gxFF60Z/d6ceXmWBzN6LnzpCZZiEiVTZ3M9CIPXZ2x2xlvSmEmgAtrUQAAIABJREFUi2b4AKht6mLH/mr6AzJrOlhqeja2jKmse203Gza9RV+f1HALYZHvASuB54G9wNFBtyORDhJpkvxx4OuDM2+t9RHMhsx3RHoxMXY6K8wkOaW0JClWV4cX7vW2tNDvH799WYWI1M2rluLqPU8gELvSh/KSbOaVm5/61NR38O6BagKSKF8i3AXjfFcGDz+9gcNHIpqwEkKMralXuE2LdJBIk+QMYLhdHgLA+O0JZKGLSXKpxZGMjXBNMkCPNOwXYkSGYXD/XatjWp8MMGNKDrOnmqUElbXtvH/ovNThDsPlcpOWX8ZbBy7w9AsbaJWNkoSIGa31Ga31GSAHWA7cCHgHHY9IpEnyRuBvlFIDNcxKqTzMMow3Ir2YGDudFRVAYu+0N5g792L9nr9BkmQhIpGWlsbapTNpbayJ6XVnT8tFTcoG4ExNK7uO1EqifBnpWfn0eUt58qUdvPXOzpjO/AsxXoUaTXwA7AL+HfgZcEgptVEpFfHua5EmyV/DXKxXB6Rg9pqrwMzQ//xqAhej19fZiT+0M12yJMk2lwtHRgaAuaGIECIi08unMsXnjFn/ZDBnsedPz2dasfm35kRVM/uO1UmifBk2m41M31SO19p49Jn1VFZVWx2SEMnuIczFemVa6zytdTbmurpU4CeRDhJpktyktb4BeAAzKf4pcB+wSGtddVVhi1ELbyICkDIpOcotANyh1eB+KbcQ4qrcumYZRld1TGcpDcNg0YwCJk1MB+Do2SYOnpLX7pV4vKl4csp4ZdsRXt0o21sLEUU3AV/VWg/Uo4XW1X0FuDfSQSLdTOSgUuoBrfWbwJtXE6UYe+FSC0d6Os6sLIujGTuu3Fw6Tp2WJFmIq2Sz2fidu1fzxItvkTUh4jUpo7+uYXDjrIn09wepqm3n4MkGHHYbMyYnfsedaMrMK6Le38PDz2xg5ULFzBnTrQ5JiGRTCZQBHw45ng+cj3SQSJNk2UYojnScTa7OFmHhNnBSbiHE1cvIyOCmG8rZvreGjJyCmF3XZjNYNmcib+2tpqahg33H6nDYDaaEZpjF8JwuF878ct46cIEPj57i7ltXkJaWZnVYQiSLfwF+rpSaDryFubHIAuC7wC+VUreFT9Rab7zcIJEmyb8GNiqlnmL4pswPXV3sH6WUOghMweyYAXBGa339MOe5uVju0Qv8h9b6B6O9fiK5uGgveUotYFC5hSzcE+KazLxuOqfOVlPv78bl9sTsunabjRXzCtm2p4rapi52HanFIEiK7F49ovSsfHr7c3j8hW0snFnM4oVzkmryQyQ+pdR84OfATOA48Cda6/eHOe9TwPcBH7AF+GOtde1IYyilsjE3rFsDtAB/r7V+eNC4f4K5N0c28EFo3IoRwv5F6L8/HOax7wz5+rKlx5EmyZ/E3ETkcnUco0qSlVJeQAE+rXXTCKd/HygBJgMFmMn7ca31utHEkEgGkuRJybFoL8wVSpKlBZwQ1+7OW1by6NPrCbrKYppsOew2Vs0vZsvuShpautl5pI6ZJR58vpiFkLBsdjuZBdM4cLYZfeo1PnbrMrKzk6eUTiQupZQHeBlzc45fAJ8FfquUmqq17hh03hzMDhK3YpY4/CfwCHD3FcaYorXuBP4Hs82wD5gLvKaUOqS1fl8pdQ9mUnsLZnL949D5t18pbq31mGwHGlGSrLWePBYXu4LrgfMRJMgAnwF+T2vdBrQppf4L+DwwLpLk3tY2epuagWScSTbLLfra2+nv7sbuid1MmBDJwm63c8+tN/Lcxt1k5U+O6bWdDhs3LShm865Kmtv8HKnsJju7g9IJEXdcGtdS0rIIBjN56tX3uH5qLiuWLpJZZWG1NUC/1vrnoa8fUUp9HbiLS/OuTwO/0VrvBFBKfQuoU0rlA4suN4ZSagPmhnXlWuseYKdS6teYifT7mAvt/p/W+mho3G9jTpJGRCllMMx+HqFrjSjSmWSUUunA5zCnyu2ABp7UWl+I8PvtwHBFagFgPtCrlHoHs9B6L/Dn4X+UQWNkY77TODzocHi14rjQWXnxE4Zkaf8W5hrcK7m+gZTiIgujESJx+Xz5LLxuAgfONpOaFtsZSZfTzpqFxWz6oIK2zl7e/fA8LqeDCbmpMY0jURmGQVb+ZI5daOfk069y19ob8A3abEmIGLuOS3MuMPO/64YcU8A7Aydo3aiUagydd7kxZgAngd4hG3wcA+4P3Z8PrFdKvY9ZkrudCHI+pdRNmKW50/loOUUQM48dUURJslJqNuaGIn3AztD3fQz4a6XUKq310B9+OGtCYwx1BvhHzDqTbwK1mIXV65VSM7XW3YPODf+W7Rx0rBOzd3PE/Am87XHLCbObiTM7i36nk/7u7hG+I3EEUy8+je3VNdjycq9w9sXnMZGfT3GRPJ9ja84sxbGTm/D7PdjtEc+HjAmHDZZf72Pr3mq6e4Js33uOlfMmkp/ljWkciczp8hB0TuLpVz/gutIMVixdiM02Jp8gXxN5fSaXq3geU7k054Lh864rnZcywmNdl3kMIBf4IuY6tGrgv4EnMMs6ruQh4BDwjWHGj1ikvzn/HdiEWSzdC6CUcgG/BH4E3DHSAFrrTVy5L/Pguua/UUp9BbM2ZXBxePgf2Qu0h+6nDLofkRMnTlzN6XGl98ABAPqzszl06JDF0URBSgp0dnL6ww9x2CP7mDGRn0/xUfJ8jp1pJbls2P4+GQXlllx/7uQU9p3uxN8b5K191cyZnEKGrOa7Sl52Hmvlvd2/4sb55eTmZFsajbw+x50OzJxrsBSgbcix4RLn8HmdVxijExhaWzl4/G7gv7TWJwCUUt8BTiulUgfXRA+jEPhYqDfyNYs0SV4KLAwnyGDWcyilfog5AzwqSqkvAie11ptDXzswa0gumSYNTd/XYk7d14W/HfPdQsTKyspwu92jDdsSet0LtAN5M66jZNYsq8MZc0cKfHSePoPP42HiCD+f3+/nxIkTCf18iovk+YyOrJw8Nn9whszcwphet6+vj8bGRlbNm8hb+y/Q3dPPwYpubppfSFa6PL9XKxgsRZ+rpJx2Vi1fHPNZZXl9Jpfw8xmBI8BXhxxTwJPDnKcGTlAqD3NX5iNA5jBjXBca4wTgUkqVaK0rB40frlDQXJpEh/PWkWbRXgTuxizduGaRJsm1QBHmDztYIR+dQr8WE4GvKaXuABqAfwKOaK33D3PuE8DfKaU+AeRh1qb81dVczO1240nARWHBYJDuKnO3vYypUxLyZxiJJz+fztNn6G9ujvjnS9TnUwxPns+xNfO66ZyrqaOqxY/bG/u64Kx0LzcvKmHzzkr8vf1s31fD2sUlZKZJonW1cidOpbq9g6dfepOPWVSrLK/PcedNwK2U+ipmC7c/wFwb9vqQ854CtimlHgZ2Y7ZeW6+1blJKDTdGPvC61rpLKfUS8EOl1BeA2cCngDtD4z4CfEMp9SpQhdkhY4PWeqQKgr8G9ofa0p3CrEMOC2qtfz+SHz7St6KPAw8ppT6mlMoP3e7FLJEY+m7iWnwf8x/8A+ACZnH2feEHlVJtSqnloS+/g/nO4Chmg+iHtNbPj0EMca+3qZm+NvP/i5SS5Fq0FzbQBk56JQsxZtauXgqd1QSDwZFPjoLMNDc3LSzG6bDh7+1ny+5K2jojWlwuhvCkpOLOnsbzr+9h2473LXtOxfgQ6gJxJ2bi2kBoW+dQcvszpdTPQuftB76A2e/4AjAB+MPQY/7LjRG6zBcwqweqgOeAvwx3ydBa/xfwH8BrmDvlpWJ2NBvJLzAbQ5zGrErwD/pvxAXZkc4k/z/MH/hFLq4I7MVcOfitSC92OVrrPszi6m9c5vH0Qfe7gS+HbuNKuD8ygDdJk2R3qMOFbE0txNix2Wzce8cKnnn1PbJ8UyyJISfDw00LzD7KXf5+3txVyS2LS0n1fqQ7kxiBYRhk+iZxoq6d08+8wr23ryRH+iqLKNFafwgsH+b4l4d8vY7LtOO93Bihx5ow9+O43PX/Dfi3qwgZYCWwOpxsX6uIZpK11n6t9Rcwp8dvBOYB2Vrrr0faa06MXmeFWa7j9vlwpCTnKnFXqFeyJMlCjK3cnGwWzSikoy2SdvTRkZflZfWCYuw2g87uPt7cVUlnd+/I3yiG5U1Jw5lVxtOvvMu7H+yVWWUhLjoBjLqmK9IWcF7MfbBPaK1/HDp2WCm1EfimJMqx0XE2OXfaG8ydb84k93d00N/Vhd2bnG8GhLDC4oVzOHl2A/39Gdjs1nSZ8GWnsGp+Edv2nqO9q5c3d1WxdnEJXnds29QlC8MwyPJN4VBlM6fObuDjd64kLS3N6rCEsNr3gEeVUv+JmTBf8m5caz1cS+KPiLQm+T8x+xzvGnTsm5h96v6/CMcQozSwHXWSllrAxXILkNlkIcaaYRjcf/ca2htOWxrHhNxUVs4txGZAW2cPW3ZX4u/pszSmRJeSlkUwbRKPv7CNAweHrrEXYtx5BpiKWabxMrBhyC0ikb51vw+4TWu9J3xAa/1KqB3bK8DXIr2guDbBYHCg3CJlUnJtRz3Y4F33ehoaSCkptjAaIZKPx+NhzQ0z2LK7koycCZbFUZifxrI5hbx9oJqW9h627K7i5kUluJzSR/la2Ww2Mgum8e6hOk6e2czdt63E5XJZHZYQMae1HpMeiZEmyTaG38Kvh482gRZR4K+rIxDaXS+lNHmTZJvTiTMzk96WFvz19VaHI0RSUtOnceJMFXXd3bjc1v0KLylIZ+nsibz7YQ1NbX627q5izaJinA5JlEcjPSuftt4eHnn2dW5fOY/JSVyiJ0SYUsoVLv8NbXh3WZGWCUeaab8M/KdSamCvbqVUOWZbjvURjiFGITyLjM1GSnGRtcFEmSzeEyL67li7gr7WCssXe02amMGSWeaMdkNrN1v3VNHbF7A0pmTgcLpIzy/ntbeP88aWtwkE5N9UJL1upZQvfP8Kt4i3qY40Sf56aODDSql2pVQ75i4oHcCfRXoxce06Q4v2PBMmYEvyj8/ceTkA9EiSLETU2O127r7lBlrqKkc+OcqmFmWyeGYBAPXN3WzfW0VfvyR1YyEzt5CqFg+PPf0qTU3NVocjRDTdDDQNun+529pIB4yo3CK0HfSDmLuszARmhB7apbWuu/x3irESnklOHQcfm7kHZpKl3EKIaJo4oYBZUzI5UdeON8XajghlxVkEAkF2H62ltqmL7XvPsWp+EQ57bLdfTkZubypBj9kqbuncUubNmWV1SEKMOa311uHuj0ZEv32UUvcBlZjbR+/F3Ab6k8A6pZQs2ouBgc4WSVyPHBYut5Bd94SIvlXLl+Dwn7e87AJgemk285W51fKFxk527KumX8oExoS5AckUPjjaxIuvbKa3V/pTCzGSSN+ifw/4W631JuCPgUqt9Szg94D/Ha3ghCnY309nZRWQ3J0twmTXPSFixzAMPn7HSlrrrG0LF3bdpBzmlptvlGsaOnh7fzX9AesT+GSRlplHG/k88sxrVJ2rsTocIeJapElyOfBU6P49wEuh+x9izi6LKOo+f4Fg6F1/MvdIDnPlhTYU6eykr7PT4miESH5ZWZksnlVs6W58g82cksv108zfA+fqOnjnQDUBSZTHjMPpIi1/Oi9vOcjb7+6Ki08RhIhHkSbJ1cACpdQCzJrkV0PH7wJORSMwcVG4HtlwOPAUJv97EnfeoF7JMpssREwsWjCHNKOZQH+/1aEAMHtaHrOmmr8LqmrbeedDSZTHWmZ+CUer+3n6hQ10h1qMCiEuirRP8r8A60L339da71BK/R3w18BnoxGYuChcj+wtKsTmSP6tW105OQP3/Q0NpJQm/+y5EPHgvrtu4lfPbSbDV2Z1KABcPy2XQDDIkdONVF5o512jhqWzJ2KzGVaHljS8aZn09afy6LMbuWP1fOmpLBKWUuopIAiEf0GE31UP/Rqt9e9HMmZEM8la658BN2Au1rs5dPh1YLHW+ulIxhDXriPU/m081CNDaEORrCwAeqTDhRAx4/V6WbmonLbm+GhaZBgGc8vyuG5SNgAV59t471ANASkPGFN2u4OMgulsePsY23a8L+UXIlH5Q7duzMT494BpQANwASgGfhezfXFEIp6W1FrvxexsEf763Ui/V4zOeOpsEebOy6W3uVkW7wkRY7NmKI6dqqKttweH0/qe7IZhMG96PsEg6Iomzta0YWBww+wJ2AyZUR5LGblFnKhr49zzr/E7H7sZj0c21BWJQ2v9+fD90Kzy97TW/3fwOUqp/wOsiHRMaUAZ5wK9vXRXmyuQx1PZgey6J4R17r51JV1NZ60OY4BhGMxX+ZSXmJ8wnalpZefhCzLjGQXelHT6U0r51bqNVFadszocIa7Vx4Enhjn+PBcrIkYkSXKc6zp3jmBoIc24mkkOtYGTcgshYs/lcnHLijm0NsZPizDDMFh4nY+yYjNRPnWuhQ8kUY4Ku91Bum86r2w9zDsf7LE6HCGuxWngd4Y5/jngSKSDJP8qsATXccrsXWr3evEU+EY4O3mE28D5ZUMRISwxbcok9PEz1HZ343LHx8fuhmGwaIaPIEFOVrVw6lwLAEtmFmBI6cWYy8wv4VBFE+dqNnLHzUutDkeIq/FXwEtKqY8B+zAnhW/A3DH6zkgHkZnkONceSpJTp0zGsI2fpyvcBk5awAlhndtuXk5fa6XVYVzCMAwWzyhgWlEmYM4oS+lF9KSmZ9Nln8Djz22ksanZ6nCEiIjWej0wB3gPmAqUAhuBWVrr7ZGOM36yrgQVnklOnTrF4khiyx2qSe7v6qKvI+KFqEKIMeRwOLhjzSJa6qusDuUShmGweObFRPmkJMpR5XC6SM2fzvY9Z/nw0FGrwxEiIlrrI8C3gD/DLL34e631masZQ5LkOBYMBOg4fQaAtGlTrQ0mxly5gzYUkZILISxTXDSR8kIv/q74erMqiXJsGYZBZv5kPjjSyIZNbxEIBKwOSYjLUko5lFL/hNnu7TjmTPLjSqknlVLeSMeRJDmOdV+4QH9oW+bxNpPsys2BUI2hdLgQwlo3r15KoLM67hJQSZRjLz3bR3V7Ck+sW09XV5fV4QhxOX8L3IvZ5aILcyORnwFLgX+NdBBJkuNYuNTCcDrxFhdbHE1s2RyOgQ1FJEkWwlo2m417brmRlroKq0P5iHCiPHVQoixdL6LL403Flj6Fx9ZtkjZxIl59Bviy1nojoZ32tNZbgM8DD0Q6iCTJcSycJKeUlo6L7aiHurh4T9rACWE1ny+fWVOy6OpstzqUjzAMgyUzL13M9/6h87IzXxTZ7HbSC8p5Zeshdu4+YHU4QgxVAAy3mKIeSIt0EEmS41i4s0XatPFVahEWTpJlJlmI+LBq+RLs/pq4nKUNzyiXFZuJ8unqVt4/KIlytGXml7L3ZCuvvL5V6pRFPHkb+NLgA0opF/Cd0GMRkSQ5TgWDQTpOngLGXz1yWHjxnizcEyI+GIbBPbetoKU+fnbjG8zso1wwsOHImRpJlGMhLTOPuu4MqVMW8eRrwO8qpQ4CHuCXwClgFfD1SAeRJDlO9TQ20dtiNspPmzq+OluEuQe2ppZyCyHiRW5ONnPL8+nsaLU6lGGFNxwZvIX1ex/WEAhIohxNbk+KWaf83Bucqz5vdThinNNaHwUU8CPg34H9wD8A07XWhyIdR5LkONVx2iy1wGYjZfIka4OxSHgm2V/fEJcf7woxXi1bsgB3X13cvi7DW1hPLzUT5bPn23hXEuWos9ntpPum89Kb+9h3IOI8RIgxp5R6GHBqrR/WWv+l1vp/a60fAtxKqRciHWf8rQZLEOFFe97CQuxut8XRWMOdb84kB7q76e/oxJGWanFEQggwk9B7b1/Jky/tIKsgPj/pMgyDBcqHYRjos01UXGgjEAyybE4hdptsYR1NWfmTef9wLXUNb3PLTctky3ARE0qpVcB1gIHZxeKwUmroR14zgFsiHVOS5DjVccqsRx5vm4gMFl64B2bJhSTJQsSPzMwMFs0sYv/ZZlLTsqwOZ1iGYTB/ej42w+DImUaqatvZse8cK+YWYrfLB6nRlJ7to6K5jWdffJ3fuWctTqfT6pBE8msB/s+gr78G9A/6Ogi0A38Z6YCSJMep9pPjczvqwZzZ2eaGIsEgPQ0NpI7TshMh4tXihXM4cWYDgUAGNlt8Jp2GYTC3PA+bzeDQqQaq6zvYvu8cK+cV4ZBEOaq8Ken4e9386pnXePCem8jMzLA6JJHEtNb7gSkASqmtwP1a66bRjCm/IeJQX3s7/tpaYHwnyTaHA1d2NiCL94SIR4ZhcO8dK2mrO211KFdkGAZzyvK4vsws4Trf0Mm2Pefo65OWZdHmcLrw5pXz5G+2c+ZspdXhiHFCa30TcLNS6mPhY0qp/1FK3Xc140iSHIfC/ZEBUqdMtiyOeDB48Z4QIv6kpaVx49xJtLc2Wh3KiGZPzWVeeT4AtU2dbN1TRa8kylFnGAZZE8p4bcdRdu/90OpwxDiglPoL4FEgb9DhRuAxpdSfRDqOJMlxKNzZwu3Lx5mebnE01rq4654kyULEq/lzZ5NuayHQ3z/yyRabMSWHBcoHQF1zF1t2V9LTG/9xJ4PMvBJ2HWvmjS1vx21nFJE0/hz4lNb60fABrfW3gM9yFTXJkiTHoY6BeuTxu2gvzDWw656UWwgRz+69YxXtDWesDiMialI2i2YUANDQ0s3mXZV0+/ssjmp8SM/Kp6LZxbqXNtLXJ//mImpygePDHD8MFEU6iCTJcag93NliHNcjh4U3FJFd94SIb6mpqSybP5X2lsR4Q1teksUNsyZgAM1tfjbvqqSzW5K2WPCmpNNpn8Bjz66no6PD6nBEcnof+KZSyh4+oJSyYXa82B3pIJIkx5l+v5+uc9XA+F60F+bOkw1FhEgUc2bPINvdSX9/YiSbU4syWTanEMOA1o4eNu+soL2r1+qwxgWXy40ru4zHn9/M+Qu1Vocjks/XgY8DZ5RSLyulXgHOAA9ilmJERJLkONN55iwEzIUkkiSDO99cZBPw++lra7M4GiHESO65fRUd9WesDiNipRPSWTmvCJvNoL2rl807K2jt6LE6rHHBZrOR7ivnxTd2o4+dtDockUS01gcwNxb5R6ACOAb8ACjTWstMcqIKd7ZwZmbiysmxOBrrhZNkAH9tnYWRCCEi4fF4WLm4nLbmxHm9FuWnsXp+EXabQWd3H5t3VtDc5rc6rHHBMAwy86ewZdcZPti13+pwRBLRWtcDvwGeB74D/EZrfVWzbZIkx5nwTnupU6fIVp6AMysTw2HueeOvS5w/ukKMZ7NmKHK9XfQnQLeLsAm5qaxZWIzTYaO7p5/NOyuob+6yOqxxIyO3iL0nW9n4pnS+EKOnlEpVSj0DVAJvABOB/1ZK7VBK5V/5uy+KmyRZKXVQKdWhlGoL3YZtpqiUylJK/UopdV4pVauUekwpFZ97ol6DjlOy095ghs2GO99cvNctM8lCJIw71y6no/6U1WFclfzsFG5eVILLaaenL8CW3ZWcb5CFZbGSnpVPZYuL53/7RkK9wRJx6Z+BYsySi07MLan/D+ABfhzpIHGRJCulvIACirXW6aHb9Zc5/cdAKlAWumUC/xmbSKMr0NdHx9kKQDpbDBYuuQjvQiiEiH9ut5u5agJtTYn1us3J8HDL4hK8bgd9/UG27TlHVa2sh4gVb0o67YaPx9etp7u72+pwROL6OPB1rfWx8AGt9RHgS8AdkQ4SF0kycD1wPsI9tm3AP2it27XWrcAvgGVRjS5GuqrOEew1V1bLTPJFbp/Z+F/KLYRILJNLi8lL9dPXl1gdIzLT3NyyuIQ0r5NAMMiO/dWcrm6xOqxxw+X2YM+Ywq/WvU5TU7PV4YjElAG0DnM8ADgjHcQxZuGMINSrbrjt4wLAfKBXKfUO5uzwXuDPtdZHh56stf7skEP3AvvGOFxLhEst7F4vngkTLI4mfnh84ZnkxOi/KoS46M61y3nqpW2k+8qtDuWqpKW4uGVJKVt2VdLS0cN7B8/T2xdgemm21aGNC3a7g7T86Tz98g7uvWURRYXyN1FclY3A3yil/jB8QCmVh1mG8Uakg8QsSQbWYAY91BnMFh0fAN8EaoHvAuuVUjO11pf9vEUp9Q3gAeDGqwnE74/PVcstx8zNYbyTSvH3SAuiMFuWWXLeXVt7ycdv4ecxXp9PcXXk+Uwu4ecxGAyydP40tu+rIiM7sRIdpx1WLyhkx/4aGlv97D5aS7e/lxmTs8fdwurw7nix3iUvNXcyL7y+i9WLpjK9XHahHSvj4Pfs14AXgTogBdiAWaN8BPjDK3zfJYx4XUWqlGoGbtdavz/MY3bM2uQHgLu11nsjHXf37t3x+QMD/kcfJ1hRiX3JIpx33GZ1OHEjcOYsPY89CYD7W9/AcLstjkgIcbW2v7cPv6sYhyPiTzrjRl9/kEMVXTR3mIvJCnOclE10j7tE2UptjdVML3Rz3XRJlMfSwoULk/Z/YqWUgTlBOxOwYybIb2itI84DYzmTfFlKqS8CJ7XWm0NfOzBrRj4yi6yU8mD2vCsEbtBaV17t9crKynDHWaIVDATYV1dPECheuIC8WbOsDilu+PN9HAwlydPy8vGWlpjH/X5OnDgRl8+nuHryfCaXoc/n9OnTeey5TQlXdhFW4Avw/uFaztV1UN3Yi93pZsmMfGy2pM0xLtHX10djYyM5OTk4HLFPHXw+Hy3NdTQ0d7Jq+eKYXz/ZhF+fyUxrHVRKtQDNQB9QeTUJMsRJkozZv+5rSqk7gAbgn4AjWuvhOov/HMgDVmqt26/lYm63G4/Hc83BRkPHmTMEusyenDmzZ8VdfFZyFU4Emw0CAYKtrR/5t4nH51NcO3k+k0v4+fR4PNy+ej6b3j9DRk5ilV0AOBywYl4Ruw5f4OS5FiovtNPXF2TF3EIcjnhZAx99DofDkiQZICtvImebm9m45R2S0htQAAAgAElEQVTuuWONzOSLy1JKFWJuJLIIaMScSc5USm0CHtRaR7QSN15e2d8HXsesS74ATAHuCz8Y6pu8XClVBPwBZjeMmkE9lROrGecwWo+YaxQd6el4i4osjia+2BwO3Lnm7oP+C4nVTkoIcVHZ1MkUZQfpTdA1FzbDYPHMAmZOMX8f1TR0sGV3Jf5e6ekbK6lpWdT7M3nmhQ0xr48WCeUhoAtzG+o8rXU2Zs/kVOAnkQ4SFzPJWus+4Buh23CPD+6KES+J/ZhqPWwmyenXKXl3PAx3fj7+unppAydEgrtj7QoeeeY1nPnTrQ7lmhiGwdzyfNwuO3t1HfUt3Wz6oIKbFhaT6km8eutE5PGm0t1TyBPPvcan7r9NyrPEcG4ClmqtByZRtdbHlFJfAbZHOkhSJpyJqO2omSRnzLjO4kjikzvUBk523RMisTmdTm5dMY+WhnNWhzIq103K4cbZEzAMaO3o4Y33K2huS/qOAXHD5XJjz5jCY89uoL39miovRXKrxGwpPFQ+cD7SQeJiJnm88zc04A8lfxkzZ1gcTXwa2HVPZpKFSHhTJpcy6fhparu6cbkTt/58SmEmbqedHfur6fL3sWlnBavmFeHLSbE6tHHBbnfgzSvn8eff5MG7l5OXl2t1SCJ+/Avwc6XUdOAtzIV7CzBbDP9SKTXQQkxrPVx7YkBmkuNCW6ge2XA4SJsm7W2GE55JliRZiORw25rl9LVedXOiuFOYn8baxSW4nXZ6+wJs2VNF5QXZxjpWbDYbGQXlrFv/HpVVif3phBhTv8Bs8vBDYAfwHvBTzEYR38Hsmxy+XZbMJMeB8KK9tLJp2Fwui6OJT+GZ5N6mZgI9PfLvJESCczgc3H7TAl7ZfpTM3MRerJyb6eXWJaVs2VNFR1cvO/ZXs2iGj/IS2Z0vFgzDILNgGq9s/ZC1N/hl0xGB1npMJoFlJjkOhJNkqUe+PI/PN3DfXy/bUwuRDEqKi5ha4Kanu8vqUEYtPdXFrUtKyU43F5HtOlLL/uN1xOuGXckoM38ymz44yf6DR6wORVhMKfX7lzmeopT60f/P3n3Ht3Xf9/5/HezNvSlS+2jvZe1lLcfbchJnNqtN0ya3t+umSZumK63v7e345TZNs9M4w3Zix3ZkyZKXLMmyJA9tHQ2KoiQOcIIgQGz8/gCoyLJkkRKJAwKf5+PBhyTw4Jw3BZL44Ivv9/Md7HmkSNZZvL+fwPlGANxSJN+Qtaz0yt/DsnhPiJyxfvUdxPsu6R1jWNitJtYtrKMiPSf5xPku9h9rJZ6QQjlTCkvH8PrRVvYffEfvKEJf31NV9UlVVa9MVFdVdR1wFHh4sCeR6RY6858+A4kEAJ4pqs5pspfBYsFcWEi0p0c6XAiRQ4xGI5vWLOTXLx2hsKxO7zi3zWwysGpeLQeOt9LY0ktjSy/BUIwVc6qxmI16x8sLnuIqDje0E+zfz9qVS/SOM+qpqjqX1EZu04AzwO9pmvbGdY77MKl9L8qBl4FPa5rmvdk5VFUtAr5PagtpH/B1TdO+f53z/w2wWdO0wWy5OBf4AXBcVdU/AtYBHwe+CfzVYL92GUnW2cBUC3tNNeaCAp3TZDfpcCFEbqqprkQd4yLcH9A7yrAwGhSWzKhk+vjUIJa3O8iuA00E+qM6J8sf7sIyznmTbNv5qkx5uQ2qqtqAZ4HvAQXAvwPPqKrqvOa4WcC3gA+SWjDXSqpIfb9zDLSB+Q7QS6q4fgh4VFXVxdecfwnwZ8CgHkxN004BS4FdwGOkCuQtmqb9z6Hs1ixFss4GOlvIVIubs5anplzIdAshcs+aFUtI9rfkTEGjKAqzJpayaFoFigK+QISdBy7Q1RvSO1recLqLaOlz8NRzL5JIv2MrhmwNENc07duapsU1TfsBqZ2Rt1xz3EeApzVNO6hpWgj4c2CTqqpl73cOVVVdwL3A1zRNi2iadhD4KamiFoD0Md8j1Z1iULutqapaCfyE1NSK/0uqDdwTqqp+fihfvBTJOkrG4/i104As2hsMGUkWIncZDAY+sG4xvvYLekcZVhNqC1k1txaTUaE/HOfFg000t8vmF5lid7jxJYr5xVM7iMdl+/BbMAU4cc1tWvr2q6lXH6dpWhfQlT7uRueYCkwCopqmNV71udPXnP9fgB8Dh4eQWwOmA0s0TfsTTdPWAX8KfENV1QODPYkUyToKXGgi3p9a1e2eIkXyzQx0uJAiWYjcVF5exozxxfQHc6uIrCp1sm5hHXarkVg8ye63L3O6qVvvWHnDanMQtlTz2JPPE43KlJchcgLBa24LAtfumPN+xzlu8rlr29tcOb+qqveQKpgfZZCjyGn/B1igadpbAzdomvZdUnOimwd7EimSdTQw1cLk8WCvqdY5Tfa7sqFIRydJGREQIietWLoQU6Q1Z6ZdDCj22LhzUT0FLgtJ4M1TXt481UYix77ObGWxWMFVz48f30YoJFNehiAA2K+5zQFcu2PO9QrngeOC73OOIHDttpsOwK+qajnwb8AnNU0b0g+Kpml/q2laTFXValVV16Rbv1Vomtasadp9gz2PFMk66j010B9ZRVGG8gIpPw1MtyCRINzZqW8YIcSIUBSFuzcsx9feqHeUYee0m7lzUR1Vpak1T6ebenjt7ctEYzJfNhNMJjPWoon8+Ikd9PXl1rsVI+gkqakUV3vX1IrrHaeqailQnL791HXOMTAF4yxgUVV1zHXOfydQBhxSVbUb+H/AHFVVu24WWlVVp6qqvwAukVq8VwX8l6qqe9LzpAdFimQdXVm0J1MtBmVgJBlkyoUQuay4qJC5aiX9fT69oww7s8nIyjk1TBpTCEBzR4BdB5sIhGQaQCYYjEYcpZN47Fcv0dXdo3ec0eAlwKqq6h+oqmpWVfVTpLpQ7LjmuJ8BD6qquizdzeIbwDZN07pvcI4yYIemaX7g16TmCttVVV0IfBh4TNO0xzRNc2maVqRpWhHw+8A7mqYVDyL3o0AtqWI8SKorxv8iNWr9r4P94qVI1km4vYNwe2rnOFm0NzgmhwOjMzUCIx0uhMhtSxbOwRLvzMmuBAaDwoKpFcyfUo4C9PjD7HzjAp2+0b/z4GhgMBhwlU/iF8+8hleeS96XpmkRYDOpwrUT+AJwj6Zp/aqqfktV1W+ljzsMfJZUv+M2oBL4nfTnwjc6R/oynwXMpEZ9nwT+JN3l4noGO+3iXuCPNC3dHSGV4yTwu8CmQZ5DNhPRy0B/ZMVsxjVxgs5pRg9beRmB84ErLzCEELlJURTu3bScnzz9GoUVufk7cnJdEU67mX1HmtOdLy6yaHolY6s8ekfLeYqi4KmYyC+3H+DudXOplXVBN6Rp2lFg2XVu//w1/34CeGIo50h/rptUf+Wb5fgR8KNBRAbwkOq9fK0EqYJ8UGQkWSf+9Hxk96SJGMyDfrzy3pU2cPLqX4ic5/F4WDKrjkBv7naCqClzsX5RHU6biXgiyetHWzhypj3nFi5mI0VRKKiYwLMvvUNDY5PeccTwegH4iqqqVwaD0/OkHwV2DvYkUiTrpPfKfGTZinoornS4kDnJQuSFeXNm4jH5SORwR5sit40Ni+spK0w1ADh+vos9h5tlQV+GFJSPZ8eek2inz+kdRQyfLwKTgXZS3TK2A02kFhN+abAnkSJZB7FgP4HGVMN8mY88NANFckhGkoXIG/dsWoW/47zeMUaUzWpizYIxjK8pAOCSt0+2ss6ggrJ6Xjp4nqPHT+kdRQwDTdOagSXAg6SK4v8A7iPVO/nSYM8jc5J10Hf6NKQXo0hni6G5ete9ZA4u6BFCvJfdbmflwknsOeLFXTjo7k2jjtGgsGhaBQUuC+9o7fT0hdmx/wLLZ1dTXnxtC1ox3ApKa9lzuJlIJMr8uTP1jiNuU7q38kvpj1siI8k6GJhqYa+txexx65xmdBkokpPRKLHe683JF0LkoulTVcqdEWLRiN5RRpSiKEypL2bVvFrMJgPhaJyX3rzI6aZumaecAQUl1Rw81cX+g+/oHUVkASmSddB7PNWDW6ZaDJ3tql7JEelwIUReuWvDCvq7L+gdIyOqSp1sWFyPx2khmUzt0PfG8VbicXkHbaR5iis43OBn994DekcROpMiOcNiwSC9J04CUDBL3s4ZKpPHg8FiASDcIUWyEPnEYrGwfvkserta9I6SER6nhQ2L66gpcwFwvrmXXQcvEpSNR0acu7AMrTnKi6/s0zuK0JEUyRnW8/ZhkvE4GAwUzZurd5xRR1EUrOXlgIwkC5GPJoyrp67UQCQc0jtKRphNRlbMqWbGhBIAunpDbN9/AW93UOdkuc/pKaGh08DzO3fLVJc8JUVyhnUfOgSAZ9pUTC6nzmlGp4EOFxEZSRYiL21cu5xYb/70tVUUhZkTSlkxpwaT0UA4EuelQxc5daFLircR5nQV0uy38czzL8n/dR6SIjmDkvE43W++BUDxwgU6pxm9BhbvyUiyEPnJaDSyZd0ifO0X9Y6SUbXlLjYuqcPtSM1TfltrZ9+RFumnPMLsTg8d4UJ+9eyunNwmXdyYFMkZ5D9zlqgv1ZGhaMF8ndOMXjbZUESIvFddVcm0sR76g316R8koj9PKxiV1jKlIzVNuavPzwhsX8PWFdU6W2+wOJ73JEh5/agfxHN7YRrybFMkZ1H0wNdXCVlWJXfaJv2VXRpI7OuTtLyHy2MplizBFWvPu94DZZGTZrGrmqmUoCvQGIrzwxgWaWqUt5kiy2hyEzFX87FfbicViescRGSBFcgZ1HXoTgKIFC1AURec0o9fAnOREfwhC+bF4RwjxXoqicO/GFfi8ub0b3/UM9FNeu2AMNouRWDzJ3iMtvHmqjXgiv140ZJLFaiNuG8NjTz5PJJLbPbuFFMkZE25vJ5jeirp4oUy1uB3Wq3olJ30yciJEPissLGDxzFr6erv0jqKL8iIHm+4YS1mRHYDTTT3sOtBEX1AKuJFitlhQ3GP5yZPbCYdlmksukyI5QwZGkY0OB55pU3VOM7pZiopQTKkd1ZM+n85phBB6mz93FgXGXuLx/HwL3G41sXb+GKaOKwZ+2ybuYptf52S5y2QyYy4cz48f304gENA7jhghUiRnSPfBVJFcOHc2BrNZ5zSjm2IwYC1N9QxN9kiRLISAe7esJtCRf9MuBhgMCnMmlbFqbg0Ws5FoLMGew83p6RfSkWEkGI0m7KWT+Mkvd+GTdzVzkhTJGRAPheg5chSA4gXS+m04DCzek5FkIQSAzWZjzZJp9Ha16h1FV9VlLjbfUU9p4bunX/hl+sWIMBgMuMon89OnX6Gzq1vvOGKYSZGcAT2Hj5KMRkFRKJovu+wNhytFsowkCyHS1MkTGFNM3uzGdyMOm5l1C8Yw7cr0izDbX2/kfLP8vhwJiqLgqZjE48/uweuV1qS5RIrkDBjYZc89eTLmggKd0+QGa0Vqa+pkT4/OSbJLpMdH16E36Ws4T0zmyYk8tGn9CmK9TXnXFu5aBoPC7EllrJpXi9Wc6n6x/1gr+442E41Jn9/hliqUJ/Lk8we4dLlF7zhimJj0DpDrkskkXen5yEXS1WLY2KtTfaaTnV0kZb4dAKE2L0e//FUinZ1XbjM6ndjKy7GWl1EwayZVWzahGOS1schdRqORezbcwZM73qKwvF7vOLqrLnWyeelY9h9robUzyIUWPx09IZbOrLoyJUMMD0VRKKycwLMvvcPGFVHGj63TO5K4TfJsOcICDeeJdqfmKUnrt+Fjr01vxhKNEpV5YIQ7uzj+V19/V4EMEA8ECJw/T9cbBzj/ne/R9LNf6JRQiMwpLy9j9uRS+vtkegGkul+snlfLXLUMgwKB/ii7DjZxvKGTRJ6PuI+EgvJx7NhzklPaWb2jiNskI8kjrCu9y561rBRHvYxqDJeBkWSAUHMLntoaHdPoK9rby/GvfZ1QayuK2cy0r34Z+5hawt52Qm1ewl4vvqPH8B05yqXHn8Q5tp7SZUv1ji3EiFq6aB6NF58nEXdhMBr1jqO7gc1Hyosc7DvSgj8Y4cjZDpo7+lgyowq3w6J3xJxSUFbPy282Eo5GmT1D2r6OVjKSPMIGtqKWXfaGl9Fmw1ySagMXam7WOY1+YoEAx//6b+m/eAnFaGTKn/8JhXNmYy0pwTN1CuWrVzLm4YeY9ldfwa2qAJz5t28SON+ob3AhRpiiKNy3eRX+PG4Ldz3FHhubltQzoSa1PqajJ8T21xs5e6kn7+dxD7eCklr2H2vlwKHDekcRtyhrimRVVY+pqhpQVdWf/jg6iPv8WFXVJzKR71ZEurrpO3sOkKkWI8FWXQWkRpLzUTwU4sTf/D2Bcw1gMDDpj75E8cLrtxg0mM1M+fKfYikpJhEOc/If/pGotM8TOc7pdLJm8RT83W16R8kqJpOBRdMrWTmnBmt6S+uDJ9rY/fZl+sP5uSHLSHEXVfHOuV527z2gdxRxC7KiSFZV1Q6oQK2mae70x8yb3Gcr8AiQtS99u99MLdgzWK0UzJyhc5rcc6VIbsm/keREJMLJv/9H/Kc0ACZ+4fcoW7Hsfe9jKSpiypf/HIPFQtjbzqlH/5lETJ4QRW6bok6kpiiZ923hrqem3MWWpWOpLXcB0NwRYNu+Rtmpb5i5CsvQmqPsfHmvjNaPMllRJAMzgVZN0wa1AktV1WrgH4DvAVk7h8H70isAFM6ZjcEi872Gmy09LzmUh+12zv/gR/jSG9SM+8ynqFi/blD3c0+ayIQvfB6A3mPHOf/dH4xYRiGyxWZpC3dDNouJ5bOrWTy9EpPRQCQaZ8/hZvYeaSYUkRfRw8XpKeFCl5Hntr8s34ejSMYW7qmqagTc1/lUApgLRFVV3QdMBN4GvqRp2qnrnEcBfgh8FZgCFI9U5tsRaLxA74mTAFRsWK9zmtw0MJIc7ewkHgphtNl0TpQZ4Y5O2l7YBUDtQw9QffddQ7p/+eqVBBsbufzUr2l9fjvOcfVUbtwwElGFyApGo5F7Ny7lie0HKSwfp3ecrKMoCuNrCqgodrD/WAve7n6aWv20dQZZMLWCusrrPXWLoXK4CmnvN/P4U9t56N4NGGVBadbL5EjyGqDrOh/vkJoycQD4EFAHHAK2qap6varnD4FOTdN+QRaPIrdu3wGkNr0omjtH5zS5aaBIBujPo3nJl5/+NclYDJPbTe1DD9zSOeo/9hEK56V2fzz/3R8Q6ZY2eiK3lZWVsmBqNYFe+V6/EafdzNoFY1gwpRyTUSEcjbP3SDN7Dl+WUeVhYrM76TdX89iTzxOJyFbh2S5jI8mapu3i/Yvy/7rq719RVfULwGzgjYEbVVWdBnwRWHg7WcLh8O3c/abiwSDel18FoHTdWsLRKESjI3rNfJRwOsFshmiU3vONmK4qmnNV1OejdcdOAMo3bySqKERDtzbXsv4Ln8f/xf9BPBCk6ZdPUfvRR4Yz6pAN/FyO9M+nyIxsfDxnzVA5e/5FQiEbJpNZ7zhZa1y1m/IiG4dOtePt7udiWx9tnUHGV1ooKpLnsttlMBiJ2Wr4/k+fZevdq3E6nRnPkE0/l9ksK/okq6r6OeCcpmkvpv9tAszAtc/+9wEVQIOaamdlAwyqqr6jadqgh2vPnh3ZBt+xg4dIhEJgNNJRXUnn8eMjer18ppQUk2xt4+Lhw7QUevSOM+KiL75CMhIBq5XOsXV03e731ry58Npe2nbspGfKZBS7/jtwjfTPp8isbHs8x48pYdsrb+CpmKx3lKw3pdpIgd1KQ2uYSCzBqUsh2nouM7nahs2SLUuaRq9EooB/+69fsHrxVAoKcv/5azTKiiIZqAK+qKrqJqAT+CfgpKZp72ouqGnaP5BasAeAqqpfA2ZomrZ1KBebOHEiVqv19lNfRzKZ5MT3f0QMKF56B+MW3tagt3gf4XCYEyUlJFvbcMdijJ8+Xe9IIyoWCHD0rbcBqNy8kZr5t99WMFZXx9EDh0iEwxSfv0D11gdv+5y3KhwOc/bs2RH9+RSZk82PZ0lpGdv3nqGgtFbvKFmvogImj41y6KSXtu4Q3X1xDp0NMn18MZNqCzAYsnbW46iQrKjgeOM5tqweS00G3w0d+PkU7y9biuS/Bzyk5iW7gFdJjRoDoKqqH9ikadre69x3yMtErVYrthFa5OU7dpzQpcsA1N5914hdR6QoJal1m5GW1pz/v774zHMk+vsxWCzUPXAf5uH4em02KjdvpPnpZ2jf/gJ1Dz6AyaHvaPJI/nyKzMvGx3PSxAlcbmmnoTOEze7SO07W87hMrJhTzfEzzTS0RQhHExw528nFtj4WTa+k2JNdj+9oU1IzhRf2aaycH2H6VFXvOOIqWVEka5oWA/44/XG9z193aa2maV8fyVy3omXbdgCcE8bjmjxJ5zS5z1BaQpzUwr1kMpmzuxrG+/tpfuY5ACo23om5oGDYzl19z920PLeNWF8frdt3UPvAfTe/kxCj3Krli7n4xDYSFrtsWz0IiqJQXmhm8rhKjjZ003DZR7c/zAv7LzCproiZE0qwmOX/8VYVlI1lz+Fmenx9LFsim49lC5lUNIwiXd107U+tM6zavDFnC7ZsoqS3pk6EQkQ6u3ROM3JaX9hJzO9HMZmoue/eYT23taSYivVrAWj+9bPEZUGHyAOKovDAXavxdzToHWVUsZiNLJ5eydoFY3A7zCSB003d/Gbvec43+6QH8G1wF1Vx4mKE53a8Iv+PWUKK5GHUtnMXyXgco9NB6coVesfJCwPTLQD6L1/WMcnISUQiXH7qGQDK167GWloy7NeoeeA+MBiI9vTg3fXSsJ9fiGzkdDpZv2wGvs7827XzdlUUO9h8x1hmTijBaFAIReLsP9bKiwcv0uOXF9q3yukpwtvv5me/2k5UumLpTorkYZKMx2nd8QIA5WvXYsyyhSq5SrFYMKcL5f5LuVkkt734MtHubjAYqHng/hG5hq2igrJVKwG4/NTTsl21yBuTJoxDrbHTH+zTO8qoYzQamDGhlC1Lx1JTlmpj1t7Tz/b9jbx1ykskGtc54ehkszuJWWv48ePP09Pj0ztOXpMieZh0HTh45e3+qs0bdU6TXwa2p+6/nHujQYlYjMu/ehqAshXLsVdVjti1ah+6HxSFcHsH7a/sHrHrCJFt1qxcgiXaRiIuRd2tcDksrJxby8o5NTjtZpJJ0Jq6eW7Pec5e7CEhUweGzGS2YCuZxM+e2cPpMzIlSC9SJA+TgQV7hXNmY6+p1jlNfhnYeS8Xp1t07NlH2OsFuOXd9QbLUVtLyR1LALj0y1+RlIJB5AmZnzw8aspdbFk6lhnjU1MwwtE4B0+2sf31Rlo7A3rHG3UURaGgYgIvHWrk5df2yzxlHUiRPAyCTRfxHTkKpPrXisyyVeVukex9MTU/uGjhAhx1Y0b8erVbU4V4qLmFjn37R/x6QmQLmZ88PExGAzMnlnLXsnHUV6YaU/n6Irz85iV2v30Zf0C2Yh4qT3E159oN/PxX22Ur6wyTIvk2JRMJzv1nakdta1kpxQsX6Jwo/9jSI/fh9o6c6swQbu/Ad/QYABXr1mTkmq7x4ymaPw+Ay0/9OiPXFCJbyPzk4eO0m1k6q5r1i+ooSfdRvtzex7Z953nzVBuhsKx7GAqH00PUVssPf/E8rW1evePkDSmSb1Pr89vpPX4CgHGf/QyK9NvMONtVuxSFmlt0TDK82l/dDckkJpeLogWZ65tZfd89AATOnSNwvjFj1xUiG6xZuQRbzCvzk4dJWaGdOxfXsWRGJXariUQSTjf18OyeBo6e6yAaS+gdcdQwmcw4yybz1M53eHXPGyQS8n830qRIvg2htjYaf/wYAKUrl1OyWLag1oO5uBiDxQJAMEc6XCSTSbyvvApA6fKlGMzmjF27YMZ0rBXlALTtfDFj1xUiGyiKwoN3r6Wv45zeUXKGoiiMqy7gA8vHMWtiKWaTgVg8ybFznTy7p4HTTd3EEzLfdjAURaGgrI5zHSZ++ItttLS26R0pp0mRfIuSySRnv/ktEqEQ5oICxn/203pHyluKwYC9pgbInXnJgXMN9F+8BEDZ6lUZvbZiMFCxfh2QGs1OyBw4kWdsNht3rZ2Pr+Oi3lFyisloYPr4Eu5ePh61vgiDohCOxHnzlJff7D1Pw2UfCSmWB8Vmd2ItmsBTuw6z6+W9xOWdjxEhRfItatux88pivfG/+1nMHo/OifLbQEeRXGkDNzCKbKusxD1Fzfj1y9esBkUh1tdH5xsHM359IfQ2praGeWoZgd5uvaPkHKvFyDy1nA8sH8e46tRzZ6A/yhvHW/nNvtTOfdI27uYURaGwrI5LvQ5+8PNtNF5o0jtSzpEi+RaE29tp/OGPAShZegely+7QOZH4bZE8+keSE7EYHbv3AFC2ZpUu25tby0opnDsHAO8umXIh8tPiBXMosQWIyrspI8JpN7NkRhWb7xjLmAoXAH3BKPuPtbJtbyONLb1SLA+CxWbHUTqJ5/c28OPHn+fw0eMyX3mYSJE8RAPTLOL9/Zjcbsb/7mf1jiQAe+3AdIvmUd9Lsuedw0R9qV2WBnbB00PF+rWpPIePEPLKamqRn+7ZvJqor3HU/17JZoVuK8tn17Dpjnpqy1PFsj8Y4fWjLTy/r1GmYQxSQUklpoJxHDgd4Hs/fZ5XXtsvLeNuk0nvAKON98WX6HnnMADjP/dpLIUFOicSwJU5yYlQiEhXF9aSEp0T3br2l1NTLdxTp4zoDns3U7xoISa3m5jfj/elV6j70MO6ZRFCLyaTifu3rODx37xOQfl4vePktCK3jRVzaujqDXH0bAfNHQF6AxHeON7K0XMdTB1bzPiaAkxGGd97P06XB1weGnvCnPz5TsqL7DjsZoo8LmqqyykvK9U74qgh32mDlOo2sJuG73wfgOLFCyldsVznVGKA/ao2cP2juMNFLBCg840DAJRneMHetQxmM2WrUyPZ3hdfJilv34k8VVJcxMoFE+jtkl09AigAACAASURBVE4CmVDssbFqXi0bl9QzJj2yHAzFePOUl2d2N3C8oZNIVBaq3YzFYqWgYgJhSzXd8TK0NiPP7D7Ht3/2It/87hN6xxsVpEgehEh3N6e+8U+c+Zd/S3ez8DDh935Xl7mi4vqMdjuW9OjxaF6817nvdZLRKIrJROnypXrHudLlIuz1XlmoKkQ+mj5VZWKliVC/bDSSKcUeG8vn1HDXsrGMq/agKBCOxjlytoNf7z7HoZNtsoPfEJgtFgqLy4gljPzpH35c7zijQt4XyYlYjMCFJmJ9791XPplM0v7qa7z9h/+DrvQK/8J5c5n9f/8PluKiTEcVN5ELi/e8r+wGoHjhAkwul85pwDm2HtfECQC0pbfIFiJfrVu9FFu8nVgsqneUvOJxWlkyo4q7l49ncl0hRoNCLJ7kzMUentt7nt1vX6KtKyjzxgdBURQZ4BuCvJ+TfP6736f1+R0AWEpKcNTX4ayvw1FXR+f+N+hKv/VtdDgY9+lPUr5urXyDZSl7TQ2+I0dH7XSLUJuX3mPHgVRXi2xRvn4dfWfP0fn6G8T6+rKieBdCD4qi8NDd6/jhL57HWTZZngsyzGk3M39KBTPGl3L2Ug9nLvbQH45xuT3A5fYAhW4rk8cUUl/pwWTK+zFAMQzyvki2Vf52YVSks5NIZyc9b739rmMK585h4hc+j1Umu2e1Kx0umkfndIv2V1OjyCa3m6J5c3VO81tlK5bT+P0fkohEaH/1Naru2qx3JCF0Y7FYeGDLCp7Ytl8W8unEajEyfXwJU8YWc7HNj3ahi67eMD3+MAdOtPH26XbGVnmYNKaQApdV77hiFMv7IrnmvnsoX7ua4IUmAheaCDY1EWxM/WmwWKj76CNU3LlORgxGgYHpFuH2DuLhMEbr6PnlmEwm8aa7WpSuWJbRbahvxuRyUrJ0Ce2v7KZt14tSJIu8V1pSzOpFk3j1rUt4iqtufgcxIowGhbFVHuor3bT39HOmqYeLXj/RWIIzF1MjzWWFdiaOKaS23CVdMcSQ5X2RDGD2eCiYOYOCmTOu3DYwt0mK49FjoEgmmSTU3IJz3Fg94wxJ39lzhNIj4Hp3tbie8nVraX9lN4GG8/Q1NOAaLyNoIr9NVSfR6u3kXHsvDqfsuKonRVEoL3JQXuSgPxyj4bKPc5d6CIRitPf0097Tj9lkoL7SzbjqAkoKbPLcLgZFXlbdgExuH32spaUYLBZg9C3e69j9GgC2qkpckyfpnOa9CmZMx1ZZAYB3lyzgEwJg9fLFeAzdxKLSYSFb2K0mpo8v4QMrxrNybg3VpU4UIBpLcPaSj50Hmti2r5ET5zsJhmQBpnh/UiSLnKEYDFdGk4OjaPFeMh6nY88+AEpXLM/KF2eKwUD52jUAtL+2l0QspnMiIfSnKAr337WWqO+CbAOcZQyKQk2Zi1Xzarln5QRmTyrF40wNovQGIhw+08Gvdzfw4sEmzlzsJhSW32nivaRIFjnFUVcHQKChQeckg9d78hSRri4gtUguWw1sLBLr7X3P4lYh8pXZbObhe1bjbz+ndxRxAw6biWnjStiydCwbFtcxsbYQc7r7hbe7n0MnvTy9+xwvv3mRc5d6CMtGJSJN5iSLnOJWJ9P+6m78pzSSyWRWjspeq333HgAcY+tx1I3ROc2N2Soq8EybSu+Jk3hfeZXiRQv1jiREVnC73dy9bj7PvnyUgrJ6veOIG1AUhZICOyUFduapZbR0BrjQ6ueyt494IklrZ5DWziAHT7ZRVuigttxFTbkLlz17FlLrQVXVucC3gWnAGeD3NE174zrHfRj4e6AceBn4tKZp3pudQ1XVIuD7wBrAB3xd07Tvpz9nAR4FHgaswF7gC5qmXRyxL/gqMpIscop7qgpA1NdLqLVV5zQ3l4jF6Nz3OpDdo8gDBkaTuw4cuu4GPELkq9qaapbOqaO3K/t/7wgwGg3UlrtZNquaB1ZPZOmsKmrLXRgMCskkeLuDvKV5efa1Bp7f18iRsx109PSTyLMNS1RVtQHPAt8DCoB/B55RVdV5zXGzgG8BHwRKgVbgBzc5hyN99+8AvaSK64eAR1VVXZz+3F8A84HZQDVwGfjpSHyt1yMjySKnOOvrMdhsJEIh/Cc17FXZ3Z7Jd/gIMb8fSLV+y3aly5bS8F/fIxmN0rHvdSo3rNc7khBZY/aMqXR2+Tjf7sPuKtA7jhgkk8lAfaWH+koP0ViClo4Al9r9NLcHiMYS9PSF6ekLc7yhE4vZQGWxk8oSB1WlThy2nB9lXgPENU37dvrfP1BV9Y+ALcATVx33EeBpTdMOAqiq+udAu6qqZcCCG51DVdXtwL3AJE3TIsBBVVV/CnwceANwAH+raVp7+rz/Abw5gl/vu0iRLHKKYjTinjwJ35Gj9J46Rfna1XpHel/tr+0FwDV5EraKCp3T3JzJ5aJ44QI6X99P+yuvSpEsxDXWrFhM97O78IetWKw2veOIITKbDNRVuqmrdJNIJPF2B7nc3sdlbx+BUIxINEFTm5+mttTghsdpoaLYQXmRnbIiB3ZrzpVVU4AT19ympW+/mgrsu3KApnWpqtqVPu5G55gKnAOimqY1XvW508D96fP82TX3uwc4OuSv4hbl3KMphHuKiu/IUfynNL2jvK9EJELX/tS0rrKV2T/VYkDZmlV0vr6f3uMnCLV5sVWU6x1JiKyhKAr33bWW/358GwnTeAxGo96RxC0yGBQqS5xUljiZp5bjD0Zp7QzQ0hHA2x0kFk/SG4jQG4hw5mIPAG6HmbIiB2WFdkoLbbgdllGxNuZ9OIHgNbcFSY3wDvY4x00+1z+I86Oq6geBLwMZ29FKimSRczxTUy9wg00XifUFMLmcN7mHPrrffIt4fz8oCiVLl+odZ9CK5s3F5HYT8/tpf3U3Yx5+SO9IQmQVo9HIB+9bz4+feAFX+eTRXiQJUi9+PE4LHqeFyXVFxBMJOnpCtHUG8Hb30+kLkUgm8Qej+IM+Gi77gNTIdLHHRkmBjWKPjeICGw6raTR9TwQA+zW3OQD/Nbddr7AdOC74PucIAte+5eIA+q6+IT1948vAA5qmvTaE/LdFimSRc9yTJ6f+kkziP32aonlz9Q10A+2vpbpaFMyYjrWkWOc0g2cwmyldsYzWbdtpf+VVarc+OJp+4QuREXa7na13r+IXz+6hoGKi3nHEMDMaDFQUO6goTtWFsXiCLl8Ib3cwXTT3E4snicYStHUFaev67UCq2WSg0GWl0G2l0GWlwG2lwGnBYs7Muw7vHBxSjXkS+INrblOBx65znHrlAFUtBYrTtxdc5xxT0uc4C1hUVR1zVccKFTiePo+BVFeM9cAKTdMyNtUCpEgWOcjkcuKoG0Ow6SL+U1pWFsmxYD/dB1NrD0bDgr1rla9eReu27fRfbqbv7Dnck6QIEOJaxUWFfGDtXJ575SgFZWP1jiNGkMlooLzYQXm6aE4kk/T2RejqDdHpS4009/SFSSZTu/8NbJd9NavZiNthxu204HZYcDvMOO1mHDYzNovxtgcjkskkv/zJN3nqsf8Yyt1eAqyqqv4BqWL1Y6S6UOy45rifAa+qqvp9UgvrvgFs0zStW1XV652jDNihaVq/qqq/Br6hqupngRnAh/ntlIqvAWuBJZqmtQ39q749UiSLnOSeohJsukjvyVN6R7murgMHSUQiKEYjJXfcoXecIXNNnoStuopQcwvtL78qRbIQNzCmtoZVCwK8+tYlCkqq9Y4jMsSgKKmRYreV8TWpTiexeILeQIQef6pbxsCf4Uhq85JwNE7YF6fDF7rO+cBuNeOwmXDYTFgtJmwWI1aLEavZeOXvJqMBs8mA0WjAcE1RfQsFMpqmRVRV3Qz8J/APpHoc35Mubr+VPubzmqYdThe53wcqgd3A76Q/H77ROdKX+Wz6c5dITbP4E03TDqqqagL+mFStelZVrwxUJ4GKq+4/YqRIFjnJM3UKbS/swn/6DMl4HCXLFs90pKdaFM6Zjdnj1jnN0CmKQvnqVTT99Od07NnD2E99AoNJfp0IcT3Tpkym1x/kcEM77sIyveMInZiMqfnJxZ53T8HtD8fwByOp+cyBSPrvEfqCUeKJVF/mRBICoSiBUHTQ1zMalCsF82VtL3ueHFqBPCA9xeE9b3lqmvb5a/79BO9uC3fTc6Q/102qv/K1t8cA1y1EHjbyrCZykntK6hVnIhQicKEJ1/hxOif6rajfT8/b7wBQOoq6WlyrbPVKmn76c6K+XnrefofihQv0jiRE1lqycA69/r009fTicHr0jiOyiN1qwm41UV707tuTySThaJxgKEYwFE3/mfp7OBonFIkTicQJReMkEu/d5CSeSBKPxEkmYxzYdmsFcr6TIlnkJFtVFSaPh1hvL/5TWlYVyZ2vv0EyHsdgsVC8aJHecW7Zu7apfvlVKZKFuIk71yzlqd+8iK/fiNWenV13RPZQFAWbxYTNYnrP6PPVkskksXiqoI7FEsTiCaLv+jPOKyYjkQxmzxWyLbXISYqi4EmPJmdbv+SBqRZFC+ZjclzbFWd0+e021Qdlm2ohbkJRFO7bshZ7wkskEtY7jsgRipKaVuGymyl0WykttFNV6mRMhZvxNQVMrivmM1/8K71jjkpSJIucNTDlIpsW74U7O/EdOw6Mzq4W1ypdthTFZEpvU73v5ncQIs8ZDAa23rsBY/AisaiM7YnMWLR8A/d/5Pf1jjHqSJEsctZAkRz2egl3dumcJsW76yVIJFLbOy+Yr3ec22ZyuShenJoy4t31ks5phBgdjEYjH3pgI7HeRhLxuN5xRJ548KN/IIXyEEmRLHKWa+IElHTHBb+m/5SLZCJB264XgdQ0BYPFonOi4VGxfi0Afu00waaLNzlaCAFgNpt55IENBDvPkkgk9I4j8oCiKDz0sT/kE7//l3pHGTWypkhWVfWYqqoBVVX96Y8b7qqiqurXVFVtVlW1W1XVX6qqWpDJrGJ0MFqtONML9rJhXnLP4SOEve0AVGy4U+c0w6dw9iwspaUAtL0oo8lCDJbNZuOR+9fR5z1DMvne7gRCjITZC0ZvV6VMy4oiWVVVO6ltCGs1TXOnP2be4Ng/BB4CFgDVgAI8mrGwYlTJpsV7bS/sAsCtTsZZX6dzmuGjGI2Ur10NQPvLr5CIxXTNI8Ro4nK5ePieVfS2nZVCWYgskxVFMjATaE03lL6ZLwB/qmlac3q3lc8A/3tE04lRyz1lCgB95xqIh/VbTR7p8dF14CAAFRvW65ZjpAxMuYj6eq9sty2EGJziokK2fmAZvV4plIXIJhnrk6yqqhG43tZiCWAuEFVVdR8wEXgb+JKmae9qS6CqqhOYDFSnp2OUAtuAL41kdjF6DSzeS8ZiBM414Jk2VZcc3pdeJhmLYbTbKV22VJcMI8lWUUHBrJn4jhylbdeLlNyxWO9IQowqpSXFbN2ylCd+sw9PxUSUa7YUFkJkXiZHktcAXdf5eIfUPtwHgA8BdcAhYJuqqtd2zx7Yj+bjwHpgOjAG+JeRDi9GJ2tJMdby1DawvTpNuUgmk7TtTC3YK125HKN9dPdGvpGK9esA6H7r7azpJiLEaFJaWsJDW+7AJ1MvhMgKGRtJ1jRtF+9flP/XVX//iqqqXwBmA29cdfvA++X/qGlaG4Cqqn8H/BL47GCzhHV8210Mn4HH8WaPp3PSJMLednqOn6B0y6ZMRHsX/4mThJqbAShatZJQKJTxDJngnDsbo8NBPBik+YWdVN1/75DuP9jHU4wO8njeGrfbxd1r5/L0zkN4yidkzYhyLL3WICZrDka9mLQdHLSs2JZaVdXPAec0TXsx/W8TYAbeVU1omtauqmoXcPUIs4nU4r1BO3v27O0FFlnlZo9nzOMCwHfiJMeOHcv4k07kqWcAUCorON8fRDl+PKPXz6hpU+DQW7S8sJPOSbf2BC8/n7lFHs9bM2WMi91v7sNTnl1TL7q65F2i0a6zs1PvCKNGVhTJQBXwRVVVNwGdwD8BJzVNO3ydY38IfFVV1f2kRpa/CvxiKBebOHEiVqv19hIL3YXDYc6ePXvTxzPocHLy+RcgGGRiSSm2qsqMZYz1BTiSnuZRu2Uz5TNmZOzaegjaHZw89BbJrm7qDUbcQ5gDPtjHU4wO8njevsmqyjM7D2VFoRyLxejq6qK4uBiTKVtKB3ErknF5d2ewsuU7/e8BD6l5yS7gVeC+gU+qquoHNmmathf4MvB1UtMwPMDTwJ8O5WJWqxWb7drpzmK0utnjaZ08CYPNRiIUov/ESQrHjc1YtuZdL5GMRjFYLFSvX4spx7/vrFOn4Bw3lsD5Rrp376Fs3tyhn0N+PnOKPJ63rr5uDI/c7+KJ517DXT5J90IZwGQySZE8ypmMRr0jjBpZ8Z2uaVoM+OP0x/U+777q71HgL9IfQtyUYjRSvGghHbtfo23nLiq3bMrIk00ymaTthZ0AlC5fisnpHPFr6k1RFMrXr+P8d75H5959xD73aUwOh96xhBi1SoqL+Mj9a/jZ0y/hKJmIQQocITImW/okCzGiKjeldrgLnG+k7/SZjFyz7/QZgheaAKi4M/d6I99I2coVKCYTiUiEjtf26B1HiFHP7Xbz0QfvJNx1jnhcFs4JkSlSJIu84Jk2DXttLQCtO3Zm5Jqt6R327LW1uKdOycg1s4HZ46ZkSapPcttO2aZaiOHgcDj42MObiPvOE41E9I4jRF6QIlnkBUVRrowmd7y2h1hfYESvF25vp/3V3QBUbFiXFXMJM6k8vQNf35kzBM436htGiBxhsVj46NbNGEMXCYeCescRIudJkSzyRvma1RgsFhKRCN5XXh3Ra1147Ocko1HMBR4q7rxzRK+VjQpnz8JWWQFA8zPP6pxGiNxhMpl45MHNFBi7CPb16B1HiJwmRbLIGyaXi5L0ltBtO14YsR2t+hrO054uwsd88GFMjtzcYe/9KAYDVXd/AID23XtkBz4hhpHBYOD+u9Yxvgz83V6944gsFo/H6Ony0tXWRHfrOQIdDcQDl/WONWpIkSzySuXG1KhusOki/hHapvrCj/4bkkls1VVUbMy/UeQBFevWYHQ6ScZitG57Xu84QuQURVFYu3IJC6cW09NxUe84Iosk4nG6vJeI+hqpcvi4b9VEPvXQcn7/41v4zCOb+eMvfJJgUKbrDIYUySKvuKeoOOrrAGjd/sKwn7/77XfoeSe1B079xz6CIY/7iRrtdio3bQBS/9fxHN2OWwg9zZs9gw13TKKn7dyIvTsmsl8ymaS7o5lQVwNl1m4+vGUen3h4E+tXL6O6uhqHw4GiKO/6EDcnRbLIK4qiULkxVbh17N1HtNc/bOdOJhKpUWTArU6m5I4lw3bu0arqri0oJhOxvj68L0qnCyFGwsTxY9m6eTF+7xkS8bjecUQGJZNJetovYglf5IF10/nUh7ewcd1ySkqK9Y6WE6RIFnmnbPVKDFYryWgU78uvDNt521/dfaWTw9hPflxeqQPWkmJKVywHoPmZ50jKE7gQI6KsrJRPbL2ThP884f6R7d4j9JdIJOj2XsAWvczDm+ez9d4NVKUXS4vhI0WyyDsmp5PSFcuA4VvAl4hEuPCTnwFQvHgRnmlTb/ucuaLm3rsBCLW20XXgoM5phMhddrudj27dQoWzD39Pu95xxAhIJpP0eC/gSrTyyAcW8+Dd6ymVUeMRI0WyyEsDUy76LzfTe/zEbZ+v+bltRDo6wGCg/uMfue3z5RLnuLEUzJ4FwOWnn9E3jBA5zmAwsOXOVSyaUkRPe6PeccQw6u1qwRK+yIc/sJj77lpLUVGh3pFynhTJIi+5Jk3EOX4cAK3bd9zWuaJ+P5ee/BUAlRvW40jv7Cd+q+a+ewDwn9Lwa6d1TiNE7ps7ewb3r5+L33tatrIe5QL+bmI9DWxZPomt926Q4jiDpEgWeenqBXydr79BX8P5WzpPMh7n/He+TzwQwGCzMeZDDw9nzJxROHcOjroxAFz+tYwmC5EJVZUVfGLrBozBJvr7fHrHEUMU7g8QaD/D4ikFfOzhzdSNkQGYTJMiWeSt0pUrMBcUkIzFOP61vyFwoWlI90/G45z59/93Zfvp2gfvx1JUNBJRRz1FUahOz03ufP0NQm1tOicSIj/YbDY+/OBmplQb8Xkv6B1HDEI8HsPXdo7xpTE+9eEtzJoxTRaC60SKZJG3TA470/76LzG5XMR6ezn+l39N8NKlQd03EYuh/fO/XtlZr2LjBmofemAk4456ZatWYi4shESC5md/o3ccIfKGoigsu2MB9905h2DHGSKRsN6RxHUMtHPzKO18cutaVi1fjNFo1DtWXpMiWeQ11/hxTPvrv8TocBD1+Tj21b+mv6Xlfe+TiEbRHv1nOvfuA6Dq7ruY8PnPoRjkx+n9GMxmqu7aDEDbzheJdHfrnEiI/FJVWcEnP7iZElMXfdL9Iqv0+TpJ+ht58M7Z3Lt5DXa7Xe9IAimShcA9aSLTvvZVDDYb0e5ujn31rwm1ea97bCIS4dQ3HqXrjQMA1DxwH+M+/TvyVtggVW7eiNHpJBEKXWmZJ4TIHJPJxN2b17BsVjm+trOyqE9noWCAYMdZls0s5aNbN1NRUa53JHEVKZKFADxTVKb91V9gsFqJdHRw7Ktfw3f8BL7jx+k69Cbtu/fQ+sJOTvztP9D95lsAjPngVuo//lEpkIfA7HZTl17c6H3xJfoaGnROJER+mj5V5XceXo8z3oq/+/qDAmLkxKIRer1nUauSfOrDW5g+VdU7krgOk94BhMgWBdOnM/Ur/4uTf/cNwl4vx/7iL294bN1HH2HM1gczmC53VG7eSMvzOwg1N3P+ez9kxt99XV5oCKEDm83GA3evRzt9jlcOnMBWUI/ZYtE7Vk5LJBL0dlxgQrWbNRs2YJH/76wmI8lCXKVw9iymfPnPMDqdv73RYMDodGApKcFRX8eEL/yeFMi3wWA2M+5TnwCg99hxuva/oXMiIfKbOnkCn/rgJsqs3fg6LusdJyclk0m62y9hi17mo/cuY+O65VIgjwIykizENYrmzWXhD75DPBjEaLdjsFplpHOYFS2YT+Gc2fS8c5jzP/gRRQvm6x1JiLxmNpvZsmEVFy818+Ket4maSnC6ZdOK25VMJvF1NFPijLF1wzzKy8v0jiSGQEaShbgOo9WKpagIo80mBfIIUBSFsZ/6JBgMhNu80hJOiCwxpraaT3xwCwsmu+lrP0sk1K93pFHL19mCIdDEfeum88H7N0qBPApJkSyE0IWzvo7KDesBuPT4k0R7ZEcwIbKBoijMnTWdT394M2OLw/jazkkXjEFKJpP0dDST9Ddy14rJfPjBjVRXVeodS9wiKZKFELqpe+RDGB0O4v39ND/+pN5xhBBXMRqNrF6xhE9uXYsbLz3eCyTicb1jZaVEIkGPtwlL+BL3rpnKRx7aRN2YGr1jidskRbIQQjfmggLGfHArAB0vvUyiVbarFiLb2O12PrBhJRuXTqTA4KWnrYFYLKp3rKwQi0Xpbm3AlWzjQ3ctZOu9d1JTXaV3LDFMZOGeEEJXVXdtpnX7DkItrUS3bSe5aqXekYQQ1+FwONi8cCEAr+49RMNlH/aiWiwWq87JMi/g95EMdVBfVcBDW1fjcDj0jiRGgIwkCyF0ZTCbGfeZTwGQvHSZS7ITnxBZzWazsXHdcj79oTupL+ynv7OB3jzY5joRj9PVdgFD8CJLpnr4zCOb2bhuuRTIOUxGkoUQuiteMJ+KD2yh7blteJ/fTuG0KZStXKF3LCHE+7BYLKxZsYTVySTnGhp55/g52noiuIpqc2ZTkmQySW9PO8a4nzEVbu6+dwkFBQV6xxIZIkWyECIr1DzyIbxHj5G80MTZb34LR10dzrH1escSQtyEoihMnDCOiRPGEQqF2H/wHRovX6YvYsRTUoXJZNY74pBcXRhXljhYdsdE6utqpR1oHpIiWQiRFRSjEcuD95H44X8T7erm1D8+yux/fhTT1bsfCjEKJONxov4+EpEwyViMZCxGIhYjGY2RTCQw2u0YHXZMDgdGux3FaNQ78rCx2WysXrEEgJ6eHt46cpIWby/dgQTOwkqsNrvOCa8vGonQ29WK3RyjvNguhbEApEgWQmQRxeVi/B99idNf/ztCLa2c+df/jylf/jMUgyyfENkjEY0SamklePES/ZcuEe7oINLdTaSrh0hXF1GfDxKJQZ/PYLNhdruwVlRgq6zANvBnZSX26mpMrtH5QrGwsJC1K+8AoL+/n8NHT3Gp7TI9/jChmBFHQRk2mz7zeWPRCP6edkz0U1roYGx5ATNWLcHj8eiSR2QnKZKFEFnFNXkS4z79OzR8+zt0HTjIpSd/xZiHH9I7lshTUb+fvjNn8Z8+Q7DxAsGLlwi1tJAcxn7BiVCIcChEuL2D3mPH3/N5W1UlrokTcE2ciGvCeJwTxmMaZYvF7HY7SxbNvfLvvr4+tDMNtHjb6OoNEeiPEceC2ebC6fJgGKbR9UQiQag/QKivG7MSwe204nFaKCp1oi6ZTUlJiYwWixuSIlkIkXUqN2/Ef/oM7S+/QtNPf46jvo6SxYv0jiVyXDIeJ3DhAv6Tp/CfPoP/9BlCzS03PF4xm7HXVGOrKMdSXIylqAhzURGW4iIsRUUYrBYMJhOKyYxiMmEwmcCgEO8PEQ8GUx/9/cSCQaI9PkJtbYRa2wi3tdHf0koiFAIg1NJKqKWVjtf2Xrm2o76OglkzKZg5k4Lp00bdaLPL5WL+3FlX/p1MJunr66PN20Fzixd/IEQgFCMaSxCNJYjFk8TicaLxJChGSAIkgCSKomBUwGAAi9mEzWLEajFis5iw2YxU1BdTN2YKLpdLCmIxJFIkCyGyjqIoTPj85wg2XiBw/jyn/vF/M/5zn6Zq8ya9o4kckozHCTRewHfsGL3HTuA7foJ4IPDeAxUFe20NrgnjcYwZg33MGBx1tdjKy29pDF1eHQAAFdZJREFUPrHJ4YCS4vfPlkwS9fUSvHCBvrPnrnyEvV4AgheaCF5oouXZ34DBgGvCeApmzqBw7hw806amCvJRRFEU3G43brebiRPG3fC4ZDJJJBJJFcZGIwaDQQpfMWJG10+RECJvGK1Wpn71y5z4m78jeKGJhv/8DqGWVsZ+4mM5tdBJZE4ymaT/8mV8h4/Qc/gIvmPHiQeC7znOXODBNXky7smTcE+ehGvSxIwvIFUUBUthAZbCWRTO/u2Ia7S3l74zZ/EdO47v6DH6zjVAIkHfmbP0nTnL5V89jdHhoHDObIoWzKNo/jwshYUZzT6SFEXBas2/zUuEPqRIFkJkLWtpCTP/8e/RHv1net5+h+ZfP0uozcvk//kljPJEKQYh0tVNz5EjVwrjSGfXe44xFxVSMGM6BTNm4JkxHXtNddaOTpo9Hormp4pfgFhfAN/xE/iOHsN3+DDBpovEg0E6971O577XQVFwTZxA8aKFFC9aiKO+Lmu/NiGyjRTJQoisZnI4mPaXf8G5b3+Xth0v0LX/DY595a+Y+pX/haWoSO94IsvEAgF8x07gO5IqivsvXnrPMSa3KzWXd9ZMCmfNxFZdNWoLR5PLScnihZQsTm0XHfJ66T70Ft2H3sR39BiJSOTKKHPTYz/DWlF+pWAejdMyhMgk+ekQQmQ9xWhkwuc/h72qksYf/pi+M2c58mdfZsLnf5fCuXNGbYEjbl+8v5/eUxq96ekH/jNn39N+zWCx4Jk2lYLZqakLznFjc7atoK28nKotm6jasol4OIzv6DG6Dhyi++AhIl1dhNu8tDz7G1qe/Q1Gp5OieXMoXriQwnlzMLvdescXIqtIkSyEGBUURaHm/nuxVpRz5l/+nbC3nRNf/zsKZs6g/hMfwz1pot4RRQbE+gL4T5+m9/gJfEeP03f27HvbsRkMuCZMoHD2TApmz8IzRcWQI9skD4XRaqV4wXyKF8wnmfgsfeca6DpwkK4DBwk2XiAeCNDx2t5U1wyDAc/UKRQvXEDRgvnYa2vkxafIe1IkCyFGldKld2CrqKDhO9/Df/IUvqPHOPInf07p8mXUffQR7FWVekcUwyS10K4Z/ynt/2/v3uOsKus9jn/23JgLMINcRmAUEOHHVdR8adqx8nIqKMvMTsdj2umYHkvLY/kis2NmlnjJtOxkaln6KvW8tJOVYiGKZamICKZAP0VAucgMMsAAc9t79j5/PGvGzWYPM6Mws/fM9/167Rd7rfXsZ/0WD2vz28961rPCy53GN9ZnLVs+7lAqZ8ygcuYMKmdOp2jw4F6ONrfFCgoYMulwhkw6nHFnn0VzbS31S5aybcnz7Hh5BalEgoYVK2lYsZJ1v7yHkuHDqTpqFlWzZlF15BEwAH9kiORMkmxmLwMTCBMfAqxz95lZyg0BbgM+HJX9HfBld2/prVhFpG8NnngYM+d9l/rnlvD6Pb+iacNG3vrr39j6zLOMOvVkRn7gRIZOmaJZMPJIqq2Nxg0b2b1mDbteW8vutWvZvWYtbY17zz4B6UnxdIZOn0axnpTWI6XV1Yz52BzGfGwOicYmti9fzrYlS9m2dCnxHQ20bt1K3cInqFv4BMRilE8YT7x6FNsbmxh+xEyKKyv7+hCkl5jZUcDtwDTgVeBCd1+cpdxZwPeAUcAi4Dx3r+uqDjMbBtwFnATsAK5297vS6p0HnEfIWe8Bvuru3X+k5buQE0mymZUBBoxy921dFP82UALUAOXAfGAucM2BjFFEckssFmP4ccdy0DHvofbxRay/739pra+n9k+PUfunxyiuHMpBxx3L8OPfS+XMGRQUF/d1yEJ4pHPTpjdp2rCRpg0baNywgab1G2nauJFka2vWzxSWlTF48iSGTjGGTDGGTJ6cdw/PyGVF5WWMOOF4RpxwPKlkkt1r1rJ9+YtsW7acnf9wUokEjWvWwpq1vPbMYl4DSseMYejUKQydalRMnEj5ITU6x/ohMysF/kDIsX4GnAv83swOc/fdaeWOIHRg/jPwEnAr8Avgo/uoY4K7NwJ3Ag2E5HoW8KiZrXD3xWZ2MTAHaO80fRj4GnDjgT3yICeSZMLBb+5GggwwCYgDhUCM0JucvatBRPq9WGEhB3/oVEZ+4ETefORRtix6ksY31hPf0UDtgoXULlhIYUU5ldOnUz5+HBXjx1MxfhylB1erp3k/S6VSJHbuIr59G7s215H4+9/ZtGIVia31tNTV0Vy3hdb6+r1urEtXUFrK4MMmUDFhAhUTJ3Q8wENt1TtiBQXRI7AnUnPmGbQ1NbFjxUq2Ln2BLcuWk6qtg2SS5k2baN60ibrHnwifKyykrGYsFRPGUz5uHBXjx1E2ZjQlI0ZoBo38dhLQ5u63R8u/MLNLCYnrA2nlzgYecvclAGb2dWCLmY0EjumsDjP7I/AJYJK7twJLzOxeQiK9GDgHuNnda6N65xGS7f6VJJtZIZDt1tkkcBQQN7OngcOBZcAl7v6PLOVvAf6P8KujAHgsWiciA1jhoEHUnHE6NWecTuOGjdQ/u5itzy5m16uradvd2HHDUruCkhLKDz2EQdWjKBk2LHqkcFXH+8LycgrLyigsKx0wPWSpVIpUIkGypZW25mbampo6/kw2N5NobCSxcxeJ3btJ7NxJYtcuErt2E9+xg9Zt24lv304qkdijzs4e6tz+SOfymhrKasZSVlPD4MMmUDr64H4780Q+Kiwr46Bj3kP5jOk0HHM0UyZOJP7GehpWrup4fHdbY2MYLhM9BXAPBQUMGjmC0upqSqurGTRqJMVVVRRXVlJSVUlxVSXFVVWa9zx3TQFWZqzzaH06A57uKOBeb2b1UbnO6pgKvAbE3X1d2rZXgE+m1bsyY5v1+Cjeod78eXcSsCDL+nXAdcBzhGETdcCVwHwzm+buzRnlSwhd89cAQ4HfRO+vODBhi0i+Ka8ZS/mZZ1Bz5hm0bNlC/XNL2LX6NXave53GN9aHRLC1teNRv12JFReHhLm0lILiImLFxRREr1hRUXgVFhArKCBWUAgFBcQKC4kVxCAWPTa3IAbEonXtswbE0t6mzSSQSmW8TYU3qZDIhjdAKkkqmSKVTHa8J5kklUySSraF923RciJBMpEg1dZGKpHoWE62xknF4yRbW0nG43vs+12rKKd89GjKqqsprR7FoFEjKR01irKxYxg0cqR6h/NQYWkpFdH80gCpZJKWujp2r3s9vNauo3HdOpo314YPJJO01NbRUlvHDl7qtN72c6yovCz6cRr9QC0pCedbUXH0ZxGx4qLoXCtIO9cK3v5xFXv7HIu1v99joo63FwbqDB7xeBzGH9qdohXsfbW+kTDctbvlyrvY1pRlW1kn9TYCBWZWEvU8H1C9liS7+0JCz29n7kh7/00zu4gwNqVjcLiZFQP3AUe5ewPQYGbfBO6nB0lyS4vu8esP2ttR7dk/HLD2HDKEYaeczLBTTgYglUjQvHkzTa+vp2n9euL19cSjXtD4tu0kdu7cq4pUPE4iHifR0LB/Y8sjscJCCsrLKBo8mMKKCooGV0R/DqZoyJDQOxj1ChYPq6KttJQ1r7/OYYcfnvUxwi3xOMTjfXAk8k7s8/ysqqLiyCoqjpzVsSrZ0kLLli201NbRWreFlro6WurqaH1rK4kdDcQbGiBt6j6dY72v9FvdSpt283bC2q4cyPyizJY4t5dLT3qzbSvNsm1XWr1lGdsSvZEgQ46MSTazC4DX3P3xaLkIKAYye5GHAJXs+RfaBiTogdWrV7/zYCXnqD37l15rz6qhUDV9j1VF5MiXYo5LAp3+D9XaArW1HYs6P/uXHrdn6SA4tCa8IoXRS/LCKuDijHUG/DpLuY5hEGY2AjgoWl+ZpY4pUR2rgRIzO8Td2+d3TB9isSoquyTLtgMultqfl9beITO7Cvg08BFgK3A9cIK7H5Ol7NPAW8BZhF8UDwDL3P3S3otYREREpH8zsxJgDWFY7O2EG+muBSa4e1NauVnAn4GPAksJs1sc7O6nmdkgwtjjrHWY2YOETtHzgRnAo8Bsd18SzW5xATCb0CH6CHCfu990wA+efQ9/6E3fA/5EGJdcS5gv+fT2jWa208zeFy1+GmghjGVeTrjJ7/LeDFZERESkv4uGNcwmdExuBS4CPh4lt7eZ2W1RuRcJSe5dhDzuYODz0baWzuqIdnM+YfTABuBB4LL2WTKAnxCeh/EcsAJ4CvjBgTzmdDnRkywiIiIikktypSdZRERERCRnKEkWEREREcmgJFlEREREJIOSZBERERGRDEqSRUREREQyDJh5883sKML8fNOAV4EL3X3xvj8lucLM/gm4iTCR+FvADe5+h5kNI0w5cxKwA7ja3e/qu0ilJ8ysGngJ+Ly7P6L2zE9mVgP8FDgRaCCcn7eqPfOTmZ0A/AiYBLxJaLf71J75xcyOBX7r7mOj5X22n5nNA84j5Ib3AF9192SvB55DBkRPspmVAn8Afk548suPgN+bWUWfBibdEp3YvwdudvcqwlzZ88zsFOBOwn/Ko4AzgRvM7Lg+C1Z66ueEpzK1z0Wp9swzZhYDHiLMYXoQ8GHg22Z2PGrPvGNmhYT2vNbdK4EvAHeb2TjUnnnBzGJm9h/AAsL8w+06bb/ooR1zgJnAVOB9wNd6M+5cNCCSZMKvpjZ3v93d29z9F4TJruf0cVzSPYcCf3D3+wHcfRmwCDgB+ARwlbu3RpOP3wuc22eRSreZ2YXALmB9tDwYtWc+Og4YDVwefb+uBN4LbELtmY+qgBFAcfQDKEV4gFcbas98cQXwFeC7QAy69f16DqEjqtbda4F5wL/3duC5ZqAkyVPY+1nfHq2XHOfuL7r759qXo57lEwknf9zd16UVfwW1a84zs8nAV4Evpq2ehNozHx1N6EW+0czeNDMHjif0Kqs984y7byU85ew+oBX4C3AxMBK1Z774ubsfCTyftq6r71djzzzplWjdgDZQkuQKoDFjXSNQ3gexyLtgZpWEoTPPE3qTmzKKqF1znJm1j3e72N23pW2qQO2Zjw4iXK3bAhxC6H26FbVnXjKzAkI7nQmUAacBPwSGoPbMC+6+Ocvqzs7HsrTtjRnbCsysZP9HmD8Gyo17u3n7H0K7cmBnH8Qi75CZTQAeJtx4+RlgOlCaUayccAlfcteVwHJ3XxBdzoVwVaARtWc+agHq3f36aPkZM/sN8B3UnvnoDOA4d58bLc83s4eBq1F75rOuvl/TE+b2bQl3b+2F2HLWQOlJXsXelw0yLy1IDjOzo4FngUfd/XR3byEkyyVmdkh6UcKlX8ld/wL8q5ltA+oJY87vJ9wjoPbMP/8AiqIeyHZFwAuoPfPRocCgjHVtwFLUnvmss/8v2/OgVew5dEY5EhBLpVJdl8pz0eWCNcB1hGngzgGuBSa4e+blB8kxadOE3ejuN2ZsexBoBs4HZgCPArOjmxIkD5jZWuAid5+v9sw/0exBrxKmlvoO4Ua+PwKnAnNRe+YVM5tBGM52IXA38H7C7EInEW4IU3vmCTP7IPCAu4+Mljv9fo1mt7gAmA0kgEeA+9z9pr6IPVcMiJ7k6HLBbOAsYCtwEfBxJch54zzC3dbfMrOdaa9rCCd7MbABeBC4TF/YeU3tmWfcvRn4IHAsUAf8Cviyuz+H2jPvuPvLhPHIlwDbCePLz3X3F1B75qP0ntB9td9PgN8BzxGuDjwF/KAX48xJA6InWURERESkJwZET7KIiIiISE8oSRYRERERyaAkWUREREQkg5JkEREREZEMSpJFRERERDIoSRYRERERyaAkWUREREQkg5JkEelXzCxpZh/q6zjeLTNbZ2b/eQDqfdLM5u2nukab2WIzazaz7+6POkVEckVRXwcgIrKfHQxs6+sg9oMUez4tKxfr/RwwFpgJvLWf6hQRyQlKkkWkX3H3ur6OYQCpBFa7+6t9HYiIyP6mJFlEcpqZJYHPAFcChwNPAV8ArgU+CWwCLnD3J9PKf8TdF5jZk8ATwDHAqYTezm+5+y872df7gZuBqVHZO939mmjbEOAm4DRgOLAR+L67/0+0/UngUeBE4GRgLfBZYDZwKZAErnX3H6aV/wtwQvRaBVzi7n/tJLavA18ChgEvAJe6+7Ku4u6KmX0euAIYA6wAvuHuj3d1zGb2S+DcqFwSGO/ub3RnnyIi+UBjkkUkH8wjJIgfAN4DvEhIFI8mJHY/2cdnvwE8DEwDfgv81MyGZxYys8Jo+yPAFOBC4HIzOy0qcjNwJPBRwIC7gVvMbGxaNVcC9wNHEIZ8PE5IXN8H/Bj4vpmNTis/F1gY1fs3YL6ZVWeJ7UvABcB50TH/GXjSzEZ1I+5Omdkc4IYojpnAPcDDZjajG8f8leiYniYMcdnQ1f5ERPKJkmQRyQe3uvtf3X0JIfFc7e43u/srwB3AZDOLdfLZx9z9DndfB/w3UEJICDNVEnppa939DXefD5wCLIm2PwV8wd1fcPe1wPeAQkJimr6vX7n7auDeqM4vRnF+Pyo/Oa38Ine/Ltr+X4Re4LOzxHY5MNfdF7r7ane/CngZOB8Y2kncz3fy95FZ7/Xu/lt3X+PuPyYk3Jd0dczu3gA0AnF3r3P3ZDf2JyKSN5Qki0g+WJ32vglYk7FcABRn+VwKeKV9wd13Rm/3Kuvu9YSe0VvNbJOZ3QkMcvfN0fa7gfFmdouZzQfahxYUpu0rPc5G4C133xV9vilaPyit/FNp+08SesenpsdlZoOBGuAeM9vZ/iIMIZns7ts6ifvNLH8fmaYB12TU+ymiRL4bxywi0m8pSRaRfBDPWO7J7AytWdZl7XV2968QhhXcDEwCnmifhs3M7gZuBRqAu4BjuxFnV72rbRnLRZ2sg9DDPCvtNY0wTGKfcXehELgsS71nQ7ePWUSkX9KNeyKSbw7EtGhEY4GvAi5z9xuBG83sNuAzZvYAcA5worv/LSo/LfpoZ8M8uhIDjkrbf1G0fF16IXffbmabgbHu/lBa+Z8Bj0U3AGaNG7i9ixhWEW646+iZN7NrgTfN7F72/zGLiOQNJckikm96kqDFelC+HvgEUGJm1wNVwPsJN8Q1ADuBT5nZRmAccEv0ufbhEz3ZV7tPmdkFhBvxLgVKCWOZM90AXG1mtcAywljks6MY9hV3Nukx3gDca2YOLCLMYjEXmNPFMZf28DhFRPKOhluISL7J9jCMznqXu/3gDHePAx8jDFd4gTCd25+BK909AfwbIXlcSeih/TXwLGG2jWz76mrfKUJCfBYh8Z0KnOLuO7KU/SHwA8J0bC8Rbsw7zd1f3lfc+9hv+zE/RLhJby5hlpDzgc+6+4Ko3s6O+ehuHqOISN6KpVL6fhMR6W1mtgh4xt2v6OtYRERkb+pJFhHpG+9keIaIiPQSJckiIn1DQxVERHKYhluIiIiIiGRQT7KIiIiISAYlySIiIiIiGZQki4iIiIhkUJIsIiIiIpJBSbKIiIiISAYlySIiIiIiGf4fgezEh4HFME0AAAAASUVORK5CYII=" alt="" />
print "Best parameter:"
print params[np.argmax(scores)], 'scores', scores[np.argmax(scores)]
Best parameter:
17.721702255 scores -4.29572348033

You can see that the points are all sampled close to the maximum. Where as the random grid search samples points far away from the peak (above 40 and beyond), the bayesian optimisation concentrates on the region close to the maximum (around 20). This vastly improves the efficiency of finding the true maximum. We could have even stopped before evaluating all of the next five points. They are all pretty close to each other.

The real deal --- MOE

While it is quite straightforward to build yourself a small bayesian optimisation procedure, I would recommend you check out MOE. This is a production quality setup for doing global, black box optimisation. It is developed by the good guys at Yelp!. Therefore much more robust than our home made solution.

Conclusions

Bayesian optimisation is not scary. With the two examples here you should be convinced that using a smart approach like this is faster than a random grid search (especially in higher dimensions) and that there is nothing magic going on.


If you find a mistake or want to tell me something else get in touch on twitter @betatim

This post started life as a ipython notebook, download it or view it online.

Bayesian optimisation for smart hyperparameter search的更多相关文章

  1. State of Hyperparameter Selection

    State of Hyperparameter Selection DANIEL SALTIEL VIEW NOTEBOOK Historically hyperparameter determina ...

  2. How to Evaluate Machine Learning Models, Part 4: Hyperparameter Tuning

    How to Evaluate Machine Learning Models, Part 4: Hyperparameter Tuning In the realm of machine learn ...

  3. (转)Illustrated: Efficient Neural Architecture Search ---Guide on macro and micro search strategies in ENAS

    Illustrated: Efficient Neural Architecture Search --- Guide on macro and micro search strategies in  ...

  4. Research Guide for Neural Architecture Search

    Research Guide for Neural Architecture Search 2019-09-19 09:29:04 This blog is from: https://heartbe ...

  5. [C4] Andrew Ng - Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization

    About this Course This course will teach you the "magic" of getting deep learning to work ...

  6. (转) NAS(神经结构搜索)综述

    NAS(神经结构搜索)综述 文章转载自:http://www.tensorinfinity.com/paper_136.html 本文是对神经结构搜索(NAS)的简单综述,在写作的过程中参考了文献[1 ...

  7. ICML 2018 | 从强化学习到生成模型:40篇值得一读的论文

    https://blog.csdn.net/y80gDg1/article/details/81463731 感谢阅读腾讯AI Lab微信号第34篇文章.当地时间 7 月 10-15 日,第 35 届 ...

  8. 【转载】NeurIPS 2018 | 腾讯AI Lab详解3大热点:模型压缩、机器学习及最优化算法

    原文:NeurIPS 2018 | 腾讯AI Lab详解3大热点:模型压缩.机器学习及最优化算法 导读 AI领域顶会NeurIPS正在加拿大蒙特利尔举办.本文针对实验室关注的几个研究热点,模型压缩.自 ...

  9. AutoML相关论文

    本文为Awesome-AutoML-Papers的译文. 1.AutoML简介 Machine Learning几年来取得的不少可观的成绩,越来越多的学科都依赖于它.然而,这些成果都很大程度上取决于人 ...

随机推荐

  1. Ubuntu16.04安装json-c

    1. 安装依赖 sudo apt-get install git gcc clang libtool autoconf automake doxygen valgrind 一些版本要求,如果版本过低可 ...

  2. lintcode-445-余弦相似度

    445-余弦相似度 Cosine similarity is a measure of similarity between two vectors of an inner product space ...

  3. lintcode-433-岛屿的个数

    433-岛屿的个数 给一个01矩阵,求不同的岛屿的个数. 0代表海,1代表岛,如果两个1相邻,那么这两个1属于同一个岛.我们只考虑上下左右为相邻. 样例 在矩阵: [ [1, 1, 0, 0, 0], ...

  4. [并查集] More is Better

    题目描述 Mr Wang wants some boys to help him with a project. Because the project is rather complex, the ...

  5. 删除多余的自编译的内核、mysql连接不了的问题

    1.删除多余的自编译的内核 每次Debian发布内核更新,总是有某些内核选项跟自己的硬件不配套,要自己编译内核.编译多了,多余的内核就占用了多余的硬盘空间.我就试过因为/boot分区满了,而导致编译内 ...

  6. (十三)Jmeter之Bean Shell 的使用(二)

    该文章来自:http://www.cnblogs.com/puresoul/p/5092628.html 上一篇Jmeter之Bean shell使用(一)简单介绍了下Jmeter中的Bean she ...

  7. jquery mobiscroll 滑动、滚动

    mobiscroll : 滑动选择 2.13.2版本免费,官网(mobiscroll.com)收费 先从官方下载2.13.2体验版下来,查看例子结合官方API学习( http://docs.mobis ...

  8. Delphi定位TDataSet数据集最后一条记录

    dst_temp.last ;//最后一条dst_temp.first ;//第一条dst_temp.next ;//下一条dst_temp.prior;//上一条

  9. 洛谷P2740 [USACO4.2]草地排水Drainage Ditches

    题目背景 在农夫约翰的农场上,每逢下雨,贝茜最喜欢的三叶草地就积聚了一潭水.这意味着草地被水淹没了,并且小草要继续生长还要花相当长一段时间.因此,农夫约翰修建了一套排水系统来使贝茜的草地免除被大水淹没 ...

  10. 【MVVM 原生】原生MVVM的使用

    一.前言       前些天需要完成一个任务,该任务属于公司的一些核心代码,为了避免不必要的麻烦,任务要求不能使用第三方的MVVM框架,必须用原生的. 平时习惯了Dev与MVVMLight,遇上原生的 ...