[BZOJ5334][TJOI2018]数学计算(exgcd/线段树)
模意义下除法若结果仍为整数的话,可以记录模数的所有质因子,计算这些质因子的次幂数,剩余的exgcd解决。
$O(n\log n)$但有9的常数(1e9内的数最多有9个不同的质因子),T了。
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int N=;
int T,n,mod,op,w,tot,res,x,d[N][],p[],s[]; void frac(int n){
for (int i=; i*i<=n; i++) if (n%i==){
p[++tot]=i;
while (n%i==) n/=i;
}
if (n>) p[++tot]=n;
} void exgcd(int a,int b,int &x,int &y){
if (!b) x=,y=;
else exgcd(b,a%b,y,x),y-=a/b*x;
} int main(){
freopen("bzoj5334.in","r",stdin);
freopen("bzoj5334.out","w",stdout);
for (scanf("%d",&T); T--; ){
scanf("%d%d",&n,&mod); tot=; res=; frac(mod);
rep(i,,) s[i]=;
rep(i,,n){
scanf("%d",&op);
if (op==){
scanf("%d",&w);
rep(j,,tot) d[i][j]=;
rep(j,,tot)
while (w%p[j]==) w/=p[j],d[i][j]++,s[j]++;
int x,y; res=1ll*res*w%mod;
exgcd(w,mod,x,y); d[i][]=(x%mod+mod)%mod;
int ans=res;
rep(j,,tot) rep(k,,s[j]) ans=1ll*ans*p[j]%mod;
printf("%d\n",ans);
}else{
scanf("%d",&x); res=1ll*res*d[x][]%mod;
rep(j,,tot) s[j]-=d[x][j];
int ans=res;
rep(j,,tot) rep(k,,s[j]) ans=1ll*ans*p[j]%mod;
printf("%d\n",ans);
}
}
}
return ;
}
删除操作难以维护的话,考虑线段树分治即可。
#include<cstdio>
#include<algorithm>
#define ls (x<<1)
#define rs (ls|1)
#define lson ls,L,mid
#define rson rs,mid+1,R
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int N=;
int T,n,mod,x,op,tag[N<<];
struct P{ int l,r,v; }p[N]; void push(int x){
tag[ls]=1ll*tag[ls]*tag[x]%mod;
tag[rs]=1ll*tag[rs]*tag[x]%mod;
tag[x]=;
} void build(int x,int L,int R){
tag[x]=;
if (L==R) return;
int mid=(L+R)>>;
build(lson); build(rson);
} void ins(int x,int L,int R,int l,int r,int k){
if (L==l && r==R){ tag[x]=1ll*tag[x]*k%mod; return; }
int mid=(L+R)>>;
if (r<=mid) ins(lson,l,r,k);
else if (l>mid) ins(rson,l,r,k);
else ins(lson,l,mid,k),ins(rson,mid+,r,k);
} int que(int x,int L,int R,int pos){
if (L==R) return tag[x];
int mid=(L+R)>>; push(x);
if (pos<=mid) return que(lson,pos); else return que(rson,pos);
} int main(){
for (scanf("%d",&T); T--; ){
scanf("%d%d",&n,&mod);
rep(i,,n){
scanf("%d",&op);
if (op==) scanf("%d",&x),p[i]=(P){i,n,x};
else scanf("%d",&x),p[x].r=i-,p[i].l=;
}
build(,,n);
rep(i,,n) if (p[i].l) ins(,,n,p[i].l,p[i].r,p[i].v);
rep(i,,n) printf("%d\n",que(,,n,i));
}
return ;
}
[BZOJ5334][TJOI2018]数学计算(exgcd/线段树)的更多相关文章
- BZOJ5334 [TJOI2018] 数学计算 【线段树分治】
题目分析: 大概是考场上的签到题.首先mod不是质数,所以不能求逆元.注意到有加入操作和删除操作.一个很典型的想法就是线段树分治.建立时间线段树然后只更改有影响的节点,最后把所有标记下传.时间复杂度是 ...
- 【BZOJ5334】数学计算(线段树)
[BZOJ5334]数学计算(线段树) 题面 BZOJ 洛谷 题解 简单的线段树模板题??? 咕咕咕. #include<iostream> #include<cstdio> ...
- 洛谷P4588 [TJOI2018]数学计算 【线段树】
题目链接 洛谷P4588 题解 用线段树维护即可 #include<algorithm> #include<iostream> #include<cstring> ...
- P4588 [TJOI2018]数学计算 (线段树)
用线段树维护操作序列,叶子结点存要乘的数,非叶子结点存区间乘积,每次输出tr[1] 就是答案. 1 #include<bits/stdc++.h> 2 #define ll long lo ...
- BZOJ5334: [Tjoi2018]数学计算
BZOJ5334: [Tjoi2018]数学计算 https://lydsy.com/JudgeOnline/problem.php?id=5334 分析: 线段树按时间分治即可. 代码: #incl ...
- BZOJ 5334--[Tjoi2018]数学计算(线段树)
5334: [Tjoi2018]数学计算 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 220 Solved: 147[Submit][Status ...
- BZOJ5334:[TJOI2018]数学计算(线段树)
Description 小豆现在有一个数x,初始值为1. 小豆有Q次操作,操作有两种类型: 1 m: x = x * m ,输出 x%mod; 2 pos: x = x / 第pos次操作所乘 ...
- 2018.06.26「TJOI2018」数学计算(线段树)
描述 小豆现在有一个数 xxx ,初始值为 111 . 小豆有 QQQ 次操作,操作有两种类型: 111 $ m$ : x=x×mx=x×mx=x×m ,输出 xxx modmodmod MMM : ...
- [Tjoi2018]数学计算
[Tjoi2018]数学计算 BZOJ luogu 线段树分治 是不是想问为什么不暴力做? 模数没说是质数,所以不一定有逆元. 然后就是要每次build一下把线段树权值init成1, 博猪不知道为什么 ...
随机推荐
- 【BZOJ】1497: [NOI2006]最大获利 最大权闭合子图或最小割
[题意]给定n个点,点权为pi.m条边,边权为ci.选择一个点集的收益是在[点集中的边权和]-[点集点权和],求最大获利.n<=5000,m<=50000,0<=ci,pi<= ...
- 【NOI2017】游戏 2-sat算法
[题目]LibreOJ [题意]n场游戏,有三种车ABC,给定长度为n的字符串,'a'表示不能选A,'b''c'同理,'x'表示不限,至多d个'x'.有m个限制(i,hi,j,hj)表示如果第i场选择 ...
- E.Text Editor (Gym 101466E + 二分 + kmp)
题目链接:http://codeforces.com/gym/101466/problem/E 题目: 题意: 给你s串和t串,一个数k,求t的最长前缀串在s串中出现次数不少于k. 思路: 一眼二分+ ...
- 2017ACM暑期多校联合训练 - Team 6 1008 HDU 6103 Kirinriki (模拟 尺取法)
题目链接 Problem Description We define the distance of two strings A and B with same length n is disA,B= ...
- 2017ACM暑期多校联合训练 - Team 1 1003 HDU 6035 Colorful Tree (dfs)
题目链接 Problem Description There is a tree with n nodes, each of which has a type of color represented ...
- phpmywind调用方法大全
头部文件调用 <?php require_once('header.php'); ?> 底部文件调用 <?php require_once('footer.php'); ?> ...
- VMvare 复制的数据库,需要改变的配置
当我在VMware 上安装了一个linux虚拟机,同时在虚拟机上安装了一系列软件(包括数据库) 我们会修改hostname ,修改后 对于数据库:我们要把/u01/app/oracle/produc ...
- 002_让你的linux虚拟终端五彩缤纷(1)——LS颜色设置
- centos6.5 使用 rpm 安装 mysql
从mysql网站下载mysql rpm安装包(包括server.client) 1.安装server rpm -ivh MySQL-server-5.6.19-1.el6.x86_64.rpm 强制安 ...
- opencv3.10加入OPENCV_contrib模块
在VS2015+opencv3.1进行算法研究时,遇到了一些模块在官网下载的里面是没有的,需要自己进行编译,参考以下链接 http://blog.csdn.net/liu798675179/artic ...