「THUWC 2017」随机二分图

解题思路 :

首先有一个 \(40pts\) 的做法:

前 \(20pts\) 暴力枚举最终的匹配是怎样的,check一下计算方案数,后 \(20pts\) 令 \(f[s][i]\) 表示当前左边的点匹配到前 \(i\) 个,右边的点匹配状况是 \(s\) 时继续往下匹配方案数的期望,枚举与 \(i\) 相连的边转移即可。

对于剩下的 \(t=1,t=2\) 的情况,先和 \(t = 0\) 一样直接连 \((a1,b1), (a2,b2)\)。然后观察此时概率发生的偏差。

以 \(t=1\) 为例,只选 \((a1,b1)\) 或者只选 \((a2, b2)\) 时概率和正确情况一样都是 \(\frac{1}{2}\) 。但是如果两条边都选此时算的概率是 \(\frac{1}{4}\) ,而应该是 \(\frac{1}{2}\) ,所以还要补连一种转移同时选上四个点概率是 \(\frac{1}{4}\) ,根据期望的线性性,正确性显然。

对于 \(t=2\) 情况,和上面一样分析,发现对于同时选的情况多算了 \(\frac{1}{4}\) ,补连一条概率是 \(-\frac{1}{4}\) 的转移即可。

此时我们就不能按照 \(40pts\) 的方法DP了,需要设 \(f[s1][s2]\) 表示此时左边点匹配状况是 \(s1\),右边匹配状况是 \(s2\) ,继续向下匹配方案数的期望。但是为了不重,我们每次还是要为 \(s1\) 中编号最小为匹配的点安排匹配,那么这样状态数就是和 \(40pts\) 的转移同阶的,用一个map记忆化一下复杂度就是 \(O(n^22^n)\) 。

code

/*program by mangoyang*/
#pragma GCC optimize("Ofast", "inline")
#include<bits/stdc++.h>
#define inf ((int)(1e9))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
typedef long long ll;
using namespace std;
template <class T>
inline void read(T &x){
int f = 0, ch = 0; x = 0;
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
if(f) x = -x;
}
const int INV2 = 500000004, INV4 = 250000002, mod = 1e9 + 7;
map<int, int> f;
int a[300], b[300], n, m, cnt; inline int Pow(int a, int b){
int ans = 1;
for(; b; b >>= 1, a = 1ll * a * a % mod)
if(b & 1) ans = 1ll * ans * a % mod;
return ans;
} inline int dfs(int mask){
if(mask == (1 << (n << 1)) - 1) return 1;
if(f.count(mask)) return f[mask];
int now = 0, tmp = 0;
for(int i = n - 1; ~i; i--)
if(!((1 << i) & mask)) now = (1 << i);
for(int i = 1; i <= cnt; i++)
if((now & a[i]) && !(mask & a[i]))
(tmp += 1ll * dfs(mask | a[i]) * b[i] % mod) %= mod;
return f[mask] = tmp;
} int main(){
read(n), read(m);
for(int i = 1, op, x, y; i <= m; i++){
read(op), read(x), read(y), x--, y--;
int tmp = (1 << x) | (1 << y + n);
a[++cnt] = tmp, b[cnt] = INV2;
if(op){
read(x), read(y), x--, y--;
a[++cnt] = (1 << x) | (1 << y + n), b[cnt] = INV2;
if(tmp & ((1 << x) | (1 << y + n))) continue;
tmp |= (1 << x) | (1 << y + n);
a[++cnt] = tmp, b[cnt] = op == 1 ? INV4 : -INV4 + mod;
}
}
cout << 1ll * dfs(0) * Pow(2, n) % mod << endl;
return 0;
}

「THUWC 2017」随机二分图的更多相关文章

  1. @loj - 2290@ 「THUWC 2017」随机二分图

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 一个左右各 n 个点的二分图,图中的边会按照一定的规律随机出现. ...

  2. 【LOJ】#2290. 「THUWC 2017」随机二分图

    题解 看了一眼觉得是求出图对图统计完美匹配的个数(可能之前做过这样模拟题弃疗了,一直心怀恐惧... 然后说是统计一下每种匹配出现的概率,也就是,当前左边点匹配状态为S,右边点匹配状态为T,每种匹配出现 ...

  3. LOJ 2288「THUWC 2017」大葱的神力

    LOJ 2288「THUWC 2017」大葱的神力 Link Solution 比较水的提交答案题了吧 第一个点爆搜 第二个点爆搜+剪枝,我的剪枝就是先算出 \(mx[i]\) 表示选取第 \(i \ ...

  4. 「LOJ 2289」「THUWC 2017」在美妙的数学王国中畅游——LCT&泰勒展开

    题目大意: 传送门 给一个动态树,每个节点上维护一个函数为$f(x)=sin(ax+b)$.$f(x)=e^{ax+b}$.$f(x)=ax+b$中的一个. 支持删边连边,修改节点上函数的操作. 每次 ...

  5. 「THUWC 2017」在美妙的数学王国中畅游

    这个题目很明显在暗示你要用泰勒展开. 直接套上去泰勒展开的式子,精度的话保留12项左右即可. 分别维护每一项的和,可能比较难写吧. 然后强行套一个LCT就没了.

  6. 【LOJ】#2289. 「THUWC 2017」在美妙的数学王国中畅游

    题解 我们发现,题目告诉我们这个东西就是一个lct 首先,如果只有3,问题就非常简单了,我们算出所有a的总和,所有b的总和就好了 要是1和2也是多项式就好了--其实可以!也就是下面泰勒展开的用处,我们 ...

  7. @loj - 2289@「THUWC 2017」在美妙的数学王国中畅游

    目录 @description@ @solution@ @accepted code@ @details@ @description@ n 个点编号 0 到 n-1,每个点有一个从 [0,1] 映射到 ...

  8. @loj - 2288@「THUWC 2017」大葱的神力

    目录 @description@ @solution@ @data - 1@ @data - 2@ @data - 3@ @data - 4@ @data - 5@ @data - 6@ @data ...

  9. LOJ #2542. 「PKUWC 2018」随机游走(最值反演 + 树上期望dp + FMT)

    写在这道题前面 : 网上的一些题解都不讲那个系数是怎么推得真的不良心 TAT (不是每个人都有那么厉害啊 , 我好菜啊) 而且 LOJ 过的代码千篇一律 ... 那个系数根本看不出来是什么啊 TAT ...

随机推荐

  1. Flex用HTTPService调用servlet返回中文乱码解决

    servlet中使用URLEncoder.encode对输出内容进行编码 Flex中使用decodeURIComponent进行解码

  2. [php]http的状态码

    1.分类 100~199 表示成功接受请求,要求客户端继续提交下一次请求才能完成整个过程处理. 200~299 表示成功接收请求并已完成整个处理过程,常用200 300~399 为完成请求,客户需进一 ...

  3. 接口自动化测试框架HttpRunner

    接口自动化测试框架 https://github.com/HttpRunner/HttpRunner http://debugtalk.com/post/ApiTestEngine-api-test- ...

  4. python作业Select版本FTP(第十周)

    SELECT版FTP: 使用SELECT或SELECTORS模块实现并发简单版FTP 允许多用户并发上传下载文件 思路解析: 1. 使用IO多路复用的知识使用SELECTORS封装好的SELECTOR ...

  5. 使用Bash时的几点总结

    作为一个天天与Linux打交道,并以此为生的Linux运维工程师,最常用的工具性语言恐怕就是shell了, 而对于大多数的Linux和一些类Unix而言,其默认的shell就是Bash.使用Bash一 ...

  6. angular 最大字数限制

    js可以通过onkeyup onkeydown判断当前节点字数. angular可以通过监听的方式: $scope.input = {//初始化,避免ng-model绑定取不到值 MaxBT:'', ...

  7. flask插件系列之SQLAlchemy实用技巧

    下面记录一下SQLAlchemy使用的技巧. 在多模块下定义models 如果由多个蓝图下读定义了model模块,在初始化的时候需要加载到上下文中. 当使用flask_Migrate迁移数据库的时候, ...

  8. 混合式App开发 Apicloud 官方iPhone X 适配

    iPhone X 适配 由于iPhone X的特殊造型,为了方便开发者对iPhone X进行适配,苹果在iOS 11中引入了Safe Area的概念,引擎也在api对象下添加了safeArea属性和s ...

  9. 21.Merge Two Sorted Lists---《剑指offer》面试17

    题目链接:https://leetcode.com/problems/merge-two-sorted-lists/description/ 题目大意: 给出两个升序链表,将它们归并成一个链表,若有重 ...

  10. OAuth认证与授权

    什么是OAuth授权?   一.什么是OAuth协议 OAuth(开放授权)是一个开放标准. 允许第三方网站在用户授权的前提下访问在用户在服务商那里存储的各种信息. 而这种授权无需将用户提供用户名和密 ...