每个栅栏其实就是一条边,修一些栅栏,使得狼不能抓到羊,其实就是求一个割,使得羊全在S中,狼全在T中。

 #include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#define maxn 40010
#define oo 0x3f3f3f3f
#define clr(arr,n) memset(&arr,0,sizeof(arr[0])*(n+1))
using namespace std; struct Edge {
int u, v, f;
Edge( int u, int v, int f ):u(u),v(v),f(f){}
};
struct Dinic {
int n, src, dst;
vector<Edge> edge;
vector<int> g[maxn];
int dep[maxn], cur[maxn]; void init( int n, int src, int dst ) {
this->n = n;
this->src = src;
this->dst = dst;
for( int u=; u<=n; u++ )
g[u].clear();
edge.clear();
}
void add_edge( int u, int v, int f ) {
g[u].push_back( edge.size() );
edge.push_back( Edge(u,v,f) );
g[v].push_back( edge.size() );
edge.push_back( Edge(v,u,) );
}
bool bfs() {
queue<int> qu;
clr( dep, n );
qu.push(src);
dep[src] = ;
while( !qu.empty() ) {
int u=qu.front();
qu.pop();
for( int t=; t<g[u].size(); t++ ) {
Edge &e=edge[g[u][t]];
if( e.f && !dep[e.v] ) {
dep[e.v] = dep[e.u]+;
qu.push( e.v );
}
}
}
return dep[dst];
}
int dfs( int u, int a ) {
if( u==dst || a== ) return a;
int remain=a, past=, na;
for( int &t=cur[u]; t<g[u].size(); t++ ) {
Edge &e = edge[g[u][t]];
Edge &ve = edge[g[u][t]^];
if( e.f && dep[e.v]==dep[e.u]+ && (na=dfs(e.v,min(e.f,remain))) ) {
remain -= na;
past += na;
e.f -= na;
ve.f += na;
if( remain== ) break;
}
}
return past;
}
int maxflow() {
int flow = ;
while(bfs()) {
clr( cur, n );
flow += dfs(src,oo);
}
return flow;
}
}; int n, m;
int idx[][], id_clock;
int map[][];
int dx[] = { +, };
int dy[] = { , + };
Dinic D; int main() {
for( int cas=; ; cas++ ) {
if( scanf( "%d%d", &n, &m )!= ) return ;
id_clock = ;
for( int i=; i<=n; i++ )
for( int j=; j<=m; j++ ) {
scanf( "%d", &map[i][j] );
idx[i][j] = ++id_clock;
}
D.init( id_clock+, id_clock+, id_clock+ );
for( int i=; i<=n; i++ )
for( int j=; j<=m; j++ )
for( int d=; d<; d++ ) {
int ni = i+dx[d];
int nj = j+dy[d];
if( <=ni&&ni<=n && <=nj&&nj<=m ) {
int u = idx[i][j];
int v = idx[ni][nj];
D.add_edge( u, v, );
D.add_edge( v, u, );
}
}
for( int i=; i<=n; i++ )
for( int j=; j<=m; j++ ) {
if( map[i][j]== )
D.add_edge( D.src, idx[i][j], oo );
if( map[i][j]== )
D.add_edge( idx[i][j], D.dst, oo );
}
printf( "Case %d:\n%d\n", cas, D.maxflow() );
}
}

hdu 3046 最小割的更多相关文章

  1. hdu 4289(最小割)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4289 思路:求最小花费,最小割应用,将点权转化为边权,拆点,(i,i+n)之间连边,容量为在城市i的花 ...

  2. hdu 5076 最小割灵活运用

    这意味着更复杂的问题,关键的事实被抽象出来:每个点,能够赋予既有的值(挑两个一.需要选择,设定ai,bi). 寻找所有和最大.有条件:如果两个点同时满足: 1,:二进制只是有一个不同之处.  2:中的 ...

  3. Game HDU - 3657(最小割)

    Game Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  4. hdu 1565 最小割

    黑白染色,源指向白,黑指向汇,容量都是方格中数的大小,相邻的格子白指向黑,容量为oo,然后求一次最小割. 这个割是一个简单割,如果只选择不在割中的点,那么一种割就和一个选数方案一一对应,割的大小就是不 ...

  5. hdu 3657 最小割的活用 / 奇偶方格取数类经典题 /最小割

    题意:方格取数,如果取了相邻的数,那么要付出一定代价.(代价为2*(X&Y))(开始用费用流,敲升级版3820,跪...) 建图:  对于相邻问题,经典方法:奇偶建立二分图.对于相邻两点连边2 ...

  6. Being a Hero (hdu 3251 最小割 好题)

    Being a Hero Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  7. hdu 3657 最小割(牛逼!!!!)总算理解了

    <strong></strong> 转载:http://blog.csdn.net/me4546/article/details/6662959 加颜色的太棒了!!! 在网上看 ...

  8. hdu 3691最小割将一个图分成两部分

    转载地址:http://blog.csdn.net/xdu_truth/article/details/8104721 题意:题给出一个无向图和一个源点,让你求从这个点出发到某个点最大流的最小值.由最 ...

  9. [HDU 3521] [最小割] Being a Hero

    题意: 在一个有向图中,有n个点,m条边$n \le 1000 \And \And  m \le 100000$ 每条边有一个破坏的花费,有些点可以被选择并获得对应的金币. 假设一个可以选的点是$x$ ...

随机推荐

  1. 莫比乌斯反演第二弹 入门 Coprime Integers Gym - 101982B

    题目链接:https://cn.vjudge.net/problem/Gym-101982B 题目大意: 给你(a,b)和(c,d)这两个区间,然后问你这两个区间中互素的对数是多少. 具体思路:和我上 ...

  2. 面向过程编程(OPP) 和面向对象编程(OOP)的关系

    面向过程编程(OPP) 和面向对象编程(OOP)的关系 原文链接:http://blog.csdn.net/phphot/article/details/3985480 关于面向过程的编程(OPP)和 ...

  3. P-R曲线及与ROC曲线区别

    一.P-R曲线 P-R曲线刻画查准率和查全率之间的关系,查准率指的是在所有预测为正例的数据中,真正例所占的比例,查全率是指预测为真正例的数据占所有正例数据的比例. 即:查准率P=TP/(TP + FP ...

  4. oracle数据库只查询前n条

    select * from  (select * from   tablename order by createdate desc)  aaa -- 按创建时间倒排序 where rownum &l ...

  5. Django 自定义分页类

    分页类代码: class Page(object): ''' 自定义分页类 可以实现Django ORM数据的的分页展示 输出HTML代码: 使用说明: from utils import mypag ...

  6. udhcpc命令

    要使用网络通讯,所以不可避免的要用到dhcp.理想的网络通讯方式是下面3种都要支持: 1,接入已有网络.这便要求可以作为dhcp客户端. 2,作为DHCP服务器,动态分配IP. 简单说下前2种情况. ...

  7. 343.Integer Break---dp

    题目链接:https://leetcode.com/problems/integer-break/description/ 题目大意:给定一个自然数,将其分解,对其分解的数作乘积,找出最大的乘积结果. ...

  8. centos-testlink安装使用手册

    1.新建虚拟机设置 网卡必须选择ovirtmgmt模式 2.Centos6.3系统安装 说明: 1.CentOS 6.3系统镜像有两个,安装系统只用到第一个镜像即CentOS-6.3-i386-bin ...

  9. oracle只要第一条数据SQL

    select * from ( select * from COMMON_BIZREL_WF where sponsor is not null order by serialid ) where r ...

  10. javascript当中的this详解

    总结this的3个规则: this是调用上下文,上下文被创建或者初始化时才确定 非严格模式:this是全局对象:严格模式:this是undefined 函数调用 a. 以函数形式调用的函数通常不使用t ...