从硬件到语言,详解C++的内存对齐(memory alignment)
很多写C/C++的人都知道“内存对齐”的概念以及规则,但不一定对他有很深入的了解。这篇文章试着从硬件到C++语言、更彻底地讲一下C++的内存对齐。
什么是内存对齐(memory alignment)
首先,什么是内存对齐(memory alignment)?这个是从硬件层面出现的概念。大家都知道,可执行程序是由一系列CPU指令构成的。CPU指令中有一些指令是需要访问内存的。最常见的就是“从内存读到寄存器”,以及“从寄存器写到内存”。在老的架构中(包括x86),也有一些运算的指令是可以直接以内存为操作数,那么这些指令也隐含了内存的读取。在很多CPU架构下,这些指令都要求操作的内存地址(更准确的说,操作内存的起始地址)能够被操作的内存大小整除,满足这个要求的内存访问叫做访问对齐的内存(aligned memory access),否则就是访问未对齐的内存(unaligned memory access)。举例来说,ARM的LDRH指令从内存中读取2个byte到寄存器中。如果指定的内存的地址是0x2587c20,因为0x2587c20这个数能够被2整除,所以这2个byte是对齐的。而如果指定的内存的地址是0x2587c33,因为不能被2整除,所以是未对齐的。
那如果访问未对齐的内存会出现什么结果呢?这个要看CPU。
- 有些CPU架构可以访问未对齐的内存,但是会有性能上的影响。典型的就是x86架构CPU
- 有些CPU会抛出异常
- 还有些CPU不会抛出任何异常,会静默地访问错误的地址
- 近几年也有些CPU的一部分指令可以正常访问未对齐的内存,同时不会有性能影响
因为每个CPU对未对齐内存的访问的处理方式都不一样,所以访问未对齐的内存是要尽量避免的。所以就出现了C/C++的内存对齐机制。
C++的内存对齐机制
在C++中每个类型都有两个属性,一个是大小(size),还有一个就是对齐要求(alignment requirement),或称之为对齐量(alignment)。C++标准并没有规定每个类型的对齐量,但是一般都会有这样的规律。
- 所有基础类型的对齐量等于这个类型的大小。
- struct, class, union类型的对齐量等于他的非静态成员变量中最大的对齐量。
另外,标准规定所有的对齐量必须是2的幂。
编译器在给一个变量分配内存时,都要算出并满足这个类型的对齐要求。struct和class类型的非静态成员变量的字节数偏移(offset)也要满足各自类型的对齐要求。
举例来说,
class MyObject
{
char c;
int i;
short s;
};
c是char类型,对齐要求是1,i是int类型,对齐要求是4,s是short类型,对齐要求是2。那么MyObject取最大的,也就是4作为他的对齐要求。如果在某个函数中声明了MyObject类型的变量,那么分配给这个变量的内存的起始地址是能够被4整除的。
我们再看MyObject的成员变量。c是MyObject的第一个成员变量,所以他的字节数偏移是0,也就是说变量c占据MyObject的第一个byte。i的对齐要求是4,所以字节数偏移必须是4的倍数,又因为变量i必须在变量c的后面,于是i的字节数偏移就是4,也就是说变量i占据MyObject的第5到第8个byte,而第2到第4个byte则是空白填充(padding)。s的对齐要求是2,又因为s必须在i的后面,所以s的字节数偏移是8,也就是说,变量s占据MyObject的第9个和第10个byte。另外,因为struct、class、union类型的数组的每个元素都要内存对齐,所以一般来说struct、class、union的大小都是这个类型的对齐量的整数倍,所以MyObject的大小是12,也就是说,变量s后面会有2个byte的空白填充。
因为C++中所有内存访问都是通过变量的读写来访问的,这个机制确保了所有变量都满足了内存对齐,也就确保了程序中所有内存访问都是对齐的。
当然,C++不会阻止我们去访问未对齐的内存。例如,以下的代码就很可能会访问未对齐的内存:
char buf[];
int* ptr = (int*)(buf + );
++*ptr;
这类代码是我们在实际工作中也是能遇到的。事实上这种写法是比较危险的,因为他很可能会去访问未对齐的内存。这也是为什么写c++大家都不推荐用c风格的类型转换写法,而是要用static_cast, dynamic_cast, const_cast与reinterpret_cast。这样的话,上面的代码就必须要使用reinterpret_cast,大家都知道reinterpret_cast是很危险的,也许就会想办法避免这样的逻辑。
常见CPU的未对齐内存访问
根据Intel最新的Intel 64及IA-32架构说明书,Intel 64及IA-32架构都支持未对齐内存的访问,但是会有性能上的额外开销(详见http://www.intel.com/products/processor/manuals)。但是实际上最近的Core系列CPU已经可以无额外开销访问未对齐的内存。
而手机上最常见的ARMv8架构,如果是普通的、不做多核同步的未对齐的内存访问,那么CPU可能会产生对齐错误(alignment fault)或者执行未对齐内存操作。换句话说,到底会报错还是正常执行,是要看具体CPU的实现的。即使是执行正常操作,也会有一些限制。例如,不能保证读写的原子性(操作一个byte的除外),很可能产生额外的开销等(详见https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile)。ARMv8中的Cortex-A系列是手机上常见的CPU家族,他们就可以正常处理未对齐内存访问,但是一般会有额外的开销(详见http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15414.html)。
我们也可以写一个简单的程序测试一下自己的CPU对未对齐内存访问的支持,以下是代码:
#include <iostream>
#include <chrono> using namespace std;
using namespace std::chrono; milliseconds test_duration(volatile int * ptr) // 使用volatile指针防止编译器的优化
{
auto start = steady_clock::now();
for (unsigned i = ; i < ''; ++i)
{
++(*ptr);
}
auto end = steady_clock::now();
return duration_cast<milliseconds>(end - start);
} int main()
{
int raw[] = {, };
{
int* ptr = raw;
cout << "address of aligned pointer: " << (void*)ptr << endl;
cout << "aligned access: " << test_duration(ptr).count() << "ms" << endl;
*ptr = ;
}
{
int* ptr = (int*)(((char*)raw) + );
cout << "address of unaligned pointer: " << (void*)ptr << endl;
cout << "unaligned access: " << test_duration(ptr).count() << "ms" << endl;
*ptr = ;
}
cin.get();
return ;
}
我测试使用的电脑的CPU是Intel Core i7 2630QM,是intel 2代酷睿CPU,测试结果为:
address of aligned pointer: 000000668DEFFA78
aligned access: 282ms
address of unaligned pointer: 000000668DEFFA79
unaligned access: 285ms
可以看出对齐与未对齐的内存访问没有性能上的差别。
在C++中修改对齐要求
一般情况下,我们不需要自定义对齐要求,但也会有很特殊的情况下需要做调整。C++中,我们可以使用alignas关键字修改一个类型、或者一个变量的对齐要求。例如:
class MyObject
{
char c;
alignas() int i;
short s;
};
这样的话,变量i的对齐要求由原本的4变成了8,结果就是,i的字节数偏移由4变成了8,s的字节数偏移由8变成了12,MyObject的对齐要求也变成了8,大小变成了16。
我们也可以对MyObject的定义使用alignas:
class alignas() MyObject
{
char c;
int i;
short s;
};
还可以在alignas里面写某个类型。也可以使用多个alignas,结果就是使用最大的对齐要求。例如以下MyObject的对齐要求就是16:
class alignas(int) alignas() MyObject
{
char c;
int i;
short s;
};
alignas有一个限制,那就是不能用alignas改小对齐要求。例如以下的代码会报错:
alignas() int i;
另外,C++中,有一个特殊的类型:max_align_t,所有不大于他的对齐量叫做基础对齐量(fundamental alignment),比这个对齐量大的叫做扩展对齐量(extended alignment )。C++标准规定,所有平台必须要支持基础对齐量,而对于扩展对齐量的支持要看各个平台。一般来说max_align_t的对齐量等于long double的对齐量。
C++关于内存对齐的支持还有很多功能,例如查询对齐量的alignof关键字,可以创建任意大小任意对齐要求的类型的aligned_storage模板,还有方便模板编程的alignment_of等等,在此就不细述了。
从硬件到语言,详解C++的内存对齐(memory alignment)的更多相关文章
- 从硬件到语言,详解C++的内存对齐(memory alignment)(一)
作者:赵宗晟 出处:https://www.cnblogs.com/zhao-zongsheng/p/9099603.html 很多写C/C++的人都知道“内存对齐”的概念以及规则,但不一定对他有很深 ...
- 原来Github上的README.md文件这么有意思——Markdown语言详解(sublime text2 版本)
一直想学习 Markdown 语言,想起以前读的一篇 赵凯强 的 博客 <原来Github上的README.md文件这么有意思——Markdown语言详解>,该篇博主 使用的是Mac系统, ...
- Java Web----EL(表达式语言)详解
Java Web中的EL(表达式语言)详解 表达式语言(Expression Language)简称EL,它是JSP2.0中引入的一个新内容.通过EL可以简化在JSP开发中对对象的引用,从而规范页面 ...
- 详解Go中内存分配
转载请声明出处哦~,本篇文章发布于luozhiyun的博客:https://www.luozhiyun.com 本文使用的go的源码15.7 介绍 Go 语言的内存分配器就借鉴了 TCMalloc 的 ...
- C 语言结构体 struct 及内存对齐
struct 结构体 对于复杂的数据类型(例如学生.汽车等),C 语言允许我们将多种数据封装到一起,构成新类型. 跟面向对象语言中的对象相比,结构体只能包含成员变量,不支持操作. #include & ...
- 大牛针对零基础入门c语言详解指针(超详细)
C语言指针说难不难但是说容易又是最容易出错的地方,因此不管是你要做什么只要用到C指针你就跳不过,今天咱们就以 十九个例子来给大家简单的分析一下指针的应用,最后会有C语言视频资料提供给大家更加深入的参考 ...
- Floyd算法(一)之 C语言详解
本章介绍弗洛伊德算法.和以往一样,本文会先对弗洛伊德算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 弗洛伊德算法介绍 2. 弗洛伊德算法图解 3 ...
- Dijkstra算法(一)之 C语言详解
本章介绍迪杰斯特拉算法.和以往一样,本文会先对迪杰斯特拉算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 迪杰斯特拉算法介绍 2. 迪杰斯特拉算法 ...
- Prim算法(一)之 C语言详解
本章介绍普里姆算法.和以往一样,本文会先对普里姆算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 普里姆算法介绍 2. 普里姆算法图解 3. 普里 ...
随机推荐
- c#用run32dll打开系统dll(如系统图片查看器,并置最顶层)
[DllImport("user32.dll", EntryPoint = "SetWindowPos",CharSet = CharSet.Auto)] st ...
- Mac终端运行java程序
1.编辑源文件HelloWorld.java 2.编译源文件 javac HelloWorld.java 生成HelloWorld.class文件 3.执行java字节码 注意,一定要到源目录下,并且 ...
- 让所有IE支持HTML5的解决方案
自从HTML5能为我们的新网页带来更高效洁净的代码而得到更多的关注,然而唯一能让IE识别那些新元素(如<article>)的途径是使用HTML5 shiv,感谢remy sharp为我们提 ...
- (转)有关thread线程
Python 标准库提供了 thread 和 threading 两个模块来对多线程进行支持.其中, thread 模块以低级.原始的方式来处理和控制线程,而 threading 模块通过对 thre ...
- poj_3259 负权和环
题目大意 N个点,M条双向路径,W条单向路径.从双向路径的一端到另一端所花费时间为正值,从单向路径的源点到终点所花时间为负值.问是否存在一条从A出发,再回到A的回路,满足回到A的时间小于出发时间. 题 ...
- [黑金原创教程] FPGA那些事儿《设计篇 I》- 图像处理前夕
简介 一本为入门图像处理的入门书,另外还教你徒手搭建平台(片上系统),内容请看目录. 注意 为了达到最好的实验的结果,请准备以下硬件. AX301开发板, OV7670摄像模块, VGA接口显示器, ...
- ios 将p12文件转换为pem
cd 到 文件所在目录 执行以下命令,生成ck.pem文件. openssl pkcs12 -in ck.p12 -out ck.pem -nodes
- 较快的maven的settings.xml文件
<?xml version="1.0" encoding="UTF-8"?> <settings> <!-- <localR ...
- Spring的AOP细节理解
什么是AOP?AOP:是面向切面编程,是对面向对象编程(oop)的一种补充,为什么需要AOP?例如在我们做一个计算器,要求我们每次运行对应的功能(也就是进行运算时)都要输出日志,以便于知道程序是怎么运 ...
- CEF3 HTML5 audio标签为什么不能播放mp3格式的音频文件
CEF3 HTML5 audio标签 为什么不能播放mp3格式的音频文件 原因略. 解决方法: 找一个最新版的chrome ,我用的是24版本.路径 C:\Documents and Sett ...