【模板】FFT
FFT模板
安利一下前辈的博客,写的真的好点击这里:从多项式乘法到快速傅里叶变换
#include<bits/stdc++.h>
using namespace std;
const int MAXL=22;
const int MAXN=1<<MAXL;
const double PI=acos(-1.0);
typedef complex<double> c_d;
c_d A[MAXN],B[MAXN],C[MAXN];
int rev[MAXN];//预处理翻转
void transform(int n,c_d *t,int typ){
//二进制翻转
for(int i=0;i<n;i++)
if(i<rev[i])swap(t[i],t[rev[i]]);
for(int step=1;step<n;step<<=1){
c_d wn=c_d(cos(PI/step),typ*sin(PI/step));//主单位根
for(int i=step<<1,j=0;j<n;j+=i){
c_d w=c_d(1.0,0);
for(int k=0;k<step;k++,w*=wn){
c_d x=t[j+k],y=t[j+k+step]*w;
t[j+k]=x+y; //**
t[j+k+step]=x-y;//**
}
}
}
}
void fft(int p,c_d *A,c_d *B,c_d *C){
//DFT
transform(p,A,1);
transform(p,B,1);
for(int i=0;i<=p;i++)C[i]=A[i]*B[i];
//IDFT
transform(p,C,-1);
}
int main(){
int n,m;
scanf("%d%d",&n,&m);
for(int i=0;i<=n;i++)scanf("%lf",&A[i].real());
for(int i=0;i<=m;i++)scanf("%lf",&B[i].real());
int p=1,l=0;
while(p<=n+m)p<<=1,l++;
for(int i=0;i<p;i++)
rev[i]=(rev[i>>1]>>1)|((i&1)<<(l-1));
fft(p,A,B,C);
for(int i=0;i<=m+n;i++)
printf("%d ",int(C[i].real()/p+0.5));
return 0;
}
【模板】FFT的更多相关文章
- 模板 FFT 快速傅里叶变换
FFT模板,原理不难,优质讲解很多,但证明很难看太不懂 这模板题在bzoj竟然是土豪题,服了 #include <cmath> #include <cstdio> #inclu ...
- 洛谷P1919 A*B problem 快速傅里叶变换模板 [FFT]
题目传送门 A*B problem 题目描述 给出两个n位10进制整数x和y,你需要计算x*y. 输入输出格式 输入格式: 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数 ...
- [模板]FFT
郝神并没有令我明白这个. 但是巨神的题解太强了. #include <iostream> #include <complex> #include <cmath> # ...
- 模板—FFT
卷积:$C[i]=\sum \limits_{j=0}^{i}A[j]*B[i-j]$可以画图理解一下其实就是交叉相乘的和. 卷积可以看作两个多项式乘积的形式,只不过求出的结果的项数不同. FFT讲解 ...
- $FFT/NTT/FWT$题单&简要题解
打算写一个多项式总结. 虽然自己菜得太真实了. 好像四级标题太小了,下次写博客的时候再考虑一下. 模板 \(FFT\)模板 #include <iostream> #include < ...
- UOJ#34 FFT模板题
写完上一道题才意识到自己没有在博客里丢过FFT的模板-- 这道题就是裸的多项式乘法,可以FFT,可以NTT,也可以用Karasuba(好像有人这么写没有T),也可以各种其他分治乘法乱搞-- 所以我就直 ...
- 多项式FFT相关模板
自己码了一个模板...有点辛苦...常数十分大,小心使用 #include <iostream> #include <stdio.h> #include <math.h& ...
- 【bzoj2179】FFT快速傅立叶 FFT模板
2016-06-01 09:34:54 很久很久很久以前写的了... 今天又比较了一下效率,貌似手写复数要快很多. 贴一下模板: #include<iostream> #include& ...
- FFT模板
我终于下定决心学习FFT了. orzCHX,得出模板: #include<cstdio> #include<cctype> #include<queue> #inc ...
- 再写FFT模板
没什么好说的,今天又考了FFT(虽然不用FFT也能过)但是确实有忘了怎么写FFT了,于是乎只有重新写一遍FFT模板练一下手了.第一部分普通FFT,第二部分数论FFT,记一下模数2^23*7*17+1 ...
随机推荐
- IIS和ASP.NET MVC 管道处理模型
转载自 博客园 青羽 http://www.cnblogs.com/tenghoo/archive/2009/11/04/IIS_And_ASPNET_Http_Runtime_Pipeline.h ...
- ElasticSearch + Canal 开发千万级的实时搜索系统【转】
公司是做社交相关产品的,社交类产品对搜索功能需求要求就比较高,需要根据用户城市.用户ID昵称等进行搜索. 项目原先的搜索接口采用SQL查询的方式实现,数据库表采用了按城市分表的方式.但随着业务的发展, ...
- spring mvc: xml练习
xml练习,得到的结果是: <?xml version="1.0" encoding="UTF-8" standalone="yes" ...
- UVALive-4287 Proving Equivalences (有向图的强连通分量)
题目大意:有n个命题,已知其中的m个推导,要证明n个命题全部等价(等价具有传递性),最少还需要做出几次推导. 题目分析:由已知的推导可以建一张无向图,则问题变成了最少需要增加几条边能使图变成强连通图. ...
- IOS-CocoaPods制作篇
作者:wangzz 原文地址:http://blog.csdn.net/wzzvictory/article/details/20067595 转载请注明出处 如果觉得文章对你有所帮助,请通过留言或关 ...
- DNS污染——domain name的解析被劫持了返回无效的ip
看下dns污染: bash-3.2$ dig twitter.com +trace ; <<>> DiG 9.10.6 <<>> twitter.com ...
- js生成中文二维码
http://www.cnblogs.com/xcsn/archive/2013/08/14/3258035.html http://www.jb51.net/article/64928.htm 使用 ...
- linux FTP 操作
1.登陆: ftp 172.xxx.xxx.xxx 按提示输入用户名和密码 2.上传: 单个文件:put /路径/文件名 批量: 输入 prom 此命令是关闭交互(否则总是询问你是否要上传) 输入下载 ...
- C#,WebRequest类、HttpWebRequest类与HttpRequest类的区别
C#,WebRequest类和HttpWebRequest类的区别? httpWebRequest是webRequest的子类,httpWebRequest是基于http协议的 . HttpWebRe ...
- SpringXML方式给bean初始化属性值
可以在Spring容器初始化bean的时候给bean的属性赋初始值,直接在property标签里设置即可 1 2 3 4 5 6 <bean name="user**" cl ...