AC自动机简介: 

首先简要介绍一下AC自动机:Aho-Corasick automation,该算法在1975年产生于贝尔实验室,是著名的多模匹配算法之一。一个常见的例子就是给出n个单词,再给出一段包含m个字符的文 章,让你找出有多少个单词在文章里出现过。要搞懂AC自动机,先得有字典树Trie和KMP模式匹配算法的基础知识。KMP算法是单模式串的字符匹配算 法,AC自动机是多模式串的字符匹配算法。

AC自动机的构造:

1.构造一棵Trie,作为AC自动机的搜索数据结构。

2.构造fail指针,使当前字符失配时跳转到具有最长公共前后缀的字符继续匹配。如 同 KMP算法一样, AC自动机在匹配时如果当前字符匹配失败,那么利用fail指针进行跳转。由此可知如果跳转,跳转后的串的前缀,必为跳转前的模式串的后缀并且跳转的新位 置的深度(匹配字符个数)一定小于跳之前的节点。所以我们可以利用 bfs在 Trie上面进行 fail指针的求解。

3.扫描主串进行匹配。

AC自动机详讲:

我们给出5个单词,say,she,shr,he,her。给定字符串为yasherhs。问多少个单词在字符串中出现过。

一、Trie

首先我们需要建立一棵Trie。但是这棵Trie不是普通的Trie,而是带有一些特殊的性质。

首先会有3个重要的指针,分别为p, p->fail, temp。

1.指针p,指向当前匹配的字符。若p指向root,表示当前匹配的字符序列为空。(root是Trie入口,没有实际含义)。

2.指针p->fail,p的失败指针,指向与字符p相同的结点,若没有,则指向root。

3.指针temp,测试指针(自己命名的,容易理解!~),在建立fail指针时有寻找与p字符匹配的结点的作用,在扫描时作用最大,也最不好理解。

对于Trie树中的一个节点,对应一个序列s[1...m]。此时,p指向字符s[m]。若在下一个字符处失配,即p->next[s[m+1]] == NULL,则由失配指针跳到另一个节点(p->fail)处,该节点对应的序列为s[i...m]。若继续失配,则序列依次跳转直到序列为空或出现 匹配。在此过程中,p的值一直在变化,但是p对应节点的字符没有发生变化。在此过程中,我们观察可知,最终求得得序列s则为最长公共后缀。另外,由于这个 序列是从root开始到某一节点,则说明这个序列有可能是某些序列的前缀。

再次讨论p指针转移的意义。如果p指针在某一字符s[m+1]处失配(即p->next[s[m+1]] == NULL),则说明没有单词s[1...m+1]存在。此时,如果p的失配指针指向root,则说明当前序列的任意后缀不会是某个单词的前缀。如果p的失 配指针不指向root,则说明序列s[i...m]是某一单词的前缀,于是跳转到p的失配指针,以s[i...m]为前缀继续匹配s[m+1]。

对于已经得到的序列s[1...m],由于s[i...m]可能是某单词的后缀,s[1...j]可能是某单词的前缀,所以s[1...m]中可能会出现 单词。此时,p指向已匹配的字符,不能动。于是,令temp = p,然后依次测试s[1...m], s[i...m]是否是单词。

构造的Trie为:

二、构造失败指针

用BFS来构造失败指针,与KMP算法相似的思想。

首先,root入队,第1次循环时处理与root相连的字符,也就是各个单词的第一个字符h和s,因为第一个字符不匹配需要重新匹配,所以第一个字符都指
向root(root是Trie入口,没有实际含义)失败指针的指向对应下图中的(1),(2)两条虚线;第2次进入循环后,从队列中先弹出h,接下来p
指向h节点的fail指针指向的节点,也就是root;p=p->fail也就是p=NULL说明匹配序列为空,则把节点e的fail指针指向
root表示没有匹配序列,对应图-2中的(3),然后节点e进入队列;第3次循环时,弹出的第一个节点a的操作与上一步操作的节点e相同,把a的
fail指针指向root,对应图-2中的(4),并入队;第4次进入循环时,弹出节点h(图中左边那个),这时操作略有不同。由于
p->next[i]!=NULL(root有h这个儿子节点,图中右边那个),这样便把左边那个h节点的失败指针指向右边那个root的儿子节点
h,对应图-2中的(5),然后h入队。以此类推:在循环结束后,所有的失败指针就是图-2中的这种形式。

三、扫描

构造好Trie和失败指针后,我们就可以对主串进行扫描了。这个过程和KMP算法很类似,但是也有一定的区别,主要是因为AC自动机处理的是多串模式,需要防止遗漏某个单词,所以引入temp指针。

匹配过程分两种情况:(1)当前字符匹配,表示从当前节点沿着树边有一条路径可以到达目标字符,此时只需沿该路径走向下一个节点继续匹配即可,目标
字符串指针移向下个字符继续匹配;(2)当前字符不匹配,则去当前节点失败指针所指向的字符继续匹配,匹配过程随着指针指向root结束。重复这2个过程
中的任意一个,直到模式串走到结尾为止。

对照上图,看一下模式匹配这个详细的流程,其中模式串为yasherhs。对于i=0,1。Trie中没有对应的路径,故不做任何操
作;i=2,3,4时,指针p走到左下节点e。因为节点e的count信息为1,所以cnt+1,并且讲节点e的count值设置为-1,表示改单词已经
出现过了,防止重复计数,最后temp指向e节点的失败指针所指向的节点继续查找,以此类推,最后temp指向root,退出while循环,这个过程中
count增加了2。表示找到了2个单词she和he。当i=5时,程序进入第5行,p指向其失败指针的节点,也就是右边那个e节点,随后在第6行指向r
节点,r节点的count值为1,从而count+1,循环直到temp指向root为止。最后i=6,7时,找不到任何匹配,匹配过程结束。

AC自动机算法的更多相关文章

  1. AC自动机-算法详解

    What's Aho-Corasick automaton? 一种多模式串匹配算法,该算法在1975年产生于贝尔实验室,是著名的多模式匹配算法之一. 简单的说,KMP用来在一篇文章中匹配一个模式串:但 ...

  2. AC自动机算法详解

    首先简要介绍一下AC自动机:Aho-Corasick automation,该算法在1975年产生于贝尔实验室,是著名的多模匹配算法之一.一个常见的例子就是给出n个单词,再给出一段包含m个字符的文章, ...

  3. AC自动机算法详解 (转载)

    首先简要介绍一下AC自动机:Aho-Corasick automation,该算法在1975年产生于贝尔实验室,是著名的多模匹配算法之一.一个常见的例子就是给出n个单词,再给出一段包含m个字符的文章, ...

  4. (转)两种高效过滤敏感词算法--DFA算法和AC自动机算法

    原文:https://blog.csdn.net/u013421629/article/details/83178970 一道bat面试题:快速替换10亿条标题中的5万个敏感词,有哪些解决思路? 有十 ...

  5. AC自动机算法小结

    AC自动机,可惜不能自动AC 转载:飘过的小牛 OIer55242 简介 Aho-Corasick automation 该算法在1975年产生于贝尔实验室,是著名的多模匹配算法之一.一个常见的例子就 ...

  6. 转载 - AC自动机算法

    出处:http://blog.csdn.net/niushuai666/article/details/7002823 AC自动机简介:  首先简要介绍一下AC自动机:Aho-Corasick aut ...

  7. AC自动机算法 && 例题

    参考链接: https://blog.csdn.net/bestsort/article/details/82947639#commentBox https://blog.csdn.net/niush ...

  8. AC自动机算法学习

    KMP+TRIE int val[1000100][31],tot; int tr[1000100]; int fail[1000100]; struct AC_Trie{ void clean(){ ...

  9. AC自动机——多模式串匹配的算法思想

    标准KMP算法用于单一模式串的匹配,即在母串中寻求一个模式串的匹配,但是现在又存在这样的一个问题,如果同时给出多个模式串,要求找到这一系列模式串在母串存在的匹配个数,我们应该如何处理呢? 基于KMP算 ...

随机推荐

  1. 2 Advanced Read/Write Splitting with PHP’s MySQLnd

    原文地址需FQ才能看  https://blog.engineyard.com/2014/advanced-read-write-splitting-with-phps-mysqlnd In part ...

  2. bzoj1778: [Usaco2010 Hol]Dotp 驱逐猪猡(概率DP+高斯消元)

    深夜肝题...有害身心健康QAQ 设f[i]为到达i的概率,d[i]为i的度数. 因为无限久之后炸弹爆炸的概率是1,所以最后在i点爆炸的概率实际上就是f[i]/sigma(f[]) 列出方程组 f[i ...

  3. 剑桥offer(11~20)

    11.题目描述 输入一个整数,输出该数二进制表示中1的个数.其中负数用补码表示. class Solution { public: int NumberOf1(int n) { ; unsigned ...

  4. run (牛客多校第二场)计数DP

    链接:https://www.nowcoder.com/acm/contest/140/A来源:牛客网 题目描述 White Cloud is exercising in the playground ...

  5. 题解【luogu4145 上帝造题的七分钟2(花神游历各国)】

    题目大意: 一个序列,支持区间开方与求和操作. 算法:线段树实现开方修改与区间求和 分析: 显然,这道题的求和操作可以用线段树来维护 但是如何来实现区间开方呢 大家有没有这样的经历:玩计算器的时候,把 ...

  6. C语言超大数据相加计算整理

    在做ACM 1002题时,整理得到. #include<stdio.h>#include<string.h>#define MAX 1000void zero(char *s, ...

  7. Spring知识点复习

    Spring知识点复习 一.专业术语 侵入式设计 引入框架,对现有的类的结构有影响,即需要实现或继承某些特定类.如:Struts框架 非侵入式设计 引入框架,对现有的类结构没有影响.如:Hiberna ...

  8. MongoDB入门(6)- 我们自己封装的MongoDB-C#版本

    Wisdombud.Mongo 包含内容 MongoDB.Bson.dll MongoDB.Bson.xml MongoDB.Driver.dll MongoDB.Driver.xml Wisdomb ...

  9. [Luogu 3966] TJOI 2013 单词

    经典ACAM. 注意单词之间添加字符,以及对重复单词的处理. #include <cstdio> #include <cstring> #include <queue&g ...

  10. javascript 访问cookie信息

    在Javascript脚本里,一个cookie 实际就是一个字符串属性.当你读取cookie的值时,就得到一个字符串,里面当前WEB页使用的所有cookies的名称和值.每个cookie除了 name ...