题目描述
Edit Distance
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
     a) Insert a character
     b) Delete a character
     c) Replace a character

这道题理解了很久一直没想太清,主要是纠结于类似这种情况aaaabcde,dbcdeaaa,如果有两个相同的子串,但是位置没对应上,应该怎样判断?其实这种情况压根没影响,因为为了让相同的子串对应上,也需要挨个平移过去,这样的平移操作其实和替换,删除,插入步奏是一样的,也算是一个步奏,实际就是这三种中的一种,不在纠结这种情况,思路就清楚了。。。。

然后看到个很好的解释:

也就是说,就是将一个字符串变成另外一个字符串所用的最少操作数,每次只能增加、删除或者替换一个字符。
首先我们令word1和word2分别为:michaelab和michaelxy(为了理解简单,我们假设word1和word2字符长度是一样的),dis[i][j]作为word1和word2之间的Edit Distance,我们要做的就是求出michaelx到michaely的最小steps。

首先解释下dis[i][j]:它是指word1[i]和word2[j]的Edit Distance。dis[0][0]表示word1和word2都为空的时候,此时他们的Edit Distance为0。很明显可以得出的,dis[0][j]就是word1为空,word2长度为j的情况,此时他们的Edit Distance为j,也就是从空,添加j个字符转换成word2的最小Edit Distance为j;同理dis[i][0]就是,word1长度为i,word2为空时,word1需要删除i个字符才能转换成空,所以转换成word2的最小Edit Distance为i。下面及时初始化代码:

vector<vector<int> > dis(row, vector<int>(col));
       for (int i = 0; i < row; i++) dis[i][0] = i;
       for (int j = 0; j < col; j++) dis[0][j] = j;

下面来分析下题目规定的三个操作:添加,删除,替换。
假设word1[i]和word2[j](此处i = j)分别为:michaelab和michaelxy
显然如果b==y, 那么dis[i][j] = dis[i-1][j-1]。
如果b!=y,那么:
添加:也就是在michaelab后面添加一个y,那么word1就变成了michaelaby,此时
dis[i][j] = 1 + dis[i][j-1];
上式中,1代表刚刚的添加操作,添加操作后,word1变成michaelaby,word2为michaelxy。dis[i][j-1]代表从word[i]转换成word[j-1]的最小Edit Distance,也就是michaelab转换成michaelx的最小Edit Distance,由于两个字符串尾部的y==y,所以只需要将michaelab变成michaelx就可以了,而他们之间的最小Edit Distance就是dis[i][j-1]。
删除:也就是将michaelab后面的b删除,那么word1就变成了michaela,此时
dis[i][j] = 1 + dis[i-1][j];
上式中,1代表刚刚的删除操作,删除操作后,word1变成michaela,word2为michaelxy。dis[i-1][j]代表从word[i-1]转换成word[j]的最小Edit Distance,也就是michaela转换成michaelxy的最小Edit Distance,所以只需要将michaela变成michaelxy就可以了,而他们之间的最小Edit Distance就是dis[i-1][j]。
替换:也就是将michaelab后面的b替换成y,那么word1就变成了michaelay,此时
dis[i][j] = 1 + dis[i-1][j-1];
上式中,1代表刚刚的替换操作,替换操作后,word1变成michaelay,word2为michaelxy。dis[i-1][j-1]代表从word[i-1]转换成word[j-1]的最小Edit Distance,也即是michaelay转换成michaelxy的最小Edit Distance,由于两个字符串尾部的y==y,所以只需要将michaela变成michaelx就可以了,而他们之间的最小Edit Distance就是dis[i-1][j-1]。
最后只需要看着三种方案哪种最小,就采用哪种的编辑方案。
class Solution {
public:
int GetMim(int Num1,int Num2,int Num3)
{
Num1=min(Num1,Num2);
Num1=min(Num1,Num3);
return Num1;
}
int minDistance(string word1, string word2) {
int l1=word1.size();
int l2=word2.size();
if(l1==)
return l2;
if(l2==)
return l1;
vector<vector<int>> res(l1+,vector<int>(l2+,));
for(int i=;i<=l1;i++)
res[i][]=i;
for(int j=;j<=l2;j++)
res[][j]=j;
for(int i=;i<=l1;i++)
for(int j=;j<=l2;j++)
{
if(word1[i-]==word2[j-])
res[i][j]=res[i-][j-];
else
res[i][j]=GetMim(res[i][j-]+,res[i-][j]+,res[i-][j-]+);
}
return res[l1][l2];
}
};

Edit Distance——经典的动态规划问题的更多相关文章

  1. 动态规划 求解 Minimum Edit Distance

    http://blog.csdn.net/abcjennifer/article/details/7735272 自然语言处理(NLP)中,有一个基本问题就是求两个字符串的minimal Edit D ...

  2. 动态规划小结 - 二维动态规划 - 时间复杂度 O(n*n)的棋盘型,题 [LeetCode] Minimum Path Sum,Unique Paths II,Edit Distance

    引言 二维动态规划中最常见的是棋盘型二维动态规划. 即 func(i, j) 往往只和 func(i-1, j-1), func(i-1, j) 以及 func(i, j-1) 有关 这种情况下,时间 ...

  3. Leetcode之动态规划(DP)专题-72. 编辑距离(Edit Distance)

    Leetcode之动态规划(DP)专题-72. 编辑距离(Edit Distance) 给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 . 你可 ...

  4. 【LeetCode】【动态规划】Edit Distance

    描述 Given two words word1 and word2, find the minimum number of operations required to convert word1  ...

  5. 72. Edit Distance

    题目: Given two words word1 and word2, find the minimum number of steps required to convert word1 to w ...

  6. [Leetcode Week8]Edit Distance

    Edit Distance 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/edit-distance/description/ Description ...

  7. [LeetCode] Edit Distance 编辑距离

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  8. Edit Distance

    Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert  ...

  9. 编辑距离——Edit Distance

    编辑距离 在计算机科学中,编辑距离是一种量化两个字符串差异程度的方法,也就是计算从一个字符串转换成另外一个字符串所需要的最少操作步骤.不同的编辑距离中定义了不同操作的集合.比较常用的莱温斯坦距离(Le ...

随机推荐

  1. [codeforces/edu30]总结(E)

    链接:http://codeforces.com/contest/873/ A题: 贪心,把最大的k个数变成x即可. B题: 从左向右枚举右端点,维护balance的最长长度.任意一个子串可以看做两个 ...

  2. BZOJ1105 [POI2007]石头花园SKA 贪心

    [POI2007]石头花园SKA Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 776  Solved: 237[Submit][Status][Di ...

  3. Javascript基本代码

    简单的了解了javascript 的基本代码,感觉和c#中的语句差不多. <!DOCTYPE html> <html xmlns="http://www.w3.org/19 ...

  4. mysql中设置小数

    decimal Decimal(n,m)表示数值中共有n位数,其中整数n-m位,小数m位.例:decimal(10,6),数值中共有10位数,其中整数占4位,小数占6位. 例:decimal(2,1) ...

  5. 实体框架(Entity Framework)快速入门--实例篇

    在上一篇 <实体框架(Entity Framework)快速入门> 中我们简单了解的EF的定义和大体的情况,我们通过一步一步的做一个简单的实际例子来让大家对EF使用有个简单印象,看操作步骤 ...

  6. Python爬虫学习笔记之微信宫格验证码的识别(存在问题)

    本节我们将介绍新浪微博宫格验证码的识别.微博宫格验证码是一种新型交互式验证码,每个宫格之间会有一条 指示连线,指示了应该的滑动轨迹.我们要按照滑动轨迹依次从起始宫格滑动到终止宫格,才可以完成验证,如 ...

  7. Android 百度定位SDKv4.2及6.0_百度定位实例_安卓定位实例

    介绍 由于项目需要.前几天一直在研究百度定位的功能.通过不断的实践终于有结果了.不愿意独享 现在我把我的研究成果和大家分享一下.其实百度的 API 已经相当不错了 这之所以要写出来.一是自己做一个笔记 ...

  8. Flask从入门到放弃1:路由app.route()

    Flask从入门到放弃1: Flask中的路由app.route(): 参考来源:http://python.jobbole.com/80956/ https://www.raspberrypi.or ...

  9. java collection (二)

    1.集合的概念: (1)现实生活中:很多的事物凑在一起. (2)数学中的集合:具有共同属性的事物的总体. (3java 中的集合类: 是一种工具类,就像是容器,存储任意数量的具有共同属性的对象.(集合 ...

  10. 【lydsy1407】拓展欧几里得求解不定方程+同余方程

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1407 题意: 有n个野人,野人各自住在第c[i]个山洞中(山洞成环状),每年向前走p[i] ...