Edit Distance——经典的动态规划问题
题目描述
Edit Distance
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
这道题理解了很久一直没想太清,主要是纠结于类似这种情况aaaabcde,dbcdeaaa,如果有两个相同的子串,但是位置没对应上,应该怎样判断?其实这种情况压根没影响,因为为了让相同的子串对应上,也需要挨个平移过去,这样的平移操作其实和替换,删除,插入步奏是一样的,也算是一个步奏,实际就是这三种中的一种,不在纠结这种情况,思路就清楚了。。。。
然后看到个很好的解释:
也就是说,就是将一个字符串变成另外一个字符串所用的最少操作数,每次只能增加、删除或者替换一个字符。
首先我们令word1和word2分别为:michaelab和michaelxy(为了理解简单,我们假设word1和word2字符长度是一样的),dis[i][j]作为word1和word2之间的Edit Distance,我们要做的就是求出michaelx到michaely的最小steps。
首先解释下dis[i][j]:它是指word1[i]和word2[j]的Edit Distance。dis[0][0]表示word1和word2都为空的时候,此时他们的Edit Distance为0。很明显可以得出的,dis[0][j]就是word1为空,word2长度为j的情况,此时他们的Edit Distance为j,也就是从空,添加j个字符转换成word2的最小Edit Distance为j;同理dis[i][0]就是,word1长度为i,word2为空时,word1需要删除i个字符才能转换成空,所以转换成word2的最小Edit Distance为i。下面及时初始化代码:
vector<vector<int> > dis(row, vector<int>(col));
for (int i = 0; i < row; i++) dis[i][0] = i;
for (int j = 0; j < col; j++) dis[0][j] = j;
下面来分析下题目规定的三个操作:添加,删除,替换。
假设word1[i]和word2[j](此处i = j)分别为:michaelab和michaelxy
显然如果b==y, 那么dis[i][j] = dis[i-1][j-1]。
如果b!=y,那么:
添加:也就是在michaelab后面添加一个y,那么word1就变成了michaelaby,此时
dis[i][j] = 1 + dis[i][j-1];
上式中,1代表刚刚的添加操作,添加操作后,word1变成michaelaby,word2为michaelxy。dis[i][j-1]代表从word[i]转换成word[j-1]的最小Edit Distance,也就是michaelab转换成michaelx的最小Edit Distance,由于两个字符串尾部的y==y,所以只需要将michaelab变成michaelx就可以了,而他们之间的最小Edit Distance就是dis[i][j-1]。
删除:也就是将michaelab后面的b删除,那么word1就变成了michaela,此时
dis[i][j] = 1 + dis[i-1][j];
上式中,1代表刚刚的删除操作,删除操作后,word1变成michaela,word2为michaelxy。dis[i-1][j]代表从word[i-1]转换成word[j]的最小Edit Distance,也就是michaela转换成michaelxy的最小Edit Distance,所以只需要将michaela变成michaelxy就可以了,而他们之间的最小Edit Distance就是dis[i-1][j]。
替换:也就是将michaelab后面的b替换成y,那么word1就变成了michaelay,此时
dis[i][j] = 1 + dis[i-1][j-1];
上式中,1代表刚刚的替换操作,替换操作后,word1变成michaelay,word2为michaelxy。dis[i-1][j-1]代表从word[i-1]转换成word[j-1]的最小Edit Distance,也即是michaelay转换成michaelxy的最小Edit Distance,由于两个字符串尾部的y==y,所以只需要将michaela变成michaelx就可以了,而他们之间的最小Edit Distance就是dis[i-1][j-1]。
最后只需要看着三种方案哪种最小,就采用哪种的编辑方案。
class Solution {
public:
int GetMim(int Num1,int Num2,int Num3)
{
Num1=min(Num1,Num2);
Num1=min(Num1,Num3);
return Num1;
}
int minDistance(string word1, string word2) {
int l1=word1.size();
int l2=word2.size();
if(l1==)
return l2;
if(l2==)
return l1;
vector<vector<int>> res(l1+,vector<int>(l2+,));
for(int i=;i<=l1;i++)
res[i][]=i;
for(int j=;j<=l2;j++)
res[][j]=j;
for(int i=;i<=l1;i++)
for(int j=;j<=l2;j++)
{
if(word1[i-]==word2[j-])
res[i][j]=res[i-][j-];
else
res[i][j]=GetMim(res[i][j-]+,res[i-][j]+,res[i-][j-]+);
}
return res[l1][l2];
}
};
Edit Distance——经典的动态规划问题的更多相关文章
- 动态规划 求解 Minimum Edit Distance
http://blog.csdn.net/abcjennifer/article/details/7735272 自然语言处理(NLP)中,有一个基本问题就是求两个字符串的minimal Edit D ...
- 动态规划小结 - 二维动态规划 - 时间复杂度 O(n*n)的棋盘型,题 [LeetCode] Minimum Path Sum,Unique Paths II,Edit Distance
引言 二维动态规划中最常见的是棋盘型二维动态规划. 即 func(i, j) 往往只和 func(i-1, j-1), func(i-1, j) 以及 func(i, j-1) 有关 这种情况下,时间 ...
- Leetcode之动态规划(DP)专题-72. 编辑距离(Edit Distance)
Leetcode之动态规划(DP)专题-72. 编辑距离(Edit Distance) 给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 . 你可 ...
- 【LeetCode】【动态规划】Edit Distance
描述 Given two words word1 and word2, find the minimum number of operations required to convert word1 ...
- 72. Edit Distance
题目: Given two words word1 and word2, find the minimum number of steps required to convert word1 to w ...
- [Leetcode Week8]Edit Distance
Edit Distance 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/edit-distance/description/ Description ...
- [LeetCode] Edit Distance 编辑距离
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...
- Edit Distance
Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert ...
- 编辑距离——Edit Distance
编辑距离 在计算机科学中,编辑距离是一种量化两个字符串差异程度的方法,也就是计算从一个字符串转换成另外一个字符串所需要的最少操作步骤.不同的编辑距离中定义了不同操作的集合.比较常用的莱温斯坦距离(Le ...
随机推荐
- bzoj3694: 最短路(树链剖分/并查集)
bzoj1576的帮我们跑好最短路版本23333(双倍经验!嘿嘿嘿 这题可以用树链剖分或并查集写.树链剖分非常显然,并查集的写法比较妙,涨了个姿势,原来并查集的路径压缩还能这么用... 首先对于不在最 ...
- 【枚举】 最大子矩阵(I)
题注:最大子矩形问题的解决办法最初由中国国家集训队王知昆前辈整理并发表为论文,在此说明并感谢. Definition 给你一个大矩形,里面有一些障碍点,求一个面积最大的矩形,满足该矩形在大矩形内部且该 ...
- 关于JavaScript的沙箱模式
从语言学的角度上来说,允许代码无节制地使用全局变量,是最错误的选择之一.而更可怕的,就是一个变量"可能"成为全局的(在未知的时间与地点).但是这两项,却伴随JavaScript这门 ...
- ImageNet: what is top-1 and top-5 error rate?
https://stats.stackexchange.com/questions/156471/imagenet-what-is-top-1-and-top-5-error-rate Your cl ...
- ACE线程管理机制-并发控制(4)
转载于:http://www.cnblogs.com/TianFang/archive/2006/12/04/581857.html ACE Synchronization类 这一类并发控制对象一般也 ...
- bzoj 1131 [POI2008]Sta 树形dp 转移根模板题
[POI2008]Sta Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1889 Solved: 729[Submit][Status][Discu ...
- java有关Time类型数据的接收和转换
一:前言 有关Time的时间其实很少有用到.但是用到就很纠结了,转换和保存,都是烦人的事情,我自己就在这上面吃过一个亏,所以就加载下来吧! 二:内容 (1):被坑的地方 实体类 import java ...
- 11.nginx upload module + python django 后台 实现视频上传与切片
1.需求:支持视频上传并切片,支持通过m3u8文件播放 2.视频切片的上一节已经谈过,这一节主要是视频上传的处理 第一步:upload-module模块安装 -----------首先下载upload ...
- vijos 1066 弱弱的战壕 树状数组
描述 永恒和mx正在玩一个即时战略游戏,名字嘛~~~~~~恕本人记性不好,忘了-_-b. mx在他的基地附近建立了n个战壕,每个战壕都是一个独立的作战单位,射程可以达到无限(“mx不赢定了?!?”永恒 ...
- jsp 内置对象二
1.什么是session ? (1)session 表示客户端与服务器的一次回话. 2)Web中的session指的是用户在浏览某个网站时,从进入网站到浏览器关闭所经过的这段时间,也就是用户浏览这个网 ...