张量的阶和数据类型

TensorFlow用张量这种数据结构来表示所有的数据.你可以把一个张量想象成一个n维的数组或列表.一个张量有一个静态类型和动态类型的维数.张量可以在图中的节点之间流通.其实张量更代表的就是一种多位数组。

在TensorFlow系统中,张量的维数来被描述为阶.但是张量的阶和矩阵的阶并不是同一个概念.张量的阶(有时是关于如顺序或度数或者是n维)是张量维数的一个数量描述.比如,下面的张量(使用Python中list定义的)就是2阶.

t = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

你可以认为一个二阶张量就是我们平常所说的矩阵,一阶张量可以认为是一个向量.

数学实例 Python 例子
0 纯量 (只有大小) s = 483
1 向量 (大小和方向) v = [1.1, 2.2, 3.3]
2 矩阵 (数据表) m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
3 3阶张量 (数据立体) t = [[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18]]]
n n阶 (自己想想看) ....

数据类型

Tensors有一个数据类型属性.你可以为一个张量指定下列数据类型中的任意一个类型:

数据类型 Python 类型 描述
DT_FLOAT tf.float32 32 位浮点数.
DT_DOUBLE tf.float64 64 位浮点数.
DT_INT64 tf.int64 64 位有符号整型.
DT_INT32 tf.int32 32 位有符号整型.
DT_INT16 tf.int16 16 位有符号整型.
DT_INT8 tf.int8 8 位有符号整型.
DT_UINT8 tf.uint8 8 位无符号整型.
DT_STRING tf.string 可变长度的字节数组.每一个张量元素都是一个字节数组.
DT_BOOL tf.bool 布尔型.
DT_COMPLEX64 tf.complex64 由两个32位浮点数组成的复数:实数和虚数.
DT_QINT32 tf.qint32 用于量化Ops的32位有符号整型.
DT_QINT8 tf.qint8 用于量化Ops的8位有符号整型.
DT_QUINT8 tf.quint8 用于量化Ops的8位无符号整型.

TensorFlow进阶(一)----张量的阶和数据类型的更多相关文章

  1. tensorflow 张量的阶、形状、数据类型及None在tensor中表示的意思。

    x = tf.placeholder(tf.float32, [None, 784]) x isn't a specific value. It's a placeholder, a value th ...

  2. TensorFlow 中的张量,图,会话

    tensor的含义是张量,张量是什么,听起来很高深的样子,其实我们对于张量一点都不陌生,因为像标量,向量,矩阵这些都可以被认为是特殊的张量.如下图所示: 在TensorFlow中,tensor实际上就 ...

  3. (第一章第四部分)TensorFlow框架之张量

    系列博客链接: (一)TensorFlow框架介绍:https://www.cnblogs.com/kongweisi/p/11038395.html (二)TensorFlow框架之图与Tensor ...

  4. TensorFlow计算图,张量,会话基础知识

    import tensorflow as tf get_default_graph = "tensorflow_get_default_graph.png" # 当前默认的计算图 ...

  5. pytorch和tensorflow的爱恨情仇之基本数据类型

    自己一直以来都是使用的pytorch,最近打算好好的看下tensorflow,新开一个系列:pytorch和tensorflow的爱恨情仇(相爱相杀...) 无论学习什么框架或者是什么编程语言,最基础 ...

  6. 《前端之路》之 JavaScript 进阶技巧之高阶函数(下)

    目录 第二章 - 03: 前端 进阶技巧之高阶函数 一.防篡改对象 1-1:Configurable 和 Writable 1-2:Enumerable 1-3:get .set 2-1:不可扩展对象 ...

  7. Redis进阶实践之四Redis的基本数据类型(转载4)

    Redis进阶实践之四Redis的基本数据类型 一.引言 今天正式开始了Redis的学习,如果要想学好Redis,必须先学好Redis的数据类型.Redis为什么会比以前的Memchaed等内存缓存软 ...

  8. tensorflow进阶篇-5(反向传播2)

    上面是一个简单的回归算法,下面是一个简单的二分值分类算法.从两个正态分布(N(-1,1)和N(3,1))生成100个数.所有从正态分布N(-1,1)生成的数据目标0:从正态分布N(3,1)生成的数据标 ...

  9. tensorflow进阶篇-5(反向传播1)

    这里将讲解tensorflow是如何通过计算图来更新变量和最小化损失函数来反向传播误差的:这步将通过声明优化函数来实现.一旦声明好优化函数,tensorflow将通过它在所有的计算图中解决反向传播的项 ...

随机推荐

  1. Python+Selenium 自动化实现实例-打开浏览器模拟进行搜索数据并验证

    #导入模块 from selenium import webdriverfrom selenium.webdriver.common.keys import Keys #启动火狐浏览器driver = ...

  2. %和format的区别

    在python中字符串的格式化分为两种:%和format.那么我们在什么时候来使用它们呢?它们有什么区别呢? 举个例子:我们根据一个坐标来表示一个动作 #定义一个坐标 point = (250,250 ...

  3. 小米路由器3-R3 刷固件

    1.刷机前的路由器升级准备 1-1.首先进入路由器原声后台:miwifi.com 1-2.在右上角,点击系统升级.在系统版本下边选择手动升级,选择资源包里的:“miwifi_r3_all_55ac7_ ...

  4. 【剑指offer】面试题 64. 求 1+2+3+...+n

    面试题 64. 求 1+2+3+...+n 题目:求1+2+3+...+n,要求不能使用乘除法.for.while.if.else.switch.case等关键字及条件判断语句(A?B:C). 1.采 ...

  5. CodeForces 779C Dishonest Sellers

    贪心. 如果这周便宜,那么肯定这周买.另外要求这周至少买到$k$个,那么肯定是需要额外购买差价小的. #include<map> #include<set> #include& ...

  6. TensorFlow-GPU安装配置(win10+tensorflow1.6+CUDA9.0+cudnn7.0+python3.6+Visual Studio2013)

    安装步骤: TensorFlow官网 tensorflow一般只能装在python3上,CUDA9.0搭配cudnn7.0,CUDA8.0搭配cudnn6.0 查看对应要安装的环境版本(因为会不断更新 ...

  7. Bzoj 3498 Cakes(三元环)

    题面(权限题就不放题面了) 题解 三元环模板题,按题意模拟即可. #include <cstdio> #include <cstring> #include <vecto ...

  8. Check if a user is in a group

    groups or groups user

  9. JCL: What is EXCP

      JCL: What is EXCP ?   EXCP stands for EXecute Channel Program. These are the I/O subsystem hardwar ...

  10. Electron:将前端应用打包成桌面应用

    首先戳我下载安装对应版本的node.js. 安装完成后,打开命令行输入node -v以及npm -v查看对应版本.能够正常显示说明安装成功. 写一个最简单的hello world的nodejs应用.n ...