[JSOI2016]最佳团体
01分数规划+树形背包。
然后就没了。
结果我调了半天,原因还是树形背包不熟练。
我是用dfs序求的,转化的时候,是dp[i][j]转化到dp[i + 1][j + 1]或dp[i +siz[pos[i]]][j],而不是像普通的dp从别的状态转化到dp[i][j],所以最后的答案应该考虑到dp[n + 1][m + 1],而不是只到n,而且初始化的时候也要到n + 1这一层。这也就是我为啥总WA第3个点。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define rg register
typedef long long ll;
typedef double db;
const db INF = 1e12;
const db eps = 1e-;
const int maxn = ;
inline ll read()
{
ll ans = ;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) {last = ch; ch = getchar();}
while(isdigit(ch)) {ans = (ans << ) + (ans << ) + ch - ''; ch = getchar();}
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < ) x = -x, putchar('-');
if(x >= ) write(x / );
putchar(x % + '');
} int k, n, s[maxn], p[maxn];
struct Edge
{
int nxt, to;
}e[maxn];
int head[maxn], ecnt = -;
void addEdge(int x, int y)
{
e[++ecnt] = (Edge){head[x], y};
head[x] = ecnt;
} int dfsx[maxn], pos[maxn], cnt = ;
int siz[maxn];
void dfs(int now)
{
dfsx[now] = ++cnt; pos[cnt] = now;
siz[now] = ;
for(int i = head[now]; i != -; i = e[i].nxt)
{
dfs(e[i].to);
siz[now] += siz[e[i].to];
}
}
db dp[maxn][maxn], w[maxn];
db calc(int i, db x)
{
return (db)p[i] - (db)s[i] * x;
}
bool judge(db x)
{
for(int i = ; i <= cnt; ++i) w[i] = calc(pos[i], x);
for(int i = ; i <= cnt + ; ++i)
for(int j = ; j <= k + ; ++j) dp[i][j] = -INF;
dp[][] = ;
for(int i = ; i <= cnt; ++i)
for(int j = ; j <= min(i, k + ); ++j) if(dp[i][j] > -INF)
{
dp[i + ][j + ] = max(dp[i + ][j + ], dp[i][j] + w[i]);
dp[i + siz[pos[i]]][j] = max(dp[i + siz[pos[i]]][j], dp[i][j]);
}
db ans = -INF;
for(int i = ; i <= cnt + ; ++i) ans = max(ans, dp[i][k + ]);
return ans > -eps;
} int main()
{
Mem(head, -);
k = read(); n = read();
for(int i = ; i <= n; ++i)
{
s[i] = read(); p[i] = read();
int x = read();
addEdge(x, i);
}
dfs();
db L = , R = 1e4;
while(R - L > eps)
{
db mid = (L + R) / ;
if(judge(mid)) L = mid;
else R = mid;
}
printf("%.3lf\n", L);
return ;
}
[JSOI2016]最佳团体的更多相关文章
- BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划
BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划 又是一道卡精度卡得我头皮发麻的题-- 题面(--蜜汁改编版) YL大哥是24OI的大哥,有一天,他想要从\(N\)个候选人中选 ...
- BZOJ_4753_[Jsoi2016]最佳团体_树形背包+01分数规划
BZOJ_4753_[Jsoi2016]最佳团体_树形背包+01分数规划 Description JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人 ...
- BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包)
BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包) 标签:题解 阅读体验 BZOJ题目链接 洛谷题目链接 具体实现 看到分数和最值,考虑分数规划 我们要求的是一个\(\dfrac{ ...
- [JSOI2016]最佳团体 DFS序/树形DP
题目 洛谷 P4322 [JSOI2016]最佳团体 Description 茜茜的舞蹈团队一共有\(N\)名候选人,这些候选人从\(1\)到\(N\)编号.方便起见,茜茜的编号是\(0\)号.每个候 ...
- 【bzoj4753】[Jsoi2016]最佳团体 分数规划+树形背包dp
题目描述 JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人都由一位编号比他小的候选人Ri推荐.如果Ri=0则说明这个候选人是JYY自己看上的.为了 ...
- BZOJ.4753.[JSOI2016]最佳团体(01分数规划 树形背包DP)
题目链接 \(Description\) 每个点有费用si与价值pi,要求选一些带根的连通块,总大小为k,使得 \(\frac{∑pi}{∑si}\) 最大 \(Solution\) 01分数规划,然 ...
- [Jsoi2016]最佳团体 BZOJ4753 01分数规划+树形背包/dfs序
分析: 化简一下我们可以发现,suma*ans=sumb,那么我们考虑二分ans,之后做树形背包上做剪枝. 时间复杂度证明,By GXZlegend O(nklogans) 附上代码: #includ ...
- Luogu P4322 [JSOI2016]最佳团体
JZdalao昨天上课讲的题目,话说JSOI的题目是真的不难,ZJOI的题目真的是虐啊! 题意很简单,抽象一下就是:有一棵树,一次只能选从根到某个节点上的链上的所有点,问从中取出k个节点所得到的总价值 ...
- bzoj4753: [Jsoi2016]最佳团体(分数规划+树形依赖背包)
菜菜推荐的“水题”虐了我一天T T...(菜菜好强强qwq~ 显然是个分数规划题,二分答案算出p[i]-mid*s[i]之后在树上跑依赖背包,选k个最大值如果>0说明还有更优解. 第一次接触树形 ...
- 【BZOJ】4753: [Jsoi2016]最佳团体 01分数规划+树上背包
[题意]n个人,每个人有价值ai和代价bi和一个依赖对象ri<i,选择 i 时 ri 也必须选择(ri=0时不依赖),求选择k个人使得Σai/Σbi最大.n<=2500,ai,bi< ...
随机推荐
- Messenger和MVVM中的View Services
在前面的文章IoC容器和MVVM中, 介绍了IoC容器如何在大量用户类中帮助创建和分配用户类的实例.本文将介绍IoC容器如何帮助应用程序解耦,比如那些根据MVVM模式开发的应用.此模 式广泛应用在基于 ...
- 阿里云服务器(ECS)购买及配置总结
云服务器是一种简单高效.安全可靠.处理能力可弹性伸缩的计算服务.其管理方式比物理服务器更简单高效.用户无需提前购买硬件,即可迅速创建或释放任意多台云服务器. 目前比较知名的与服务器提供商有:阿里云.百 ...
- Mysql 删除数据表重复行
准备示例数据 以下sql创建表,并将示例数据插入到用于演示的contacts表中. CREATE TABLE contacts ( id INT PRIMARY KEY AUTO_INCREMENT, ...
- SpringBoot加载子模块配置文件的方法
这两天开始学习SpringBoot框架,按照官方的文档,很轻易地就把单模块的项目启动了,但在使用maven搭建多模块的时候遇到了子模块配置文件没有加载的问题 项目架构是这样的 zero |-ws |- ...
- Vue引入第三方JavaScript库和如何创建自己的Vue插件
一 第三方JavaScript库 前言 .vue文件 中不解析 script标签引入js文件,只能用 import 引入 有两种用法: 1.import a from '../a' 2.import ...
- Java 反射、注解
1. 泛型 基本用法.泛型擦除.泛型类/泛型方法/泛型接口.泛型关键字.反射泛型! a. 概述 泛型是JDK1.5以后才有的, 可以在编译时期进行类型检查,且可以避免频繁类型转化! // 运行时期异常 ...
- 01_Zookeeper简述
[Zookeeper应用场景] zookeeper作为一个开源的分布式应用协调系统,已经用到了许多分布式项目中,用来完成统一命名服务.状态同步服务.集群管理.分布式应用配置项的管理等工作. [Zook ...
- 【Python】Python3基本语法入门学习
0.Python概述 1.First Word Game 2.变量与字符串 3.improved game 4.Python数据类型 5.常用操作符 6.分支与循环 7.列表 8.元组 9.字符串内置 ...
- Hadoop Archives档案
HDFS 并不擅长存储小文件,因为每个文件最少一个 block,每个 block 的元数据都会在 NameNode 占用内存,如果存在大量的小文件,它们会吃掉NameNode 节点的大量内存. Had ...
- x64 QWORD Xor shellcode encoder
#!/usr/bin/env python #Filename: Xor_QWORD_x64.py #coding=utf-8 import re import sys import random i ...