用Maven构建Mahout项目实现协同过滤userCF--单机版
本文来自:http://blog.fens.me/hadoop-mahout-maven-eclipse/
前言
基于Hadoop的项目,不管是MapReduce开发,还是Mahout的开发都是在一个复杂的编程环境中开发。Java的环境问题,是困扰着每个程序员的噩梦。Java程序员,不仅要会写Java程序,还要会调linux,会配hadoop,启动hadoop,还要会自己运维。所以,新手想玩起 Hadoop真不是件简单的事。
不过,我们可以尽可能的简化环境问题,让程序员只关注于写程序。特别是像算法程序员,把精力投入在算法设计上,要比花时间解决环境问题有价值的多。
目录
- Maven介绍和安装
- Mahout单机开发环境介绍
- 用Maven构建Mahout开发环境
- 用Mahout实现协同过滤userCF
- 用Mahout实现kmeans
- 模板项目上传github
1. Maven介绍和安装
请参考文章:用Maven构建Hadoop项目
开发环境
- Win7 64bit
- Java 1.6.0_45
- Maven 3
- Eclipse Juno Service Release 2
- Mahout 0.6
这里要说明一下mahout的运行版本。
- mahout-0.5, mahout-0.6, mahout-0.7,是基于hadoop-0.20.2x的。
- mahout-0.8, mahout-0.9,是基于hadoop-1.1.x的。
- mahout-0.7,有一次重大升级,去掉了多个算法的单机内存运行,并且了部分API不向前兼容。
注:本文关注于“用Maven构建Mahout的开发环境”,文中的 2个例子都是基于单机的内存实现,因此选择0.6版本。Mahout在Hadoop集群中运行会在下一篇文章介绍。
2. Mahout单机开发环境介绍
如上图所示,我们可以选择在win中开发,也可以在linux中开发,开发过程我们可以在本地环境进行调试,标配的工具都是Maven和Eclipse。
3. 用Maven构建Mahout开发环境
- 1. 用Maven创建一个标准化的Java项目
- 2. 导入项目到eclipse
- 3. 增加mahout依赖,修改pom.xml
- 4. 下载依赖
1). 用Maven创建一个标准化的Java项目
~ D:\workspace\java>mvn archetype:generate -DarchetypeGroupId=org.apache.maven.archetypes
-DgroupId=org.conan.mymahout -DartifactId=myMahout -DpackageName=org.conan.mymahout -Dversion=1.0-SNAPSHOT -DinteractiveMode=false
进入项目,执行mvn命令
~ D:\workspace\java>cd myMahout
~ D:\workspace\java\myMahout>mvn clean install
2). 导入项目到eclipse
我们创建好了一个基本的maven项目,然后导入到eclipse中。 这里我们最好已安装好了Maven的插件。
3). 增加mahout依赖,修改pom.xml
这里我使用hadoop-0.6版本,同时去掉对junit的依赖,修改文件:pom.xml
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.conan.mymahout</groupId>
<artifactId>myMahout</artifactId>
<packaging>jar</packaging>
<version>1.0-SNAPSHOT</version>
<name>myMahout</name>
<url>http://maven.apache.org</url> <properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<mahout.version>0.6</mahout.version>
</properties> <dependencies>
<dependency>
<groupId>org.apache.mahout</groupId>
<artifactId>mahout-core</artifactId>
<version>${mahout.version}</version>
</dependency>
<dependency>
<groupId>org.apache.mahout</groupId>
<artifactId>mahout-integration</artifactId>
<version>${mahout.version}</version>
<exclusions>
<exclusion>
<groupId>org.mortbay.jetty</groupId>
<artifactId>jetty</artifactId>
</exclusion>
<exclusion>
<groupId>org.apache.cassandra</groupId>
<artifactId>cassandra-all</artifactId>
</exclusion>
<exclusion>
<groupId>me.prettyprint</groupId>
<artifactId>hector-core</artifactId>
</exclusion>
</exclusions>
</dependency>
</dependencies>
</project>
4). 下载依赖
~ mvn clean install
项目的依赖程序,被自动加载的库路径下面。
4. 用Mahout实现协同过滤userCF
Mahout协同过滤UserCF深度算法剖析,请参考文章:用R解析Mahout用户推荐协同过滤算法(UserCF)
实现步骤:
- 1. 准备数据文件: item.csv
- 2. Java程序:UserCF.java
- 3. 运行程序
- 4. 推荐结果解读
1). 新建数据文件: item.csv
~ mkdir datafile
~ vi datafile/item.csv 1,101,5.0
1,102,3.0
1,103,2.5
2,101,2.0
2,102,2.5
2,103,5.0
2,104,2.0
3,101,2.5
3,104,4.0
3,105,4.5
3,107,5.0
4,101,5.0
4,103,3.0
4,104,4.5
4,106,4.0
5,101,4.0
5,102,3.0
5,103,2.0
5,104,4.0
5,105,3.5
5,106,4.0
数据解释:每一行有三列,第一列是用户ID,第二列是物品ID,第三列是用户对物品的打分。
2). Java程序:UserCF.java
Mahout协同过滤的数据流,调用过程。
上图摘自:Mahout in Action
新建JAVA类:org.conan.mymahout.recommendation.UserCF.java
package org.conan.mymahout.recommendation; import java.io.File;
import java.io.IOException;
import java.util.List; import org.apache.mahout.cf.taste.common.TasteException;
import org.apache.mahout.cf.taste.impl.common.LongPrimitiveIterator;
import org.apache.mahout.cf.taste.impl.model.file.FileDataModel;
import org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood;
import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender;
import org.apache.mahout.cf.taste.impl.similarity.EuclideanDistanceSimilarity;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.recommender.RecommendedItem;
import org.apache.mahout.cf.taste.recommender.Recommender;
import org.apache.mahout.cf.taste.similarity.UserSimilarity; public class UserCF { final static int NEIGHBORHOOD_NUM = 2;
final static int RECOMMENDER_NUM = 3; public static void main(String[] args) throws IOException, TasteException {
String file = "datafile/item.csv";
DataModel model = new FileDataModel(new File(file));
UserSimilarity user = new EuclideanDistanceSimilarity(model);
NearestNUserNeighborhood neighbor = new NearestNUserNeighborhood(NEIGHBORHOOD_NUM, user, model);
Recommender r = new GenericUserBasedRecommender(model, neighbor, user);
LongPrimitiveIterator iter = model.getUserIDs(); while (iter.hasNext()) {
long uid = iter.nextLong();
List list = r.recommend(uid, RECOMMENDER_NUM);
System.out.printf("uid:%s", uid);
for (RecommendedItem ritem : list) {
System.out.printf("(%s,%f)", ritem.getItemID(), ritem.getValue());
}
System.out.println();
}
}
}
3). 运行程序
控制台输出:
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
uid:1(104,4.274336)(106,4.000000)
uid:2(105,4.055916)
uid:3(103,3.360987)(102,2.773169)
uid:4(102,3.000000)
uid:5
4). 推荐结果解读
- 向用户ID1,推荐前二个最相关的物品, 104和106
- 向用户ID2,推荐前二个最相关的物品, 但只有一个105
- 向用户ID3,推荐前二个最相关的物品, 103和102
- 向用户ID4,推荐前二个最相关的物品, 但只有一个102
- 向用户ID5,推荐前二个最相关的物品, 没有符合的
5. 用Mahout实现kmeans
- 1. 准备数据文件: randomData.csv
- 2. Java程序:Kmeans.java
- 3. 运行Java程序
- 4. mahout结果解读
- 5. 用R语言实现Kmeans算法
- 6. 比较Mahout和R的结果
1). 准备数据文件: randomData.csv
~ vi datafile/randomData.csv -0.883033363823402,-3.31967192630249
-2.39312626419456,3.34726861118871
2.66976353341256,1.85144276077058
-1.09922906899594,-6.06261735207489
-4.36361936997216,1.90509905380532
-0.00351835125495037,-0.610105996559153
-2.9962958796338,-3.60959839525735
-3.27529418132066,0.0230099799641799
2.17665594420569,6.77290756817957
-2.47862038335637,2.53431833167278
5.53654901906814,2.65089785582474
5.66257474538338,6.86783609641077
-0.558946883114376,1.22332819416237
5.11728525486132,3.74663871584768
1.91240516693351,2.95874731384062
-2.49747101306535,2.05006504756875
3.98781883213459,1.00780938946366
这里只截取了一部分,更多的数据请查看源代码。
注:我是通过R语言生成的randomData.csv
x1<-cbind(x=rnorm(400,1,3),y=rnorm(400,1,3))
x2<-cbind(x=rnorm(300,1,0.5),y=rnorm(300,0,0.5))
x3<-cbind(x=rnorm(300,0,0.1),y=rnorm(300,2,0.2))
x<-rbind(x1,x2,x3)
write.table(x,file="randomData.csv",sep=",",row.names=FALSE,col.names=FALSE)
2). Java程序:Kmeans.java
Mahout中kmeans方法的算法实现过程。
上图摘自:Mahout in Action
新建JAVA类:org.conan.mymahout.cluster06.Kmeans.java
package org.conan.mymahout.cluster06; import java.io.IOException;
import java.util.ArrayList;
import java.util.List; import org.apache.mahout.clustering.kmeans.Cluster;
import org.apache.mahout.clustering.kmeans.KMeansClusterer;
import org.apache.mahout.common.distance.EuclideanDistanceMeasure;
import org.apache.mahout.math.Vector; public class Kmeans { public static void main(String[] args) throws IOException {
List sampleData = MathUtil.readFileToVector("datafile/randomData.csv"); int k = 3;
double threshold = 0.01; List randomPoints = MathUtil.chooseRandomPoints(sampleData, k);
for (Vector vector : randomPoints) {
System.out.println("Init Point center: " + vector);
} List clusters = new ArrayList();
for (int i = 0; i < k; i++) {
clusters.add(new Cluster(randomPoints.get(i), i, new EuclideanDistanceMeasure()));
} List<List> finalClusters = KMeansClusterer.clusterPoints(sampleData, clusters, new EuclideanDistanceMeasure(), k, threshold);
for (Cluster cluster : finalClusters.get(finalClusters.size() - 1)) {
System.out.println("Cluster id: " + cluster.getId() + " center: " + cluster.getCenter().asFormatString());
}
} }
3). 运行Java程序
控制台输出:
Init Point center: {0:-0.162693685149196,1:2.19951550286862}
Init Point center: {0:-0.0409782183083317,1:2.09376666042057}
Init Point center: {0:0.158401778474687,1:2.37208412905273}
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
Cluster id: 0 center: {0:-2.686856800552941,1:1.8939462954763795}
Cluster id: 1 center: {0:0.6334255423230666,1:0.49472852972602105}
Cluster id: 2 center: {0:3.334520309711998,1:3.2758355898247653}
4). mahout结果解读
- 1. Init Point center表示,kmeans算法初始时的设置的3个中心点
- 2. Cluster center表示,聚类后找到3个中心点
6. 模板项目上传github
https://github.com/bsspirit/maven_mahout_template/tree/mahout-0.6
大家可以下载这个项目,做为开发的起点。
~ git clone https://github.com/bsspirit/maven_mahout_template
~ git checkout mahout-0.6
我们完成了第一步,下面就将正式进入mahout算法的开发实践,并且应用到hadoop集群的环境中。
檢測語言 阿尔巴尼亚语 阿拉伯语 阿塞拜疆语 爱尔兰语 爱沙尼亚语 巴斯克语 白俄罗斯语 保加利亚语 冰岛语 波兰语 波斯尼亚语 波斯语 布尔语(南非荷兰语) 丹麦语 德语 俄语 法语 菲律宾语 芬兰语 高棉语 格鲁吉亚语 古吉拉特语 哈萨克语 海地克里奥尔语 韩语 豪萨语 荷兰语 加利西亚语 加泰罗尼亚语 捷克语 卡纳达语 克罗地亚语 拉丁语 拉脱维亚语 老挝语 立陶宛语 罗马尼亚语 马尔加什语 马耳他语 马拉地语 马拉雅拉姆语 马来语 马其顿语 毛利语 蒙古语 孟加拉语 缅甸语 苗语 南非祖鲁语 尼泊尔语 挪威语 旁遮普语 葡萄牙语 齐切瓦语 日语 瑞典语 塞尔维亚语 塞索托语 僧伽罗语 世界语 斯洛伐克语 斯洛文尼亚语 斯瓦希里语 宿务语 索马里语 塔吉克语 泰卢固语 泰米尔语 泰语 土耳其语 威尔士语 乌尔都语 乌克兰语 乌兹别克语 希伯来语 希腊语 西班牙语 匈牙利语 亚美尼亚语 伊博语 意大利语 意第绪语 印地语 印尼巽他语 印尼语 印尼爪哇语 英语 约鲁巴语 越南语 中文简体 中文繁体 |
阿尔巴尼亚语 阿拉伯语 阿塞拜疆语 爱尔兰语 爱沙尼亚语 巴斯克语 白俄罗斯语 保加利亚语 冰岛语 波兰语 波斯尼亚语 波斯语 布尔语(南非荷兰语) 丹麦语 德语 俄语 法语 菲律宾语 芬兰语 高棉语 格鲁吉亚语 古吉拉特语 哈萨克语 海地克里奥尔语 韩语 豪萨语 荷兰语 加利西亚语 加泰罗尼亚语 捷克语 卡纳达语 克罗地亚语 拉丁语 拉脱维亚语 老挝语 立陶宛语 罗马尼亚语 马尔加什语 马耳他语 马拉地语 马拉雅拉姆语 马来语 马其顿语 毛利语 蒙古语 孟加拉语 缅甸语 苗语 南非祖鲁语 尼泊尔语 挪威语 旁遮普语 葡萄牙语 齐切瓦语 日语 瑞典语 塞尔维亚语 塞索托语 僧伽罗语 世界语 斯洛伐克语 斯洛文尼亚语 斯瓦希里语 宿务语 索马里语 塔吉克语 泰卢固语 泰米尔语 泰语 土耳其语 威尔士语 乌尔都语 乌克兰语 乌兹别克语 希伯来语 希腊语 西班牙语 匈牙利语 亚美尼亚语 伊博语 意大利语 意第绪语 印地语 印尼巽他语 印尼语 印尼爪哇语 英语 约鲁巴语 越南语 中文简体 中文繁体 |
用Maven构建Mahout项目实现协同过滤userCF--单机版的更多相关文章
- 用Maven构建Mahout项目实现协同过滤ItemCF--集群版
本文来自于:http://blog.fens.me/hadoop-mahout-mapreduce-itemcf/ 前言 Mahout是Hadoop家族一员,从血缘就继承了Hadoop程序的特点,支持 ...
- 转】用Maven构建Mahout项目
原博文出自于: http://blog.fens.me/hadoop-mahout-maven-eclipse/ 感谢! 用Maven构建Mahout项目 Hadoop家族系列文章,主要介绍Hadoo ...
- 用Maven构建Mahout项目
转载请注明出处:http://blog.fens.me/hadoop-mahout-maven-eclipse/ Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, ...
- 使用Maven构建Android项目
http://www.ikoding.com/build-android-project-with-maven/ 之前一直在做WEB前端项目,前段时间接手第一个Android项目,拿到代码之后,先试着 ...
- 转】用Maven构建Hadoop项目
原博文出自于: http://blog.fens.me/hadoop-maven-eclipse/ 感谢! 用Maven构建Hadoop项目 Hadoop家族系列文章,主要介绍Hadoop家族产品 ...
- 使用Eclipse maven构建springmvc项目
Eclipse maven构建springmvc项目 Listener 监听器 架构 使用Log4J监控系统日志邮件警报 2014-12-16 13:09:16 控制器在完成逻辑处理后,通常会产生一些 ...
- Maven学习:Eclipse使用maven构建web项目(转)
Maven学习:Eclipse使用maven构建web项目(转) 8.更改class路径:右键项目,Java Build Path -> Source 下面应该有4个文件夹.src/main/j ...
- 利用Eclipse中的Maven构建Web项目(三)
利用Eclipse中的Maven构建Web项目 1.将Maven Project转换成动态Web项目,鼠标右键项目,输入"Project Facets" 2.依据Dynamic W ...
- Eclipse Maven构建WebApp项目资源目录显示不全的原因与解决方式
一.问题展示 1.Eclipse在使用Maven构建WebApp项目的时候,首先Maven的安装和配置都没有问题的,但是构建项目之后,Maven项目要求的几个必须要有的资源目录显示不了: 问题如下图: ...
随机推荐
- jdbc.properties
#privilege database privilege.jdbc.driverClassName=com.mysql.jdbc.Driver privilege.jdbc.url=jdbc\:my ...
- session用户账号认证(一个用户登陆,踢出前一个用户)
在web.xml中配置: <listener> <listener-class>cn.edu.hbcf.common.listener.SessionAttributeList ...
- 如何利用gdb调试程序?
程序的大体意思就是各一个数组赋值,然后输出来程序已经写在了上面,下面我们就来看一下如何产生带有调试信息的编译文件,这里我们要使用gcc的-g参数,用于在编译文件中加入一些调试信息.发现加了-g和没有加 ...
- ZABBIX监控原理
zabbix实现原理及架构详解 想要用好zabbix进行监控,那么我们首要需要了解下zabbix这个软件的实现原理及它的架构.建议多阅读官方文档. 一.总体上zabbix的整体架构如下图所示: 重 ...
- 流媒体服务器开发笔记(2)--RTCP协议介绍
http://blog.sina.com.cn/s/blog_53061af00100o2no.html ——————————————————————————————————————————————— ...
- Java逍遥游记读书笔记<一>
前言 必须先来一句,这是入门级别,高手勿喷~ 写Android的时候总有一些语句不是很理解,其实大部分是Java的内容,所以想系统的学下Java. 这本书——<Java逍遥游记>是在图书馆 ...
- iOS --转载 NSRange 和 NSString 详解
一.NSRange 1.NSRange的介绍 NSRange是Foundation框架中比较常用的结构体, 它的定义如下: typedef struct _NSRange { NSUInteger l ...
- BZOJ 3362 Navigation Nightmare 带权并查集
题目大意:给定一些点之间的位置关系,求两个点之间的曼哈顿距离 此题土豪题.只是POJ也有一道相同的题,能够刷一下 别被题目坑到了,这题不强制在线.把询问离线处理就可以 然后就是带权并查集的问题了.. ...
- CocoaPods安装和使用教程Code4App LOGO
本文转载至 http://code4app.com/article/cocoapods-install-usage Code4App 原创文章.转载请注明出处:http://code4app.com/ ...
- 带jsk证书,请求https接口
首先是三个返回的实体类 BaseVo.java package https2; import java.io.Serializable; import java.lang.reflect.Invoca ...