多线程编程中,当代码需要同步时我们会用到锁。Java为我们提供了内置锁(synchronized)和显式锁(ReentrantLock)两种同步方式。显式锁是JDK1.5引入的,这两种锁有什么异同呢?是仅仅增加了一种选择还是另有其因?本文为您一探究竟。
 
JDK1.5中,synchronized是性能低效的。因为这是一个重量级操作,它对性能最大的影响是阻塞的是实现,挂起线程和恢复线程的操作都需要转入内核态中完成,这些操作给系统的并发性带来了很大的压力。相比之下使用Java提供的Lock对象,性能更高一些。多线程环境下,synchronized的吞吐量下降的非常严重,而ReentrankLock则能基本保持在同一个比较稳定的水平上。
 
到了JDK1.6,发生了变化,对synchronize加入了很多优化措施,有自适应自旋,锁消除,锁粗化,轻量级锁,偏向锁等等。导致在JDK1.6上synchronize的性能并不比Lock差。官方也表示,他们也更支持synchronize,在未来的版本中还有优化余地,所以还是提倡在synchronized能实现需求的情况下,优先考虑使用synchronized来进行同步。
 

内置锁

 
// synchronized关键字用法示例
public synchronized void add(int t){// 同步方法
this.v += t;
} public static synchronized void sub(int t){// 同步静态方法
value -= t;
}
public int decrementAndGet(){
synchronized(obj){// 同步代码块
return --v;
}
}

  

这就是内置锁的全部用法,你已经学会了。内置锁使用起来非常方便,不需要显式的获取和释放,任何一个对象都能作为一把内置锁。使用内置锁能够解决大部分的同步场景。“任何一个对象都能作为一把内置锁”也意味着出现synchronized关键字的地方,都有一个对象与之关联,具体说来:

1)当synchronized作用于普通方法是,锁对象是this;

2)当synchronized作用于静态方法是,锁对象是当前类的Class对象;

3)当synchronized作用于代码块时,锁对象是synchronized(obj)中的这个obj。

显式锁

内置锁这么好用,为什么还需多出一个显式锁呢?因为有些事情内置锁是做不了的,

比如:我们想给锁加个等待时间超时时间,超时还未获得锁就放弃,不至于无限等下去;

我们想以可中断的方式获取锁,这样外部线程给我们发一个中断信号就能唤起等待锁的线程;

我们想为锁维持多个等待队列,比如一个生产者队列,一个消费者队列,一边提高锁的效率。

显式锁(ReentrantLock)正式为了解决这些灵活需求而生。ReentrantLock的字面意思是可重入锁,可重入的意思是线程可以同时多次请求同一把锁,而不会自己导致自己死锁。

内置锁和显式锁的区别

可定时:RenentrantLock.tryLock(long timeout, TimeUnit unit)提供了一种以定时结束等待的方式,如果线程在指定的时间内没有获得锁,该方法就会返回false并结束线程等待。

可中断:你一定见过InterruptedException,很多跟多线程相关的方法会抛出该异常,这个异常并不是一个缺陷导致的负担,而是一种必须,或者说是一件好事。可中断性给我们提供了一种让线程提前结束的方式(而不是非得等到线程执行结束),这对于要取消耗时的任务非常有用。对于内置锁,线程拿不到内置锁就会一直等待,除了获取锁没有其他办法能够让其结束等待。RenentrantLock.lockInterruptibly()给我们提供了一种以中断结束等待的方式。

条件队列(condition queue):线程在获取锁之后,可能会由于等待某个条件发生而进入等待状态(内置锁通过Object.wait()方法,显式锁通过Condition.await()方法),进入等待状态的线程会挂起并自动释放锁,这些线程会被放入到条件队列当中。synchronized对应的只有一个条件队列,而ReentrantLock可以有多个条件队列,多个队列有什么好处呢?请往下看。

条件谓词:线程在获取锁之后,有时候还需要等待某个条件满足才能做事情,比如生产者需要等到“缓存不满”才能往队列里放入消息,而消费者需要等到“缓存非空”才能从队列里取出消息。这些条件被称作条件谓词,线程需要先获取锁,然后判断条件谓词是否满足,如果不满足就不往下执行,相应的线程就会放弃执行权并自动释放锁。使用同一把锁的不同的线程可能有不同的条件谓词,如果只有一个条件队列,当某个条件谓词满足时就无法判断该唤醒条件队列里的哪一个线程;但是如果每个条件谓词都有一个单独的条件队列,当某个条件满足时我们就知道应该唤醒对应队列上的线程(内置锁通过Object.notify()或者Object.notifyAll()方法唤醒,显式锁通过Condition.signal()或者Condition.signalAll()方法唤醒)。这就是多个条件队列的好处。

使用内置锁时,对象本身既是一把锁又是一个条件队列;使用显式锁时,RenentrantLock的对象是锁,条件队列通过RenentrantLock.newCondition()方法获取,多次调用该方法可以得到多个条件队列。

一个使用显式锁的典型示例如下:

// 显式锁的使用示例
ReentrantLock lock = new ReentrantLock(); // 获取锁,这是跟synchronized关键字对应的用法。
lock.lock();
try{
// your code
}finally{
lock.unlock();
} // 可定时,超过指定时间为得到锁就放弃
try {
lock.tryLock(10, TimeUnit.SECONDS);
try {
// your code
}finally {
lock.unlock();
}
} catch (InterruptedException e1) {
// exception handling
} // 可中断,等待获取锁的过程中线程线程可被中断
try {
lock.lockInterruptibly();
try {
// your code
}finally {
lock.unlock();
}
} catch (InterruptedException e) {
// exception handling
} // 多个等待队列,具体参考[ArrayBlockingQueue](https://github.com/CarpenterLee/JCRecipes/blob/master/markdown/ArrayBlockingQueue.md)
/** Condition for waiting takes */
private final Condition notEmpty = lock.newCondition();
/** Condition for waiting puts */
private final Condition notFull = lock.newCondition();

  

注意,上述代码将unlock()放在finally块里,这么做是必需的。显式锁不像内置锁那样会自动释放,使用显式锁一定要在finally块中手动释放,如果获取锁后由于异常的原因没有释放锁,那么这把锁将永远得不到释放!将unlock()放在finally块中,保证无论发生什么都能够正常释放。

结论

内置锁能够解决大部分需要同步的场景,只有在需要额外灵活性是才需要考虑显式锁,比如可定时、可中断、多等待队列等特性。

显式锁虽然灵活,但是需要显式的申请和释放,并且释放一定要放到finally块中,否则可能会因为异常导致锁永远无法释放!这是显式锁最明显的缺点。

综上,当需要同步时请优先考虑更安全的更易用的隐式锁。

底层实现

1.互斥同步最主要的问题就是进行线程阻塞和唤醒所带来的性能问题,因而这种同步又称为阻塞同步,它属于一种悲观的并发策略,即线程获得的是独占锁。独占锁意味着其他线程只能依靠阻塞来等待线程释放锁。而在CPU转换线程阻塞时会引起线程上下文切换,当有很多线程竞争锁的时候,会引起CPU频繁的上下文切换导致效率很低。synchronized采用的便是这种并发策略。

2.随着指令集的发展,我们有了另一种选择:基于冲突检测的乐观并发策略,通俗地讲就是先进性操作,如果没有其他线程争用共享数据,那操作就成功了,如果共享数据被争用,产生了冲突,那就再进行其他的补偿措施(最常见的补偿措施就是不断地重试,直到试成功为止),这种乐观的并发策略的许多实现都不需要把线程挂起,因此这种同步被称为非阻塞同步。ReetrantLock采用的便是这种并发策略。

3.在乐观的并发策略中,需要操作和冲突检测这两个步骤具备原子性,它靠硬件指令来保证,这里用的是CAS操作(Compare and Swap)。JDK1.5之后,Java程序才可以使用CAS操作。我们可以进一步研究ReentrantLock的源代码,会发现其中比较重要的获得锁的一个方法是compareAndSetState,这里其实就是调用的CPU提供的特殊指令。现代的CPU提供了指令,可以自动更新共享数据,而且能够检测到其他线程的干扰,而compareAndSet() 就用这些代替了锁定。这个算法称作非阻塞算法,意思是一个线程的失败或者挂起不应该影响其他线程的失败或挂起。

Java 5中引入了注入AtomicInteger、AtomicLong、AtomicReference等特殊的原子性变量类,它们提供的如:compareAndSet()、incrementAndSet()和getAndIncrement()等方法都使用了CAS操作。因此,它们都是由硬件指令来保证的原子方法。

用途比较

基本语法上,ReentrantLock与synchronized很相似,它们都具备一样的线程重入特性,只是代码写法上有点区别而已,一个表现为API层面的互斥锁(Lock),一个表现为原生语法(JVM)层面的互斥锁(synchronized)。ReentrantLock相对synchronized而言还是增加了一些高级功能,主要有以下三项:

1、等待可中断:当持有锁的线程长期不释放锁时,正在等待的线程可以选择放弃等待,改为处理其他事情,它对处理执行时间非常上的同步块很有帮助。而在等待由synchronized产生的互斥锁时,会一直阻塞,是不能被中断的。

2、可实现公平锁:多个线程在等待同一个锁时,必须按照申请锁的时间顺序排队等待,而非公平锁则不保证这点,在锁释放时,任何一个等待锁的线程都有机会获得锁。synchronized中的锁是非公平锁,ReentrantLock默认情况下也是非公平锁,但可以通过构造方法ReentrantLock(ture)来要求使用公平锁。

3、锁可以绑定多个条件:ReentrantLock对象可以同时绑定多个Condition对象(名曰:条件变量或条件队列),而在synchronized中,锁对象的wait() 和notify() 或notifyAll()方法可以实现一个隐含条件,但如果要和多于一个的条件关联的时候,就不得不额外地添加一个锁,而ReentrantLock则无需这么做,只需要多次调用newCondition() 方法即可。而且我们还可以通过绑定Condition对象来判断当前线程通知的是哪些线程(即与Condition对象绑定在一起的其他线程)。

深入理解java内置锁(synchronized)和显式锁(ReentrantLock)的更多相关文章

  1. 深入理解Java内置锁和显式锁

    synchronized and Reentrantlock 多线程编程中,当代码需要同步时我们会用到锁.Java为我们提供了内置锁(synchronized)和显式锁(ReentrantLock)两 ...

  2. javascript内置函数提供的显式绑定

    内置函数提供的显式绑定 最近在开发中遇到使用arr.map(module.fun) 这样的写法时(在一个模块调用了另外一个模块的方法), 造成了函数中this丢失的问题, 显示为undefined, ...

  3. java里的锁总结(synchronized隐式锁、Lock显式锁、volatile、CAS)

    一.介绍 首先, java 的锁分为两类: 第一类是 synchronized 同步关键字,这个关键字属于隐式的锁,是 jvm 层面实现,使用的时候看不见: 第二类是在 jdk5 后增加的 Lock ...

  4. java并发编程(6)显式锁

    显式锁 一.Lock与ReentrantLock Lock提供了一种无条件的.可轮询的.定时的以及可中断的锁获取操作,所有的加锁和解锁方法都是显式的 ReentrantLock实现了Lock:并提供了 ...

  5. Java编程的逻辑 (71) - 显式锁

    ​本系列文章经补充和完善,已修订整理成书<Java编程的逻辑>,由机械工业出版社华章分社出版,于2018年1月上市热销,读者好评如潮!各大网店和书店有售,欢迎购买,京东自营链接:http: ...

  6. Java显式锁

    Java 显式锁. 一.显式锁 什么是显式锁? 由自己手动获取锁,然后手动释放的锁. 有了 synchronized(内置锁) 为什么还要 Lock(显示锁)? 使用 synchronized 关键字 ...

  7. Java并发之显式锁和隐式锁的区别

    Java并发之显式锁和隐式锁的区别 在面试的过程中有可能会问到:在Java并发编程中,锁有两种实现:使用隐式锁和使用显示锁分别是什么?两者的区别是什么?所谓的显式锁和隐式锁的区别也就是说说Synchr ...

  8. Java内置锁和简单用法

    一.简单的锁知识 关于内置锁 Java具有通过synchronized关键字实现的内置锁,内置锁获得锁和释放锁是隐式的,进入synchronized修饰的代码就获得锁,走出相应的代码就释放锁. jav ...

  9. 深刨显式锁ReentrantLock原理及其与内置锁的区别,以及读写锁ReentrantReadWriteLock使用场景

    13.显示锁 在Java5.0之前,在协调对共享对象的访问时可以使用的机制只有synchronized和volatile.Java5.0增加了一种新的机制:ReentrantLock.与之前提到过的机 ...

随机推荐

  1. mybatis中的resultMap实际作用

    resultMap和resultType在实际的使用上完全可以进行替换,但是resultMap有比resultType更多的一个功能.我们先定义一个简单的resultMap例子 <resultM ...

  2. Caliburn.Micro 杰的入门教程3,事件和参数

    Caliburn.Micro 杰的入门教程1(翻译)Caliburn.Micro 杰的入门教程2 ,了解Data Binding 和 Events(翻译)Caliburn.Micro 杰的入门教程3, ...

  3. 北京Uber优步司机奖励政策(1月13日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  4. MySql 使用explain分析查询

    今天写了个慢到哭的查询,想用explain分析下执行计划,后来发现explain也是有局限性的: EXPLAIN不会告诉你关于触发器.存储过程的信息或用户自定义函数对查询的影响情况 •EXPLAIN不 ...

  5. FreeRTOS信号量的封装函数参数是二级指针

    1. 先看正确的封装方式,问题所在,为什么要用2级指针 void cissys_lockcreate(void** mutex) { //创建信号量,应该是互斥锁 *mutex = ((Semapho ...

  6. steam更新出错 应用运行中

    游戏程序没有完全关闭,仍在后台运行. 打开任务处理器,选择进程,下面找到TslGame,关闭之.

  7. Django自定义管理表单

    修改polls/admin.py: from django.contrib import admin from .models import Choice, Question class Choice ...

  8. C#冒泡排序法及优化

    冒泡排序法及优化: static void Main(string[] args) { , , , , , }; ; //冒泡排序法 ; i < sums.Length - ; i++) //总 ...

  9. python学习笔记04 --------------基本运算符

    1.算数运算 + 加 - 减 * 乘 /   除 % 取模(先做除法,然后返回余数) ** 乘方(幂运算) //          取整(相除,然后返回商的整数部分) 2.比较运算(返回布尔值) == ...

  10. 166. Nth to Last Node in List

    Description Find the nth to last element of a singly linked list. The minimum number of nodes in lis ...