Poj1482
Time Limit: 5000MS | Memory Limit: 30000K | |
Total Submissions: 1428 | Accepted: 557 |
Description
Tinyware Inc. is one of those companies. After releasing a new word processing software this summer, they have been producing patches ever since. Only this weekend they have realized a big problem with the patches they released. While all patches fix some bugs, they often rely on other bugs to be present to be installed. This happens because to fix one bug, the patches exploit the special behavior of the program due to another bug.
More formally, the situation looks like this. Tinyware has found a total of n bugs B = {b1, b2, ..., bn} in their software. And they have released m patches p1, p2, ..., pm. To apply patch pi to the software, the bugs Bi+ in B have to be present in the software, and the bugs Bi- in B must be absent (of course Bi+ ∩ Bi- = Φ). The patch then fixes the bugs Fi- in B (if they have been present) and introduces the new bugs Fi+ in B (where, again, Fi+ ∩ Fi- = Φ).
Tinyware's problem is a simple one. Given the original version of their software, which contains all the bugs in B, it is possible to apply a sequence of patches to the software which results in a bug- free version of the software? And if so, assuming that every patch takes a certain time to apply, how long does the fastest sequence take?
Input
The first of these strings describes the bugs that have to be present or absent before the patch can be applied. The i-th position of that string is a ``+'' if bug bi has to be present, a ``-'' if bug bi has to be absent, and a `` 0'' if it doesn't matter whether the bug is present or not.
The second string describes which bugs are fixed and introduced by the patch. The i-th position of that string is a ``+'' if bug bi is introduced by the patch, a ``-'' if bug bi is removed by the patch (if it was present), and a ``0'' if bug bi is not affected by the patch (if it was present before, it still is, if it wasn't, is still isn't).
The input is terminated by a description starting with n = m = 0. This test case should not be processed.
Output
Print a blank line after each test case.
Sample Input
3 3
1 000 00-
1 00- 0-+
2 0-- -++
4 1
7 0-0+ ----
0 0
Sample Output
Product 1
Fastest sequence takes 8 seconds. Product 2
Bugs cannot be fixed.
Source
题意:补丁在修正bug时,有时也会引入新的bug。假定有n个潜在的bug m个补丁,每个补丁用两个长度为n的字符串表示,其中字符串的每个位置表示一个bug,第一个串表示打补丁之前的状态('-'表示该bug必须不存在,’+‘表示必须存在,0表示无所谓,第二个串表示打补丁之后的状态(-'表示不存在,’+‘表示存在,0表示不变)。每个补丁都有一个执行时间,你的任务使用最少的时间把一个bug都存在的软件通过打补丁的方式变得没有bug。一个补丁可以打多次。
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N (1<<20)
const int maxq=N+;
int q[N+],f[N+],ha[N+],vis[N+],w[],pre[][],fixed[][];
int n,m,maxn,cas=;
char s1[],s2[];
void cook_the_raw(int i){
pre[i][]=pre[i][]=fixed[i][]=;
fixed[i][]=maxn;
for(int j=;j<n;j++){
if(s1[j]=='+') pre[i][]+=<<j;//pre[i][1]某位为1表示patch[i]apply条件要求该漏洞
else if(s1[j]=='-') pre[i][]+=<<j;//pre[i][0]某位为1表示patch[i]apply条件要求无该漏洞
if(s2[j]=='+') fixed[i][]+=<<j;//fixed[i][1]某位为1表示apply后得到该漏洞
else if(s2[j]=='-') fixed[i][] -=<<j;//fixed[i][0]某位为0表示apply后修复该漏洞
}
}
void bfs(){
int head,tail;
head=tail=;
q[tail++]=maxn;
vis[maxn]=true;
while(head!=tail){
int u=q[head++];
if(head==maxq) return ;
for(int i=;i<m;i++){
if(((u&pre[i][])==pre[i][])&&((u&pre[i][])==)){//满足patch[i]apply条件
int v=(u|fixed[i][])&fixed[i][];//转移到的状态
if(ha[v]!=cas||f[v]>f[u]+w[i]){
f[v]=f[u]+w[i];ha[v]=cas;
if(!vis[v]){
q[tail++]=v;
if(tail==maxq) return ;
vis[v]=;
}
}
}
}
vis[u]=;
}
}
int main()
{
while(scanf("%d%d",&n,&m)&&n+m){
cas++;
maxn=(<<n)-;
f[maxn]=;ha[maxn]=cas;
for(int i=;i<m;i++){
scanf("%d %s %s",&w[i],s1,s2);
cook_the_raw(i);
}
bfs();
printf("Product %d\n",cas);
if(ha[]!=cas) printf("Bugs cannot be fixed.\n\n");
else printf("Fastest sequence takes %d seconds.\n\n",f[]);
}
return ;
}
Poj1482的更多相关文章
- poj分类 很好很有层次感。
初期: 一.基本算法: (1)枚举. (poj1753,poj2965) (2)贪心(poj1328,poj2109,poj2586) (3)递归和分治法. ( ...
- 【转】POJ题目分类推荐 (很好很有层次感)
OJ上的一些水题(可用来练手和增加自信) (poj3299,poj2159,poj2739,poj1083,poj2262,poj1503,poj3006,poj2255,poj3094)初期: 一. ...
- 【转】ACM训练计划
[转] POJ推荐50题以及ACM训练方案 -- : 转载自 wade_wang 最终编辑 000lzl POJ 推荐50题 第一类 动态规划(至少6题, 和 必做) 和 (可贪心) (稍难) 第二类 ...
- POJ 题目分类(转载)
Log 2016-3-21 网上找的POJ分类,来源已经不清楚了.百度能百度到一大把.贴一份在博客上,鞭策自己刷题,不能偷懒!! 初期: 一.基本算法: (1)枚举. (poj1753,poj2965 ...
- (转)POJ题目分类
初期:一.基本算法: (1)枚举. (poj1753,poj2965) (2)贪心(poj1328,poj2109,poj2586) (3)递归和分治法. (4)递推. ...
- acm常见算法及例题
转自:http://blog.csdn.net/hengjie2009/article/details/7540135 acm常见算法及例题 初期:一.基本算法: (1)枚举. (poj17 ...
- poj分类
初期: 一.基本算法: (1)枚举. (poj1753,poj2965) (2)贪心(poj1328,poj2109,poj2586) (3)递归和分治法. ( ...
- 转载 ACM训练计划
leetcode代码 利用堆栈:http://oj.leetcode.com/problems/evaluate-reverse-polish-notation/http://oj.leetcode. ...
- ACM算法总结及刷题参考
参考:http://bbs.byr.cn/#!article/ACM_ICPC/11777 OJ上的一些水题(可用来练手和增加自信)(poj3299,poj2159,poj2739,poj1083,p ...
随机推荐
- vue结合Promise及async实现高效开发。
在vue中平时的开发中我们应该都会遇到promise函数,比如我们常用的axios,resource这都是用来做http请求的插件. 在平时的开发里,关于axios我们可能是这样写的 import a ...
- swipeRefreshLayout与webview滑动冲突
遇到这么个bug,webview使用swipeRefreshLayout时,下拉时事件不会被webview捕获,而是执行swipeRefreshLayout的刷新,网上一大堆一大堆的解决办法,都是什么 ...
- js 时间对比
https://www.cnblogs.com/xiangsj/p/7977325.html http://www.jb51.net/article/45560.htm isOverdue (time ...
- JUC组件扩展(二)-JAVA并行框架Fork/Join(一):简介和代码示例
一.背景 虽然目前处理器核心数已经发展到很大数目,但是按任务并发处理并不能完全充分的利用处理器资源,因为一般的应用程序没有那么多的并发处理任务.基于这种现状,考虑把一个任务拆分成多个单元,每个单元分别 ...
- Mac Yosemite上安装macvim和YouCompleteMe
今天在macvim上安装YouCompleteMe的时候,碰到一个运行vim崩溃的错误.查了半天终于解决! 先上一下安装macvim的过程 # install xcode and command li ...
- 转-linux下配置socks5代理
简介: 在Linux下有各种各样的代理程序可用,象最常用的Squid,是http/https代理,也能代理ftp请求,但它实际上 是个HTTP代理程序,不是ftp代理,但它能处理ftp代理请求,就象浏 ...
- [Delphi] 常用字符集简介
转载 http://www.cnblogs.com/yangyxd/articles/4778483.html 字符集 ANSI (ASCII)美国信息互换标准编码 GB 2312信息交换用汉字编码字 ...
- ORACLE 中 TRANSLATE的用法
--TRANSLATE(string,from_str,to_str) --to_str和from_str中的字符一一对应 --如果string里有,from_str字符集里没有的字符,将保留 --如 ...
- Guardian of Decency UVALive - 3415 最大独立集=结点数-最大匹配数 老师带大学生旅游
/** 题目:Guardian of Decency UVALive - 3415 最大独立集=结点数-最大匹配数 老师带大学生旅游 链接:https://vjudge.net/problem/UVA ...
- MapReduce机制
1. MapReduce是一种分布式计算模型,由Google提出,主要用于搜索领域,解决海量数据的计算问题.2. MR由两个阶段组成:Map和Reduce,用户只需要实现map()和reduce()两 ...