题目链接

BZOJ4815

题解

根据题中的式子,手玩一下发现和\(gcd\)很像

化一下式子:

\[\begin{aligned}
bf(a,a + b) &= (a + b)f(a,b) \\
\frac{f(a,a + b)}{a + b} &= \frac{f(a,b)}{b} \\
\frac{f(a,a + b)}{a(a + b)} &= \frac{f(a,b)}{ab} \\
\frac{f(a,b)}{ab} &= \frac{f(d,d)}{d^2} \\
\end{aligned}
\]

其中\(d = gcd(a,b)\)

那么我们有

\[\begin{aligned}
ans &= \sum\limits_{i = 1}^{k} \sum\limits_{j = 1}^{k} f(i,j) \\
&= \sum\limits_{d = 1}^{k} f(d,d) \sum\limits_{d|i} \sum\limits_{d|j} \frac{ij}{d^2} \quad [gcd(i,j) == d] \\
&= \sum\limits_{d = 1}^{k} f(d,d) \sum\limits_{i = 1}^{\lfloor \frac{k}{d} \rfloor} \sum\limits_{j = 1}^{\lfloor \frac{k}{d} \rfloor} ij \quad [i \perp j] \\
\end{aligned}
\]

\[g(n) = \sum\limits_{i = 1}^{n} \sum\limits_{j = 1}^{n} ij \quad [i \perp j]
\]

由于

\[\sum\limits_{i = 1}^{n} i \quad [i \perp n] = \frac{n\varphi(n)}{2}
\]

所以

\[\begin{aligned}
g(n) &= \sum\limits_{i = 1}^{n} i \times 2 \times \frac{i\varphi(i)}{2} \\
&= \sum\limits_{i = 1}^{n} i^2\varphi(i) \\
\end{aligned}
\]

我们可以线性筛\(O(n)\)预处理出\(g(n)\)

对于答案的式子,可以\(O(\sqrt{k})\)整除分块

所以我们只需要\(O(1)\)计算\(f(d,d)\)的前缀和

分块即可

块外维护块的前缀和,块内维护块内前缀和

这样修改是\(O(\sqrt{n})\)的,修改复杂度\(O(m\sqrt{n})\)

且询问时\(O(1)\)的

总复杂度\(O(m\sqrt{n})\)

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 4000005,maxm = 400005,INF = 1000000000,P = 1000000007;
inline LL read(){
LL out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int m,n,sum[maxn],S[maxn],b[maxn],L[maxn],R[maxn],bi,B;
inline void modify(int u,int x){
int v = x % P;
if (u == L[b[u]]) v = ((v - S[u]) % P + P) % P;
else v = ((v - (S[u] - S[u - 1]) % P) % P + P) % P;
v = (v + P) % P;
for (int i = u; i <= R[b[u]]; i++)
S[i] = (S[i] + v) % P;
for (int i = b[u]; i <= bi; i++)
sum[i] = (sum[i] + v) % P;
}
inline int query(int u){
if (!u) return 0;
return (S[u] + sum[b[u] - 1]) % P;
}
int p[maxn],pi,isn[maxn],phi[maxn],g[maxn],val[maxn];
void init(){
phi[1] = 1;
for (register int i = 2; i <= n; i++){
if (!isn[i]) p[++pi] = i,phi[i] = i - 1;
for (int j = 1; j <= pi && i * p[j] <= n; j++){
isn[i * p[j]] = true;
if (i % p[j] == 0){
phi[i * p[j]] = phi[i] * p[j];
break;
}
phi[i * p[j]] = phi[i] * (p[j] - 1);
}
}
for (register int i = 1; i <= n; i++)
g[i] = (g[i - 1] + 1ll * val[i] * phi[i] % P) % P;
}
LL gcd(LL a,LL b){return b ? gcd(b,a % b) : a;}
int main(){
m = read(); n = read(); B = (int)sqrt(n) + 1;
for (register int i = 1; i <= n; i++){
b[i] = i / B + 1; val[i] = 1ll * i * i % P;
if (b[i] != b[i - 1]) R[b[i - 1]] = i - 1,L[b[i]] = i;
sum[b[i]] = (sum[b[i]] + val[i]) % P;
if (i != L[b[i]]) S[i] = S[i - 1];
S[i] = (S[i] + val[i]) % P;
}
R[b[n]] = n; bi = b[n];
for (register int i = 1; i <= bi; i++)
sum[i] = (sum[i] + sum[i - 1]) % P;
init();
LL a,b,x,k,d,ans;
while (m--){
a = read(); b = read(); x = read(); k = read();
d = gcd(a,b); x /= (a / d) * (b / d); x %= P;
modify(d,x);
ans = 0;
for (int i = 1,nxt; i <= k; i = nxt + 1){
nxt = k / (k / i);
ans = (ans + 1ll * (query(nxt) - query(i - 1)) % P * g[k / i] % P) % P;
}
printf("%lld\n",(ans % P + P) % P);
}
return 0;
}

BZOJ4815 [CQOI2017]小Q的表格 【数论 + 分块】的更多相关文章

  1. [BZOJ4815][CQOI2017]小Q的表格 数论+分块

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4815 题目中所给条件中的$(a,a+b)$和$(a,b)$的关系很瞩目. 然后大家都知道$ ...

  2. [CQOI2017]小Q的表格(数论+分块)

    题目描述 小Q是个程序员. 作为一个年轻的程序员,小Q总是被老C欺负,老C经常把一些麻烦的任务交给小Q来处理.每当小Q不知道如何解决时,就只好向你求助. 为了完成任务,小Q需要列一个表格,表格有无穷多 ...

  3. [BZOJ4815][CQOI2017]小Q的表格(莫比乌斯反演)

    4815: [Cqoi2017]小Q的表格 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 832  Solved: 342[Submit][Statu ...

  4. bzoj 4815: [Cqoi2017]小Q的表格 [数论]

    4815: [Cqoi2017]小Q的表格 题意: 单点修改,查询前缀正方形和.修改后要求满足条件f(a,b)=f(b,a), b×f(a,a+b)=(a+b)*f(a,b) 一开始sb了认为一次只会 ...

  5. [bzoj4815]: [Cqoi2017]小Q的表格

    来自FallDream的博客,未经允许,请勿转载,谢谢. 小Q是个程序员. 作为一个年轻的程序员,小Q总是被老C欺负,老C经常把一些麻烦的任务交给小Q来处理.每当小Q不知道如何解决时,就只好向你求助. ...

  6. bzoj 4815 [Cqoi2017]小Q的表格——反演+分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4815 大概就是推式子的时候注意有两个边界都是 n ,考虑变成 2*... 之类的. 分块维护 ...

  7. 【BZOJ4815】[CQOI2017]小Q的表格(莫比乌斯反演,分块)

    [BZOJ4815][CQOI2017]小Q的表格(莫比乌斯反演,分块) 题面 BZOJ 洛谷 题解 神仙题啊. 首先\(f(a,b)=f(b,a)\)告诉我们矩阵只要算一半就好了. 接下来是\(b* ...

  8. 洛咕 P3700 [CQOI2017]小Q的表格

    洛咕 P3700 [CQOI2017]小Q的表格 神仙题orz 首先推一下给的两个式子中的第二个 \(b\cdot F(a,a+b)=(a+b)\cdot F(a,b)\) 先简单的想,\(F(a,a ...

  9. [bzoj4815] [洛谷P3700] [Cqoi2017] 小Q的表格

    Description 小Q是个程序员. 作为一个年轻的程序员,小Q总是被老C欺负,老C经常把一些麻烦的任务交给小Q来处理. 每当小Q不知道如何解决时,就只好向你求助.为了完成任务,小Q需要列一个表格 ...

随机推荐

  1. nodejs学习笔记(2)

    1.express超时设置 如果http请求在一段时间内没有返回值,express会重新向后台发送请求.在后台方法执行时间较长的情况下,重复的请求会重复执行,造成前台接收到空的response,出现E ...

  2. jenkins配置git+maven+Publish over SSH

    一.配置git 1.新建项目,源码管理选择git 2.Repository URL输入git目录 3.Credentials中选择新增凭据,凭据类型选择SSH,usename输入git,passphr ...

  3. Objective-C 点语法 成员变量的作用域 @property和@synthesize关键字 id类型

    点语法 1.利用点语法替换set方法和get方法 方法调用 Student *stu = [Student new]; [stu setAge : 18]; int age = [stu age]; ...

  4. Unity 编辑器扩展

    自定义检视面板的使用: 先是定义一个脚本文件,我们来修饰它的检视面板: [HelpURL("http://www.baidu.com")] public class Atr : M ...

  5. 【outPut_Class 输出类】使用说明

    对象:outPut 说明:定义输出结果类的相关操作.此对象的核心是[JSON]类,所以它继承了[JSON]类的所有方法 重要: 输出结果样式为XML时,自带根节点"root".输出 ...

  6. TW实习日记:第14天

    今天可以说是又忙又不忙了,忙是因为要赶bug,似乎总有种隐形的力量催着你交工,但实际上太多涉及后端接口的问题,所以又要等别人修改接口才能改bug,可以说真是十分蛋疼了. 改bug的最大心得就是:写好注 ...

  7. Java进阶知识点:协变与逆变

    一.背景 要搞懂Java中的协办与逆变,不得不从继承说起,如果没有继承,协变与逆变也天然不存在了. 我们知道,在Java的世界中,存在继承机制.比如MochaCoffee类是Coffee类的派生类,那 ...

  8. 从零开始的Python学习Episode 2——运算符与while循环

    一.算术运算符 加法:+,减法:-,乘法*,除法/,整除(地板除)//,取余%,乘方**.  二.逻辑运算符 且:and,或:or,非:not 优先级:not>and>or 短路原则: 对 ...

  9. matlab中设置colorbar为几种规定颜色

    我们可以通过修改colormap的值来达到这种目的. 一般来说colormap的值是64*3的矩阵,64代表64种颜色,3列是这种颜色的RGB值,不过归一化了. 如果你想将colorbar颜色设成6种 ...

  10. Python+Opencv实现把图片转为视频

    1. 安装Opencv包 在Python命令行输入如下命令(如果你使用的Anaconda,直接进入Anaconda Prompt键入命令即可.如果你不知道Anaconda是什么,可以参考王树义老师的文 ...