统计路径的时候,显然用母函数的思想,可以用FFT来方便统计。

注意!要减去路径两个端点相同的情况!然后再除以二!这样防止重复。

还有就是说啊,点分治的正确姿势还是应该用所有子树的答案减去各个子树分别的答案。否则复杂度好像是不太对哈。

除非……有一种情况是这样的……才能让每次直接统计当前子树和之前所有子树的答案而不重复统计再减去的写法复杂度正确。

即:用个set或者哈希表之类的东西存储之前所有子树的路径,然后我只枚举当前子树的路径,往set或者哈希表里面去查询。查询完了以后,再把当前子树塞到set/哈希表里。

这样复杂度正确的原因是,set和哈希表不会因为其储存元素的多少而使复杂度快速上升。

FFT貌似是得开4倍数组哈。

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cmath>
using namespace std;
typedef long long ll;
#define MAXN 100010
bool notPrime[200010];
void Shai()
{
notPrime[1]=1;
notPrime[0]=1;
for(ll i=2;i<=200000ll;i++)
for(ll j=i*i;j<=200000ll;j+=i)
notPrime[j]=1;
}
const double PI = acos(-1.0);
struct Complex{
double real,image;
Complex(double _real,double _image){
real=_real;
image=_image;
}
Complex(){}
};
Complex operator + (const Complex &c1,const Complex &c2){
return Complex(c1.real+c2.real,c1.image+c2.image);
}
Complex operator - (const Complex &c1,const Complex &c2){
return Complex(c1.real-c2.real,c1.image-c2.image);
}
Complex operator * (const Complex &c1,const Complex &c2){
return Complex(c1.real*c2.real-c1.image*c2.image,c1.real*c2.image+c1.image*c2.real);
}
int rev(int id,int len){
int ret=0;
for(int i=0;(1<<i)<len;++i){
ret<<=1;
if(id&(1<<i)){
ret|=1;
}
}
return ret;
}
Complex tmp[200010];
//当DFT==1时是DFT, DFT==-1时则是逆DFT
void IterativeFFT(Complex A[],int len, int DFT){//对长度为len(2的幂)的数组进行DFT变换
for(int i=0;i<len;++i){
tmp[rev(i,len)]=A[i];
}
for(int i=0;i<len;++i){
A[i]=tmp[i];
}
for(int s=1;(1<<s)<=len;++s){
int m=(1<<s);
Complex wm=Complex(cos(DFT*2*PI/m),sin(DFT*2*PI/m));
for(int k=0;k<len;k+=m){//这一层结点包含的数组元素个数都是(1<<s)
Complex w=Complex(1,0);
for(int j=0;j<(m>>1);++j){//折半引理,根据两个子节点计算父节点
Complex t=w*A[k+j+(m>>1)];
Complex u=A[k+j];
A[k+j]=u+t;
A[k+j+(m>>1)]=u-t;
w=w*wm;
}
}
}
if(DFT==-1){
for(int i=0;i<len;++i){
A[i].real/=len;
A[i].image/=len;
}
}
}
typedef pair<int,int> Point;
int n;
ll ans;
int v[MAXN<<1],w[MAXN<<1],first[MAXN],__next[MAXN<<1],en;
void AddEdge(const int &U,const int &V,const int &W)
{
v[++en]=V;
w[en]=W;
__next[en]=first[U];
first[U]=en;
}
bool centroid[MAXN];//顶点是否已经作为重心删除的标记
int size[MAXN];//以该顶点为根的子树的大小
//计算子树的大小
int calc_sizes(int U,int Fa)
{
int res=1;
for(int i=first[U];i;i=__next[i])
if(v[i]!=Fa&&(!centroid[v[i]]))
res+=calc_sizes(v[i],U);
return size[U]=res;
}
//查找重心的递归函数,nn是整个子树的大小
//在以U为根的子树中寻找一个顶点,使得删除该顶点后得到的最大子树的顶点数最少
//返回值为(最大子树的顶点数,顶点编号)
Point calc_centroid(int U,int Fa,int nn)
{
Point res=make_pair(2147483647,-1);
int sum=1,maxv=0;
for(int i=first[U];i;i=__next[i])
if(v[i]!=Fa&&(!centroid[v[i]]))
{
res=min(res,calc_centroid(v[i],U,nn));
maxv=max(maxv,size[v[i]]);
sum+=size[v[i]];
}
maxv=max(maxv,nn-sum);
res=min(res,make_pair(maxv,U));
return res;
}
int td[MAXN],en2,ds[MAXN],en3;
//计算子树中所有顶点到重心的距离的递归函数
void calc_dis(int U,int Fa,int d)
{
td[en2++]=d;
for(int i=first[U];i;i=__next[i])
if(v[i]!=Fa&&(!centroid[v[i]]))
calc_dis(v[i],U,d+w[i]);
}
Complex fft[200100];
ll calc_pairs(int dis[],int En)
{
int lim=0;
for(int i=0;i<En;++i){
lim=max(lim,dis[i]);
}
++lim;
int len;
for(int i=0;;++i){
if((1<<(i-1))>=lim){
len=(1<<i);
break;
}
}
for(int i=0;i<len;++i){
fft[i]=Complex(0,0);
}
for(int i=0;i<En;++i){
fft[dis[i]].real+=1.0;
}
IterativeFFT(fft,len,1);
for(int i=0;i<len;++i){
fft[i]=fft[i]*fft[i];
}
IterativeFFT(fft,len,-1);
ll res=0;
for(int i=0;i<len;++i){
if(!notPrime[i]){
res+=(ll)(fft[i].real+0.5);
}
}
for(int i=0;i<En;++i){
if(!notPrime[dis[i]<<1]){
--res;
}
}
return (res>>1);
}
void solve(int U)
{
calc_sizes(U,-1);
int s=calc_centroid(U,-1,size[U]).second;
centroid[s]=1;
//情况1:递归统计按重心s分割后的子树中的对数
for(int i=first[s];i;i=__next[i])
if(!centroid[v[i]])
solve(v[i]);
//情况2:统计经过重心s的对数
en3=0; ds[en3++]=0;
for(int i=first[s];i;i=__next[i])
if(!centroid[v[i]])
{
en2=0; calc_dis(v[i],s,w[i]);
ans-=calc_pairs(td,en2);//先把重复统计的部分(即情况1)减掉
memcpy(ds+en3,td,en2*sizeof(int)); en3+=en2;
}
ans+=calc_pairs(ds,en3);
centroid[s]=0;
}
int main()
{
// freopen("cdoj1562.in","r",stdin);
Shai();
int a,b,c;
scanf("%d",&n);
for(int i=1;i<n;++i)
{
scanf("%d%d%d",&a,&b,&c);
AddEdge(a,b,c);
AddEdge(b,a,c);
}
solve(1);
cout<<ans<<endl;
return 0;
}

【点分治】【FFT】CDOJ1562 Amaz1ng Prime的更多相关文章

  1. prime distance on a tree(点分治+fft)

    最裸的点分治+fft,调了好久,太菜了.... #include<iostream> #include<cstring> #include<cstdio> #inc ...

  2. bzoj 3456 城市规划——分治FFT / 多项式求逆 / 多项式求ln

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3456 分治FFT: 设 dp[ i ] 表示 i 个点时连通的方案数. 考虑算补集:连通的方 ...

  3. BNUOJ 51279[组队活动 Large](cdq分治+FFT)

    传送门 大意:ACM校队一共有n名队员,从1到n标号,现在n名队员要组成若干支队伍,每支队伍至多有m名队员,求一共有多少种不同的组队方案.两个组队方案被视为不同的,当且仅当存在至少一名队员在两种方案中 ...

  4. hdu 5730 Shell Necklace [分治fft | 多项式求逆]

    hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治 ...

  5. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  6. 分治FFT的三种含义

    分治FFT是几个算法的统称.它们之间并无关联. 分治多项式乘法 问题如求\(\prod_{i=1}^na_ix+b\). 若挨个乘复杂度为\(O(n^2\log n)\),可分治做这件事,复杂度为\( ...

  7. 【XSY2666】排列问题 DP 容斥原理 分治FFT

    题目大意 有\(n\)种颜色的球,第\(i\)种有\(a_i\)个.设\(m=\sum a_i\).你要把这\(m\)个小球排成一排.有\(q\)个询问,每次给你一个\(x\),问你有多少种方案使得相 ...

  8. 【XSY2887】【GDOI2018】小学生图论题 分治FFT 多项式exp

    题目描述 在一个 \(n\) 个点的有向图中,编号从 \(1\) 到 \(n\),任意两个点之间都有且仅有一条有向边.现在已知一些单向的简单路径(路径上任意两点各不相同),例如 \(2\to 4\to ...

  9. 【XSY2744】信仰圣光 分治FFT 多项式exp 容斥原理

    题目描述 有一个\(n\)个元素的置换,你要选择\(k\)个元素,问有多少种方案满足:对于每个轮换,你都选择了其中的一个元素. 对\(998244353\)取模. \(k\leq n\leq 1525 ...

随机推荐

  1. CSS 竖线 点 时间节点

    效果如图 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF- ...

  2. NodeJS中Buffer模块详解

    一,开篇分析 所谓缓冲区Buffer,就是 "临时存贮区" 的意思,是暂时存放输入输出数据的一段内存. JS语言自身只有字符串数据类型,没有二进制数据类型,因此NodeJS提供了一 ...

  3. 理解js中私有变量

    私有变量在js中是个什么概念.当下我的认识是var所定义的变量,实际可以理解为属性和方法,或者单单是临时存储器,不归属任何对象. 一个声明函数: function a(){  var v = &quo ...

  4. 关于$->aaa->bbb();的困惑

    第21行为什么可以调用test类的aa方法呢? 答:因为前一行(20)其已经被实例化了.所以现在的$this->obj其实可以相当于是一个对象. 20行和21行也可以写成如下 $xxoo = n ...

  5. skb管理函数之skb_put、skb_push、skb_pull、skb_reserve

    四个操作函数直接的区别,如下图: /** * skb_put - add data to a buffer * @skb: buffer to use * @len: amount of data t ...

  6. monkey测试===修改adb的默认端口

    最近电脑上由于公司系统的原因,adb的端口被占用了,但是占用端口的进程是必须启动的,不能被杀死,在网上找了很多办法,大家都是说杀死占用端口的进程.这个方法并不适用我,所以在此给大家一个新的方法.新建一 ...

  7. git学习笔记三

    1.每个分支的历史版本维护信息位置是.git/logs/refs/heads/master,这个位置的信息是文本文件,不是引用. harvey@harvey-Virtual-Machine:~/dem ...

  8. NFS+inotify实时同步

    Inotify简介 Inotify是一种文件系统事件通告机制,能够实时监控文件系统下文件的访问.修改.删除等各种变化情况并将其作为事件通告给用户态应用程序.Linux内核从2.6.13版本后已经集成了 ...

  9. ajax之深入解析(2)

    我们前面实现了用原生的JavaScript代码实现ajax的异步数据传输.接下来,我们再使用一个流行的js框架jQuery来实现ajax. 通过 jQuery AJAX 方法,我们能够使用 HTTP ...

  10. 几个例子理解对称加密与非对称加密、公钥与私钥、签名与验签、数字证书、HTTPS加密方式

    # 原创,转载请留言联系 为什么会出现这么多加密啊,公钥私钥啊,签名啊这些东西呢?说到底还是保证双方通信的安全性与完整性.例如小明发一封表白邮件给小红,他总不希望给别人看见吧.而各种各样的技术就是为了 ...