Direct Line Guidance Odometry论文阅读笔记
摘要:
本文特色:使用线引导关键点的选择。本文提出这个的论点是:线上的点比图像的其他部分的点更好,而且线上存在更好的关键点。选择线上的点可以筛选过滤掉不太明显的点,从而提高效率。
点和线:
系统使用点、线段和线段上的点。点是由它周围的梯度决定和描述的;线段使用端点表示,线段的描述使用线上的点,其中这些点是通过自适应的方式划分的。根据优不优化将点和线分为Immature和Active部分。点使用光度误差模型,线的光度误差使用线上的点的光度误差的累加和。
具体做法:

Tracking
1) 对于新来的一帧首先进行Initial Frame Track。使用的参考帧是最新的关键帧,方法是:传统的两帧图像直接对准、多尺度图像金字塔和恒运动模型初始化。如果直接图像对准失败,系统通过初始化在不同方向上最多27个不同的小旋转,在最粗的金字塔级别上进行恢复跟踪。
2)Line Guidance Refinement:
对于点:通过最小化式(2)中定义的光度误差,利用沿极线的离散搜索,在当前帧中搜索活动关键帧中的IP。当前帧中的匹配点用于更新活动关键帧中对应IP的深度。
对于线:对于IL,其上的ILCP和ILEP首先以与IP相同的方式进行细化。如果一个ILCP提炼失败,我们直接从IL中删除它。至于一个提炼失败的ILEP,系统检查所有在同一直线上的ILEP和ILCP的细化状态
在每次迭代之后执行AL细化。为了提高效率,我们将把远离当前框架的APs、ALs和active框架边缘化。最后是IPs和
在新的关键帧上生成。
在本研究中,我们采用滑动窗口优化方法。在优化之前,所有关键帧的IL和IP首先作为AP和ALs激活。将IL和IPs的位置作为AP和ALS的初值。然后ap和ALs参与优化。在优化中,ALEP和ALCP的处理方法与APs相同。
2)AL提炼
在每次迭代优化后,对AL应用一个AL细化过程,该过程与在高斯-牛顿算法的第四节中,解通常独立地处理每个变量。然而,在我们的情况下,ALCPs和ALEP是共线的。优化过程中会改变这一特性,这是不希望的。因此,在每次迭代之后,AL为了保持这一特性,进行了改进。最后,远离当前帧的APs、ALs和active帧将被Schur[24]边缘化。
3)IL和IP产生
在这个过程中,在新的关键帧上创建ILs和IPs。在我们的方法中,我们从直线结构中提取点。这样做的一个优点是提取的点具有很高的梯度,同时还包含了线结构信息。在直接法中,有太多的点集中在直线附近。因此,我们通过从直线中选择点的子集来降低计算成本。
a)IP产生:对于IP生成,构造了一个三层图像金字塔。然后在每一层,图像划分为小块。最后选择每个patch中梯度值最大的点作为关键点。通过这种方法,选择的点在图像中均匀分布。
b)IL产生:至于线提取,我们使用公共LSD段检测算法[25]。首先使用系数为0.5的高斯滤波器对输入图像进行滤波。然后检测这些线。过于接近直线的点将被过滤掉,以提高效率。这里我们对每一行采用自适应距离阈值。可能存在一些相互重叠的行,这将导致冗余的计算。这里我们使用一个基于角度网格的方法来合并相似的线。我们选择5◦作为网格的大小。所有线路规范化的角度0之间180度。
两个线段之间的距离定义如下。对于每一个线段,我们首先计算一条线的端点到另一条线的距离,并将两点到直线的距离相加。计算每条直线的和后,我们选择较小的和作为这两条线段之间的距离(图9):
将ILEP作为两个端点,在IL上均匀采样ILCPs。在某些情况下,一行存在于多个关键帧中。固定的采样间隔通常会在这些关键帧中产生相同的采样点。为了利用更多的信息,我们使用随机采样间隔。
Direct Line Guidance Odometry论文阅读笔记的更多相关文章
- [论文阅读笔记] Fast Network Embedding Enhancement via High Order Proximity Approximati
[论文阅读笔记] Fast Network Embedding Enhancement via High Order Proximity Approximation 本文结构 解决问题 主要贡献 主要 ...
- [论文阅读笔记] Community aware random walk for network embedding
[论文阅读笔记] Community aware random walk for network embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 先前许多算法都 ...
- [论文阅读笔记] LouvainNE Hierarchical Louvain Method for High Quality and Scalable Network Embedding
[论文阅读笔记] LouvainNE: Hierarchical Louvain Method for High Quality and Scalable Network Embedding 本文结构 ...
- 论文阅读笔记 - YARN : Architecture of Next Generation Apache Hadoop MapReduceFramework
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http:/ ...
- 论文阅读笔记 - Mesos: A Platform for Fine-Grained ResourceSharing in the Data Center
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http:/ ...
- 论文阅读笔记 Word Embeddings A Survey
论文阅读笔记 Word Embeddings A Survey 收获 Word Embedding 的定义 dense, distributed, fixed-length word vectors, ...
- 论文阅读笔记 Improved Word Representation Learning with Sememes
论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于 ...
- [置顶]
人工智能(深度学习)加速芯片论文阅读笔记 (已添加ISSCC17,FPGA17...ISCA17...)
这是一个导读,可以快速找到我记录的关于人工智能(深度学习)加速芯片论文阅读笔记. ISSCC 2017 Session14 Deep Learning Processors: ISSCC 2017关于 ...
- Nature/Science 论文阅读笔记
Nature/Science 论文阅读笔记 Unsupervised word embeddings capture latent knowledge from materials science l ...
随机推荐
- Task WaitAll的用法
var tasklst = new List<Task>(); ; i < urls.Count; i++) { tasklst.Add(Task.Factory.StartNew& ...
- $("#SpecialAptitude").on("change",function(){CheckType($(this))})$("#SpecialAptitude").on("change",CheckType($(this)))
$("#SpecialAptitude").on("change",function(){CheckType($(this))})$("#Specia ...
- 自制MVC之工具类插件一
1).BreakRomoteURLAttribute 提交或交互的URL数据是否来源于其它地方,站内提交,防止跨站 2). DataAttribute 取得post或get提交的数据.如果没有特殊设置 ...
- 阅读《Android 从入门到精通》(29)——四大布局
LinearLayout 类方法 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQ ...
- server2008服务器IIS7 +PHP5.3出现500错误的排错方法
Windows7 IIS 500 – 内部服务器错误解决方案 1.解决方法:打开IIS,在全局功能视图中找到“错误页”,双击进去后,看最右边的“操作”下的“编辑功能设置…”,将“错误响应”下的“详细错 ...
- javascript 反调试 监听用户打开了Chrome devtool
let div = document.createElement('div'); let loop = setInterval(() => { console.log(div); ...
- redis源码学习_字典
redis中字典有以下要点: (1)它就是一个键值对,对于hash冲突的处理采用了头插法的链式存储来解决. (2)对rehash,扩展就是取第一个大于等于used * 2的2 ^ n的数作为新的has ...
- 讲一下 Spring的事务传播特性
1. PROPAGATION_REQUIRED: 如果存在一个事务,则支持当前事务.如果没有事务则开启 2. PROPAGATION_SUPPORTS: 如果存在一个事务,支持当前事务.如果没有事 ...
- PHP学习笔记(12)分页技术
<!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- java集成开发环境常用操作集
1.简单搭建maven集成开发环境 一. Jetty安装 下载地址(包涵windows和Linux各版本,Jetty9需要JDK7):http://download.eclipse.org/j ...