[洛谷P5169]xtq的异或和
题目大意:给你一张$n(n\leqslant10^5)$个点$m(m\leqslant3\times10^5)$条边的无向图,每条边有一个权值,$q(q\leqslant2^{18})$次询问,每次询问给你一个$x(x<2^{18})$,问有多少个有序点对$(u,v)$,满足有一条$u$到$v$的路径异或和为$x$
题解:先建一棵生成树,把图中所有环丢进线性基,发现一条$u->v$的路径就是树上$u->v$的距离异或上一些环。
发现$x<2^{18}$,所以可以把线性基中所有可以表示出来的数求出来为集合$S$,令多项式$A(x)$,满足$[x^n]A(x)=\sum\limits_{i=1}^n[dis_i=n]$;令多项式$B(x)$,满足$[x^n]B(x)=[n\in S]$,$dis_i$表示第$i$个点到根的路径异或值
然后答案就是$A*A*B$,$*$表示异或卷积
卡点:无
C++ Code:
#include <cstdio>
#include <iostream>
#define maxn 100010
#define maxm 300010
#define N 262144
const int mod = 998244353; int head[maxn], cnt;
struct Edge {
int to, nxt, w;
} e[maxm << 1];
inline void addedge(int a, int b, int c) {
e[++cnt] = (Edge) { b, head[a], c }; head[a] = cnt;
e[++cnt] = (Edge) { a, head[b], c }; head[b] = cnt;
} long long A[N], B[N];
namespace Base {
#define M 18
int p[M + 1];
inline void insert(int x) {
for (int i = M; ~i; --i) if (x >> i & 1) {
if (p[i]) x ^= p[i];
else { p[i] = x; break; }
}
}
void dfs(int dep, int val) {
if (dep > M) {
++B[val];
return ;
}
dfs(dep + 1, val);
if (p[dep]) dfs(dep + 1, val ^ p[dep]);
}
#undef M
} int n, m, q;
int dis[maxn];
bool vis[maxn];
void dfs(int u, int fa = 0) {
vis[u] = true;
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (!vis[v]) {
dis[v] = dis[u] ^ e[i].w;
dfs(v, u);
} else Base::insert(dis[u] ^ dis[v] ^ e[i].w);
}
} const int lim = N;
inline void FWT(long long *A) {
for (register int mid = 1; mid < lim; mid <<= 1)
for (register int i = 0; i < lim; i += mid << 1)
for (register int j = 0; j < mid; ++j) {
const long long X = A[i + j], Y = A[i + j + mid];
A[i + j] = X + Y, A[i + j + mid] = X - Y;
}
} int main() {
std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);
std::cin >> n >> m >> q;
for (int i = 0, a, b, c; i < m; ++i) {
std::cin >> a >> b >> c;
addedge(a, b, c);
}
dfs(1), Base::dfs(0, 0);
for (int i = 1; i <= n; ++i) ++A[dis[i]];
FWT(A), FWT(B);
for (int i = 0; i < lim; ++i) A[i] = A[i] * A[i] * B[i];
FWT(A);
for (int i = 0; i < lim; ++i) A[i] >>= 18;
while (q --> 0) {
static int x;
std::cin >> x;
std::cout << A[x] % mod << '\n';
}
return 0;
}
[洛谷P5169]xtq的异或和的更多相关文章
- ⌈洛谷4735⌋⌈BZOJ3261⌋最大异或和【可持久化01Trie】
题目链接 [BZOJ传送门] [洛谷传送门] 题解 终于学会了可持久化trie树了.感觉并不是特别的难. 因为可持久化,那么我们就考虑动态开点的trie树. 都知道异或操作是有传递性的,那么我们就维护 ...
- 洛谷 [P2420] 让我们异或吧
某两点之间的路径上所有边权的异或值即dis1^dis2--^disn. 由于x^y^y=x,所以dfs预处理出每一点到根节点的异或值,对于每次询问,直接输出 disu^disv. #include & ...
- 洛谷P4551 最长异或路径
传送门:https://www.luogu.org/problem/show?pid=4551 在看这道题之前,我们应懂这道题怎么做:给定n个数和一个数m,求m和哪一个数的异或值最大. 一种很不错的做 ...
- 洛谷 P2420 让我们异或吧 解题报告
P2420 让我们异或吧 题目描述 异或是一种神奇的运算,大部分人把它总结成不进位加法. 在生活中-xor运算也很常见.比如,对于一个问题的回答,是为1,否为0.那么: (A是否是男生 )xor( B ...
- 【洛谷P4735】最大异或和
题目大意:给定一个长度为 N 的序列,支持两个操作:在序列末尾添加一个新的数字,查询序列区间 \([l,r]\) 内使得 \(a_p\oplus a_{q+1}\oplus ... a_N\oplus ...
- 2018.10.26 洛谷P4551 最长异或路径(01trie)
传送门 直接把每个点到根节点的异或距离插入01trie. 然后枚举每个点在01trie上匹配来更新答案就行了. 代码: #include<iostream> #include<cst ...
- 【洛谷 P4735】 最大异或和 (可持久化Trie)
题目链接 维护整个数列的异或前缀和和\(s\),然后每次就是要求\(s[N]\text{^}x\text{^}s[k],l-1<=k<=r-1\)的最大值 如果没有\(l\)的限制,那么直 ...
- 洛谷P2420 让我们异或吧(树链剖分)
题目描述异或是一种神奇的运算,大部分人把它总结成不进位加法. 在生活中…xor运算也很常见.比如,对于一个问题的回答,是为1,否为0.那么: (A是否是男生 )xor( B是否是男生)=A和B是否能够 ...
- [洛谷P2420] 让我们异或吧
题目链接:让我们异或吧 题目描述 异或是一种神奇的运算,大部分人把它总结成不进位加法. 在生活中…xor运算也很常见.比如,对于一个问题的回答,是为1,否为0.那么: (A是否是男生 )xor( B是 ...
随机推荐
- SpringBoot-04:SpringBoot在idea中的俩种创建方式
------------吾亦无他,唯手熟尔,谦卑若愚,好学若饥------------- 创建SpringBoot工程有很多种方式,我只讲俩种最为常见的 一,依托springboot官网提供的模板.( ...
- springboot与activemq的使用
1.springboot和activemq的使用相对来说比较方便了,我在网上看了很多其他的资料,但是自己写出来总是有点问题所以,这里重点描述一下遇到的一些问题. 2.至于activemq的搭建和spr ...
- VIN码识别:让VIN码采集so easy!
近几年汽车后市场呈喷井式发展,在过去的半年,汽车后市场规模已高达万亿级,产业前景广阔,与此同时行业运营也受信息区域化.数据不统一的制约,让企业面临着效率低下.规模化运行困难的痛点. 在汽车配件市场中, ...
- ReadyAPI创建功能测试的方法
声明:如果你想转载,请标明本篇博客的链接,请多多尊重原创,谢谢! 本篇使用的 ReadyAPI版本是2.5.0 在ReadyAPI中有多种方法可以创建功能测试,本篇将分步操作创建功能测试. 1.从So ...
- appium 元素定位与操作:
一.常用识别元素的工具 uiautomator:Android SDK自带的一个工具,在tools目录下 monitor:Android SDK自带的一个工具,在tools目录下 Appium I ...
- yun rpm
RPM:RedHat Package Manager的简称,是一种数据库记录的方式的管理机制.当需要安装的软件的依赖软件都已经安装,则继续安装,否则不予安装. 特点:1.已经编译并打包完成2.软件的信 ...
- C++ 学习笔记之——STL 库 vector
vector 是一种顺序容器,可以看作是可以改变大小的数组. 就像数组一样,vector 占用连续的内存地址来存储元素,因此可以像数组一样用偏移量来随机访问,但是它的大小可以动态改变,容器会自动处理内 ...
- sqlserver 2008 merger语句
Merge关键字是一个神奇的DML关键字.它在SQL Server 2008被引入,它能将Insert,Update,Delete简单的并为一句.MSDN对于Merge的解释非常的短小精悍:”根据与源 ...
- nodejs反向代理插件anyproxy安装
目前我使用的是Anyproxy,AnyProxy .这个软件的特点是可以获取到https链接的内容.在2016年年初的时候微信公众号和微信文章开始使用https链接.并且Anyproxy可以通过修改r ...
- Centos6配置开启FTP Server
vsftpd作为FTP服务器,在Linux系统中是非常常用的.下面我们介绍如何在centos系统上安装vsftp. 什么是vsftpd vsftpd是一款在Linux发行版中最受推崇的FTP服务器程序 ...