https://www.lydsy.com/JudgeOnline/problem.php?id=3173

http://acm.hdu.edu.cn/showproblem.php?pid=3564

(本代码没有交到HDU上,因为要写多组数据,而博主懒orz)

给定一个序列,初始为空。现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置。每插入一个数字,我们都想知道此时最长上升子序列长度是多少?

这题妙是妙,不过也很经典了,以及TJOI又考原题……

听说平衡树可以无脑过?但是不会写splay,stl又特别慢怎么办?

显然顺序插入改成逆序删除,在线段树上维护一下就能得到每个元素插入的位置pos。

然后实际上lcs[i]=lcs[i-1]+1因为我们永远插的是最大值,所以我们要找到已经插入的最后一个比i小的pos。

不是很好找这个pos,想到lcs的单调不降于是维护一个dp[i]表示i长度的最长上升子序列末位的pos的最小值。

这样每次插的时候都在dp数组里面lower_bound pos(也就是最后一个小于pos的值+1),然后直接更新dp数组即可。

#include<map>
#include<cmath>
#include<stack>
#include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=1e5+;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
int n,tr[N*],a[N],pos[N],dp[N],len;
void build(int a,int l,int r){
if(l==r){
tr[a]=;return;
}
int mid=(l+r)>>;
build(a<<,l,mid);build(a<<|,mid+,r);
tr[a]=tr[a<<]+tr[a<<|];
}
void del(int a,int l,int r,int x,int y){
tr[a]--;
if(l==r){
pos[x]=l;return;
}
int mid=(l+r)>>;
if(y<=tr[a<<])del(a<<,l,mid,x,y);
else del(a<<|,mid+,r,x,y-tr[a<<]);
}
int main(){
n=read();
for(int i=;i<=n;i++)pos[i]=read()+;
build(,,n);
for(int i=n;i>=;i--)del(,,n,i,pos[i]);
for(int i=;i<=n;i++){
int k=lower_bound(dp+,dp+len+,pos[i])-dp;
len=max(len,k);
dp[k]=pos[i];
printf("%d\n",len);
}
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ3173:[TJOI2013]最长上升子序列 & HDU3564:Another LIS——题解的更多相关文章

  1. [BZOJ3173][Tjoi2013]最长上升子序列

    [BZOJ3173][Tjoi2013]最长上升子序列 试题描述 给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上 ...

  2. bzoj3173: [Tjoi2013]最长上升子序列(树状数组+二分倒推)

    3173: [Tjoi2013]最长上升子序列 题目:传送门 题解:  好题! 怎么说吧...是应该扇死自己...看错了两次题: 每次加一个数的时候,如果当前位置有数了,是要加到那个数的前面,而不是直 ...

  3. bzoj3173[Tjoi2013]最长上升子序列 平衡树+lis

    3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2253  Solved: 1136[Submit][S ...

  4. BZOJ3173 TJOI2013最长上升子序列(Treap+ZKW线段树)

    传送门 Description 给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上升子序列长度是多少? Input ...

  5. bzoj千题计划316:bzoj3173: [Tjoi2013]最长上升子序列(二分+树状数组)

    https://www.lydsy.com/JudgeOnline/problem.php?id=3173 插入的数是以递增的顺序插入的 这说明如果倒过来考虑,那么从最后一个插入的开始删除,不会对以某 ...

  6. BZOJ3173:[TJOI2013]最长上升子序列(Splay)

    Description 给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上升子序列长度是多少? Input 第一行一 ...

  7. bzoj3173: [Tjoi2013]最长上升子序列(fhqtreap)

    这题用fhqtreap可以在线. fhqtreap上维护以i结尾的最长上升子序列,数字按从小到大加入, 因为前面的数与新加入的数无关, 后面的数比新加入的数小, 所以新加入的数对原序列其他数的值没有影 ...

  8. BZOJ3173 TJOI2013最长上升子序列(splay)

    容易发现如果求出最后的序列,只要算一下LIS就好了.序列用平衡树随便搞一下,这里种一棵splay. #include<iostream> #include<cstdio> #i ...

  9. 【LG4309】【BZOJ3173】[TJOI2013]最长上升子序列

    [LG4309][BZOJ3173][TJOI2013]最长上升子序列 题面 洛谷 BZOJ 题解 插入操作显然用平衡树就行了 然后因为后面的插入对前面的操作无影响 就直接在插入完的序列上用树状数组求 ...

随机推荐

  1. Python对象引用问题总结

    对于对象引用问题,一直是一知半解的状态,现整理以备使用. 操作不可变对象进行加减运算时,会在内存中创建新的不可变实例,不会影响原来的引用>>> c=12>>> d= ...

  2. Linux用户切换和密码修改

    1.普通用户切换到root su - 再输入root密码,密码正确,成功切换,再输入exit则切换回普通用户 2.root切换到其他用户,例user su - user 再输入exit,则切换回roo ...

  3. artDialog使用说明(弹窗API)

    Js代码 2. 传入HTMLElement    备注:1.元素不是复制而是完整移动到对话框中,所以原有的事件与属性都将会保留 2.如果隐藏元素被传入到对话框,会设置display:block属性显示 ...

  4. 【转】: 探索Lua5.2内部实现:虚拟机指令(1) 概述

    Lua一直把虚拟机执行代码的效率作为一个非常重要的设计目标.而采用什么样的指令系统的对于虚拟机的执行效率来说至关重要. Stack based vs Register based VM 根据指令获取操 ...

  5. HTML/JSP中一些单书名号标签的用途<%-- --%><!-- --><%@ %><%! %><% %><%= %>

    注释 <%-- --%>是(JSP)隐式注释,不会在页面显示的注释 <!-- -->是(Html)显示注释,会在JSP页面显示 关于注释还有单行隐式注释//和多行隐式注释/* ...

  6. parity注记词和地址

    remix skilled curled cobweb tactics koala bartender precinct energize exes ridden cohesive 0x00EeC52 ...

  7. 基础数据类型-dict

    字典Dictinary是一种无序可变容器,字典中键与值之间用“:”分隔,而与另一个键值对之间用","分隔,整个字典包含在{}内: dict1 = {key1:value1, key ...

  8. js经典试题之w3规范系列

    js经典试题之w3规范系列 1:w3c 制定的 javascript 标准事件模型的正确的顺序? 答案:事件捕获->事件处理->事件冒泡 解析:先事件捕获从windows > doc ...

  9. c# dll问题

    问题描述: dll完全拷贝另一个程序,可是报缺少引用程序集之类的错误. 解决办法: 有可能是.net版本造成的错误.一般常见在3.5升到4之后,存在很多容差.

  10. c#程序的config文件问题

    1.vshost.exe.config和app.config两个文件可不要,但exe.config文件不可少. 2.但是app.config最好也要修改了,每次重新生成程序的时候.exe.cmonfi ...