题目描述

Farmer John and his cows are planning to leave town for a long vacation, and so FJ wants to temporarily close down his farm to save money in the meantime.The farm consists of NN barns connected with MM bidirectional paths between some pairs of barns (1≤N,M≤200,000). To shut the farm down, FJ plans to close one barn at a time. When a barn closes, all paths adjacent to that barn also close, and can no longer be used.FJ is interested in knowing at each point in time (initially, and after each closing) whether his farm is "fully connected" -- meaning that it is possible to travel from any open barn to any other open barn along an appropriate series of paths. Since FJ's farm is initially in somewhat in a state of disrepair, it may not even start out fully connected.

输入

The first line of input contains N and M. The next M lines each describe a path in terms of the pair of barns it connects (barns are conveniently numbered 1…N). The final N lines give a permutation of 1…N describing the order in which the barns will be closed.

输出

The output consists of N lines, each containing "YES" or "NO". The first line indicates whether the initial farm is fully connected, and line i+1 indicates whether the farm is fully connected after the iith closing.

样例输入

4 3
1 2
2 3
3 4
3
4
1
2

样例输出

YES
NO
YES
YES


题目大意

给你n个点和m条边的无向图,有n次删点操作,删掉点后与这个点相连的边也随之删除。问删除每个点之前这个图是不是连通图。

题解

并查集

由于删点比较难搞,所以我们需要换一种思路:

可以先把所有的点删掉,然后反过来一个一个再加进来。

这样便于直接处理改动的边。

然后用一个并查集维护连通块即可。

#include <cstdio>
int head[200010] , to[400010] , next[400010] , cnt , a[200010] , f[200010] , ans[200010] , ok[200010];
int find(int x)
{
return x == f[x] ? x : f[x] = find(f[x]);
}
void add(int x , int y)
{
to[++cnt] = y;
next[cnt] = head[x];
head[x] = cnt;
}
int main()
{
int n , m , i , j , x , y , tmp = 0;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= m ; i ++ )
scanf("%d%d" , &x , &y) , add(x , y) , add(y , x);
for(i = 1 ; i <= n ; i ++ )
scanf("%d" , &a[i]);
for(i = 1 ; i <= n ; i ++ )
f[i] = i;
for(i = n ; i >= 1 ; i -- )
{
ok[a[i]] = 1;
tmp ++ ;
for(j = head[a[i]] ; j ; j = next[j])
{
if(ok[to[j]])
{
x = find(a[i]) , y = find(to[j]);
if(x != y)
{
f[x] = y;
tmp -- ;
}
}
}
ans[i] = (tmp == 1);
}
for(i = 1 ; i <= n ; i ++ )
printf("%s\n" , ans[i] ? "YES" : "NO");
return 0;
}

【bzoj4579】[Usaco2016 Open]Closing the Farm 并查集的更多相关文章

  1. BZOJ 4579: [Usaco2016 Open]Closing the Farm

    Description 依次删去一个点和它的边,问当前图是否连通. Sol 并查集. 倒着做就可以了. 每次将一个点及其的边加入,如果当前集合个数大于 1,那么就不连通. Code /******** ...

  2. hdu-1198 Farm Irrigation---并查集+模拟(附测试数据)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1198 题目大意: 有如上图11种土地块,块中的绿色线条为土地块中修好的水渠,现在一片土地由上述的各种 ...

  3. 续并查集学习笔记——Closing the farm题解

    在很多时候,并查集并不是一个完整的解题方法,而是一种思路. 通过以下题目来体会并查集逆向运用的思想. Description Farmer John and his cows are planning ...

  4. 一道并查集的(坑)题:关闭农场closing the farm

    题目描述 in English: Farmer John and his cows are planning to leave town for a long vacation, and so FJ ...

  5. 【BZOJ 4579】【Usaco2016 Open】Closing the Farm

    http://www.lydsy.com/JudgeOnline/problem.php?id=4579 把时间倒过来,只是加点,并查集维护连通块. #include<cstdio> #i ...

  6. HDU1198水管并查集Farm Irrigation

    Benny has a spacious farm land to irrigate. The farm land is a rectangle, and is divided into a lot ...

  7. 【简单并查集】Farm Irrigation

    Farm Irrigation Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Tot ...

  8. HDU 1198 Farm Irrigation(并查集,自己构造连通条件或者dfs)

    Farm Irrigation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  9. hdu 1198 Farm Irrigation(深搜dfs || 并查集)

    转载请注明出处:viewmode=contents">http://blog.csdn.net/u012860063?viewmode=contents 题目链接:http://acm ...

随机推荐

  1. Java设计模式(21)——行为模式之备忘录模式(Memento)

    一.概述 概念 UML简图 角色 根据下图得到角色 备忘录角色(Memento).发起人角色(Originator).负责人角色(Caretaker) 二.实践 使用白箱实现,给出角色的代码: 发起人 ...

  2. 成都Uber优步司机奖励政策(1月8日)

    1月8日 奖励政策 滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblog ...

  3. CF 570 D. Tree Requests

    D. Tree Requests http://codeforces.com/problemset/problem/570/D 题意: 一个以1为根的树,每个点上有一个字母(a-z),每次询问一个子树 ...

  4. 使用Google Cloud Messaging (GCM),PHP 开发Android Push Notifications (安卓推送通知)

    什么是GCM? Google Cloud  Messaging (GCM) 是Google提供的一个服务,用来从服务端向安卓设备发送推送通知. GCM分为客户端和服务端开发. 这里我们只介绍服务端开发 ...

  5. springboot在application.yml中使用了context-path属性导致静态资源法加载,如不能引入vue.js,jquery.js,css等等

    在springBoot配置中加入上下文路径 server.context-path=/csdn js,img等静态文件无法加载,出现404的问题 <script type="text/ ...

  6. Pyhton网络爬虫实例_豆瓣电影排行榜_Xpath方法爬取

    -----------------------------------------------------------学无止境------------------------------------- ...

  7. (一)Spring Boot修改内置Tomcat端口号--解决tomcat端口被占用的问题

    Spring Boot 内置Tomcat默认端口号为8080,在开发多个应用调试时很不方便,本文介绍了修改 Spring Boot内置Tomcat端口号的方法. 一.EmbeddedServletCo ...

  8. Java学习 · 初识 容器和数据结构

    容器和数据结构 1.   集合的引入 a)     集合的使用场景:需要将一些相同结构的个体整合到一起时 i.           新闻列表 ii.           邮件列表 iii.       ...

  9. 孤荷凌寒自学python第八十三天初次接触ocr配置tesseract环境

    孤荷凌寒自学python第八十三天初次接触ocr配置tesseract环境 (完整学习过程屏幕记录视频地址在文末) 学习Python我肯定不会错过图片文字的识别,当然更重要的是简单的验证码识别了,今天 ...

  10. python3 SQLAlchemy模块使用

    更详细的操作介绍:https://www.imooc.com/article/22343 定义: SQLAlchemy是Python编程语言下的一款ORM框架,该框架建立在数据库API之上,使用关系对 ...