开关问题

Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 7726   Accepted: 3032

Description

有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关,如果为关就变为开。你的目标是经过若干次开关操作后使得最后N个开关达到一个特定的状态。对于任意一个开关,最多只能进行一次开关操作。你的任务是,计算有多少种可以达到指定状态的方法。(不计开关操作的顺序)

Input

输入第一行有一个数K,表示以下有K组测试数据。 
每组测试数据的格式如下: 
第一行 一个数N(0 < N < 29) 
第二行 N个0或者1的数,表示开始时N个开关状态。 
第三行 N个0或者1的数,表示操作结束后N个开关的状态。 
接下来 每行两个数I J,表示如果操作第 I 个开关,第J个开关的状态也会变化。每组数据以 0 0 结束。 

Output

如果有可行方法,输出总数,否则输出“Oh,it's impossible~!!” 不包括引号

Sample Input

2
3
0 0 0
1 1 1
1 2
1 3
2 1
2 3
3 1
3 2
0 0
3
0 0 0
1 0 1
1 2
2 1
0 0

Sample Output

4
Oh,it's impossible~!!

Hint

第一组数据的说明: 
一共以下四种方法: 
操作开关1 
操作开关2 
操作开关3 
操作开关1、2、3 (不记顺序) 

Source

 
 
Gauss消元的异或(模2)版,第一次写写的有点麻烦,要简单的参照kuangbin牌Gauss消元模板。。
每个开关的影响范围可以列为一个列向量ai,他的操作为xi(只有0/1),我们要求解的就是a1*x1+a2*x2+……an*xn=b(为到达状态与初始状态的异或)
求解这个x1,x2……xn 直接用Gauss消元。
 #include<cstdio>
#include<iostream>
#include<cstring>
#define clr(x) memset(x,0,sizeof(x))
using namespace std;
int A[][];
int b0[],b1[],b[];
int main()
{
int T,n,a1,a2,p,ct,ans,inf;
scanf("%d",&T);
while(T--)
{
clr(A);
scanf("%d",&n);
for(int i=;i<n;i++)
scanf("%d",&b0[i]);
for(int i=;i<n;i++)
{
scanf("%d",&b1[i]);
b[i]=(b0[i]+b1[i])%;
}
while(scanf("%d%d",&a1,&a2) && a1 && a2)
{
A[a2-][a1-]=;
}
for(int i=;i<n;i++)
{
A[i][n]=b[i];
A[i][i]=;
}
ct=-; for(int i=;;i++)
{
ct++;
if(ct>=n)
{
p=i;
break;
}
while(!A[i][ct])
{
for(int j=i+;j<n;j++)
if(A[j][ct])
{
for(int k=;k<=n;k++)
{
p=A[i][k];
A[i][k]=A[j][k];
A[j][k]=p;
}
break;
}
if(!A[i][ct])
ct++;
if(ct>=n)
break;
}
if(ct>=n)
{
p=i;
break;
}
for(int j=i+;j<n;j++)
if(A[j][ct])
for(int k=ct;k<=n;k++)
A[j][k]=(A[j][k]+A[i][k])%;
}
inf=;
for(int i=p;i<n;i++)
if(A[i][n])
{
inf=;
break;
}
// for(int i=0;i<n;i++)
// {
// for(int j=0;j<=n;j++)
// printf("%d ",A[i][j]);
// printf("\n");
// }
if(inf)
{
printf("Oh,it's impossible~!!\n");
continue;
}
ans=<<(n-p);
printf("%d\n",ans);
}
return ;
}

POJ 1830 开关问题(Gauss 消元)的更多相关文章

  1. POJ 1830 开关问题 高斯消元,自由变量个数

    http://poj.org/problem?id=1830 如果开关s1操作一次,则会有s1(记住自己也会变).和s1连接的开关都会做一次操作. 那么设矩阵a[i][j]表示按下了开关j,开关i会被 ...

  2. POJ 1830 开关问题 (高斯消元)

    题目链接 题意:中文题,和上篇博客POJ 1222是一类题. 题解:如果有解,解的个数便是2^(自由变元个数),因为每个变元都有两种选择. 代码: #include <iostream> ...

  3. POJ 1830 开关问题 [高斯消元XOR]

    和上两题一样 Input 输入第一行有一个数K,表示以下有K组测试数据. 每组测试数据的格式如下: 第一行 一个数N(0 < N < 29) 第二行 N个0或者1的数,表示开始时N个开关状 ...

  4. POJ.1830.开关问题(高斯消元 异或方程组)

    题目链接 显然我们需要使每个i满足\[( ∑_{j} X[j]*A[i][j] ) mod\ 2 = B[i]\] 求这个方程自由元Xi的个数ans,那么方案数便是\(2^{ans}\) %2可以用^ ...

  5. POJ1830开关问题——gauss消元

    题目链接 分析: 第一个高斯消元题目,操作是异或.奇偶能够用0.1来表示,也就表示成bool类型的方程,操作是异或.和加法没有差别 题目中有两个未知量:每一个开关被按下的次数(0.1).每一个开关的转 ...

  6. poj 1681(Gauss 消元)

    Painter's Problem Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5875   Accepted: 2825 ...

  7. hdu 5755(Gauss 消元) &poj 2947

    Gambler Bo Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Tota ...

  8. $Gauss$消元

    $Gauss$消元 今天金牌爷来问我一个高消的题目,我才想起来忘了学高消... 高斯消元用于解线性方程组,也就是形如: $\left\{\begin{matrix}a_{11}x_1+a_{12}x_ ...

  9. 求一个n元一次方程的解,Gauss消元

    求一个n元一次方程的解,Gauss消元 const Matrix=require('./Matrix.js') /*Gauss 消元 传入一个矩阵,传出结果 */ function Gauss(mat ...

随机推荐

  1. Dungeon Master(三维bfs)

    题目链接:http://poj.org/problem?id=2251 题目: Description You are trapped in a 3D dungeon and need to find ...

  2. 理解js中私有变量

    私有变量在js中是个什么概念.当下我的认识是var所定义的变量,实际可以理解为属性和方法,或者单单是临时存储器,不归属任何对象. 一个声明函数: function a(){  var v = &quo ...

  3. 浅谈linux的死锁检测 【转】

    转自:http://www.blog.chinaunix.net/uid-25942458-id-3823545.html 死锁:就是多个进程(≥2)因为争夺资源而相互等待的一种现象,若无外力推动,将 ...

  4. Redis 分片实现 Redis Shard [www]

    Redis 分片实现                                             Redis Shard https://www.oschina.net/p/redis-s ...

  5. centos安装ss教程

    在CentOS 6.6上安装ShadowSocks服务端 1.查看系统[root@localhost ~]# cat /etc/issue CentOS release 6.6 (Final) [ro ...

  6. Fel表达式使用过程中需要注意的问题

    精度问题: 我们知道java中直接使用float和double参与的计算都可能会产生精度问题,比如0.1+0.3.1.0-0.9 等.所以一般财务系统,都会使用BigDecimal进行加减乘除. 在调 ...

  7. hadoop 分布式环境安装

    centos 多台机器免密登录 hadoop学习笔记(五)--全分布模式下SSH免密码登陆的实现 参考安装教程 Hadoop-2.7.4 集群快速搭建 启动hadoop cd /opt/soft/ha ...

  8. review的一个收获popstate,addEventListener:false ,split,jquery cache

    一.popstate:记录url历史变化 二.document.location.hash:锚点后面的东西 三.addEventListener:false 是否在捕获或者冒泡事件中执行 强转换 四. ...

  9. Restore IP Addresses——边界条件判定

    Given a string containing only digits, restore it by returning all possible valid IP address combina ...

  10. Gray Code——陈瑶师姐面试时候要用回溯算法

    The gray code is a binary numeral system where two successive values differ in only one bit. Given a ...