STNE:自翻译网络嵌入
该工作认为在节点属性与结构信息再本质上是有一定联系的,提出 STNE 模型,利用 seq2seq 模型进行特征提取,将利用节点信息及网络结构识别节点的过程比喻为翻译的过程

1. 简介

目的:学习网络中节点的低维表示
将利用节点信息及网络结构识别节点的过程比喻为翻译的过程
 
论文引用网络中,每个节点代表一篇论文,每条边代表引用关系。每个节点自身属性包括文章的摘要,关键词,研究领域等等。该论文的假设依据是,论文所形成的引用网络与论文自身的属性之间有较强关系
 
现有方案
1. 将结构信息和属性信息分别进行embedding之后,组合
2. 考虑短距离/固定邻域范围保留结构信息(第一/二邻近)
(复杂问题中很难确定邻域范围)
 

2. 创新点(贡献):

提出基于seq2seq 的模型框架(STNE)
利用网络上随机遍历生成的序列,将节点内容信息翻译成结构信息,从而结合两种信息
 
  • 将网络嵌入转化为 seq2seq 任务,从局部建模到序列的全局结构建模,捕获更多语义信息
  • 设计了一个异构的seq2seq 模型,嵌入原始输入文本,以端到端的方式学习从节点属性序列到节点指示序列的映射
对比
  • 与传统方法相比, STNE 直接节点序列对建模,从文本序列中自动学习生成函数,将 seq2seq 网络模型与其他文本嵌入模型相结合,通过学习内容序列到节点序列的映射,将内容信息和结构信息无缝融合到隐藏层的潜在向量中,高效表示节点
  • 根据与节点的不同交互提出上下文感知嵌入
  • 相对于 CANE: 从相邻文本节点感知嵌入
  • STNE:针对不同序列学习动态的节点嵌入(需要更长范围,更灵活的上下文)

3. 模型框架

STNE 总体框架

 
图一总体框架:
1. 给定内容丰富的网络,通过随机游走提取节点序列,并将节点序列分为两个部分
  • 节点属性序列
  • 节点指示序列(由节点指示向量 one-hot 表示)
2. 通过这两个序列学习特定的 seq2seq 模型,该模型可以用于将节点属性“翻译”为节点指示向量
3. 步骤二的目的是得到中间层的潜在转换( 是可用于复杂网络分析 )

4. 方法过程

 

由图2 可看出,该过程为:
  • 节点属性---->低维表示( Encoder )
  • 低维表示---->节点序列( Decoder )
 
并行序列 S 包含:
节点身份序列 Si 和 相关内容序列 Sc
(使用并行序列将网络嵌入转化为机器翻译问题,从内容到节点的异构自翻译过程)
 
映射函数 Sc->Si

 更详细的总结

Content to Node: Self-Translation Network Embedding的更多相关文章

  1. network embedding 需读论文

    Must-read papers on NRL/NE. github: https://github.com/nate-russell/Network-Embedding-Resources NRL: ...

  2. Network Embedding 论文小览

    Network Embedding 论文小览 转自:http://blog.csdn.net/Dark_Scope/article/details/74279582,感谢分享! 自从word2vec横 ...

  3. 论文阅读 Exploring Temporal Information for Dynamic Network Embedding

    10 Exploring Temporal Information for Dynamic Network Embedding 5 link:https://scholar.google.com.sg ...

  4. 论文阅读 GloDyNE Global Topology Preserving Dynamic Network Embedding

    11 GloDyNE Global Topology Preserving Dynamic Network Embedding link:http://arxiv.org/abs/2008.01935 ...

  5. 论文:network embedding

    KDD2016: network embedding model: deep walk(kdd 2014): http://videolectures.net/kdd2014_perozzi_deep ...

  6. On the Optimal Approach of Survivable Virtual Network Embedding in Virtualized SDN

    Introduction and related work 云数据中心对于虚拟技术是理想的创新地方. 可生存性虚拟网络映射(surviavable virtual network embedding ...

  7. NEU(Fst Network Embedding Enhancement via High Order Proximity Approximation)

    NEU(Fst Network Embedding Enhancement via High Order Proximity Approximation) NEU:通过对高阶相似性的近似,加持快速网络 ...

  8. Context-Aware Network Embedding for Relation Modeling

    Context-Aware Network Embedding for Relation Modeling 论文:http://www.aclweb.org/anthology/P17-1158 创新 ...

  9. Network Embedding

    网络表示 网络表示学习(DeepWalk,LINE,node2vec,SDNE) https://blog.csdn.net/u013527419/article/details/76017528 网 ...

随机推荐

  1. [洛谷P3833][SHOI2012]魔法树

    题目大意:给一棵树,路径加,子树求和 题解:树剖 卡点:无 C++ Code: #include <cstdio> #include <iostream> #define ma ...

  2. C/C++中字符串与数字相互转换

    数字转字符串: 用C++的streanstream: #include <sstream> #Include <string> string num2str(double i) ...

  3. getElementsByClassName的原生实现

    DOM 提供了一个名为 getElementById() 的方法,这个方法将返回一个对象,这个对象就是参数 id 所对应的元素节点.另外,getElementByTagName() 方法会返回一个对象 ...

  4. angularJS入门小Demo【简单测试js代码的方法】

    1.首先建立一个文件夹 demo, 2.在其中建立一个文本文档,改名为 demo-1.html, 3.把html中要引入的 js 文件拷贝到 demo目录下, 4.然后用 Notepadd++ 编辑刚 ...

  5. 蓝桥杯 最短路 spfa

    问题描述 给定一个n个顶点,m条边的有向图(其中某些边权可能为负,但保证没有负环).请你计算从1号点到其他点的最短路(顶点从1到n编号). 输入格式 第一行两个整数n, m. 接下来的m行,每行有三个 ...

  6. POJ 2226 Muddy Fields(二分匹配 巧妙的建图)

    Description Rain has pummeled the cows' field, a rectangular grid of R rows and C columns (1 <= R ...

  7. bzoj 4724 [POI2017]Podzielno 二分+模拟

    [POI2017]Podzielno Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 364  Solved: 160[Submit][Status][ ...

  8. bzoj 3714 [PA2014]Kuglarz 最小生成树

    [PA2014]Kuglarz Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1335  Solved: 672[Submit][Status][Di ...

  9. lnmp 环境搭建

    3.安装 lnmp : wget http://soft.vpser.net/lnmp/lnmp1.3-full.tar.gz tar -zxvf lnmp1.3-full.tar.gz cd lnm ...

  10. 2017 济南综合班 Day 1

    送分题(songfen) Time Limit:1000ms   Memory Limit:128MB 题目描述 LYK喜欢干一些有挑战的事,比如说求区间最大子段和.它知道这个题目有O(n)的做法.于 ...