HDU 1121 Complete the Sequence 差分
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=1121
Complete the Sequence
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 451 Accepted Submission(s): 283
ACM programmers have noticed that some of the quizzes can be solved by describing the sequence by polynomials. For example, the sequence 1, 2, 3, 4, 5 can be easily understood as a trivial polynomial. The next number is 6. But even more complex sequences, like 1, 2, 4, 7, 11, can be described by a polynomial. In this case, 1/2.n^2-1/2.n+1 can be used. Note that even if the members of the sequence are integers, polynomial coefficients may be any real numbers.
Polynomial is an expression in the following form:
P(n) = aD.n^D+aD-1.n^D-1+...+a1.n+a0
The second line of each test case contains S integer numbers X1, X2, ... XS separated by a space. These numbers form the given sequence. The sequence can always be described by a polynomial P(n) such that for every i, Xi = P(i). Among these polynomials, we can find the polynomial Pmin with the lowest possible degree. This polynomial should be used for completing the sequence.
It is guaranteed that the results Pmin(S+i) will be non-negative and will fit into the standard integer type.

#include<iostream>
#include<cstdio>
#include<cstring> using namespace std; const int maxn = ; int s, c;
int f[maxn][maxn]; void init() {
memset(f, , sizeof(f));
} int main() {
int tc;
scanf("%d", &tc);
while (tc--) {
init();
scanf("%d%d", &s, &c);
for (int i = ; i < s; i++) scanf("%d", &f[][i]);
for (int i = ; i <= s - ; i++) {
for (int j = ; j < s - i; j++) {
f[i][j] = f[i - ][j + ] - f[i - ][j];
}
}
for (int i = ; i <= c; i++) f[s - ][i] = f[s - ][i - ];
for (int i = s - ; i >= ; i--) {
for (int j = s - i; j < s + c - i; j++) {
f[i][j] = f[i][j - ] + f[i + ][j - ];
}
}
printf("%d", f[][s]);
for (int i = s + ; i < s + c; i++) printf(" %d", f[][i]);
printf("\n");
}
return ;
}
HDU 1121 Complete the Sequence 差分的更多相关文章
- HDOJ 1121 Complete the Sequence
[题目大意]有一个数列P,它的第i项是当x=i时,一个关于x的整式的值.给出数列的前S项,你需要输出它的第S+1项到第S+C项,并且使整式的次数最低.多测. [数据范围]数据组数≤5000,S+C≤1 ...
- UVA 1546 - Complete the sequence!(差分法)
UVA 1546 - Complete the sequence! 题目链接 题意:给定多项式前s项,求出后c项,要求尽量小 思路:利用差分法,对原序列求s - 1次差分,就能够发现规律,然后对于每多 ...
- HDU 5783 Divide the Sequence(数列划分)
p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: Calibri; font-s ...
- Complete the Sequence[HDU1121]
Complete the Sequence Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Ot ...
- 判断相同区间(lazy) 多校8 HDU 5828 Rikka with Sequence
// 判断相同区间(lazy) 多校8 HDU 5828 Rikka with Sequence // 题意:三种操作,1增加值,2开根,3求和 // 思路:这题与HDU 4027 和HDU 5634 ...
- hdu 4893 Wow! Such Sequence!(线段树)
题目链接:hdu 4983 Wow! Such Sequence! 题目大意:就是三种操作 1 k d, 改动k的为值添加d 2 l r, 查询l到r的区间和 3 l r. 间l到r区间上的所以数变成 ...
- Hdu 5496 Beauty of Sequence (组合数)
题目链接: Hdu 5496 Beauty of Sequence 题目描述: 一个整数序列,除去连续的相同数字(保留一个)后,序列的和成为完美序列和.问:一个整数序列的所有子序列的完美序列和? 解题 ...
- Hdu 5806 NanoApe Loves Sequence Ⅱ(双指针) (C++,Java)
Hdu 5806 NanoApe Loves Sequence Ⅱ(双指针) Hdu 5806 题意:给出一个数组,求区间第k大的数大于等于m的区间个数 #include<queue> # ...
- HDU 5063 Operation the Sequence(暴力)
HDU 5063 Operation the Sequence 题目链接 把操作存下来.因为仅仅有50个操作,所以每次把操作逆回去执行一遍,就能求出在原来的数列中的位置.输出就可以 代码: #incl ...
随机推荐
- less的在线安装
首先打开命令行窗口windonws+r输入cmd回车 1.确认是安装了node和less,在命令行输入“node -v”回车确认node是否安装,有版本信息则安装了,输入“lessc -v”回车确认l ...
- python3配置文件的增删改查,记录一下
#!/usr/bin/env python3 import json #json模块,用于将像字典的字符串转换为字典 import re #re模块,查找替换 import shutil #copy文 ...
- python3 class类 练习题
"""一.定义一个学生Student类.有下面的类属性:1 姓名 name2 年龄 age3 成绩 score(语文,数学,英语) [每课成绩的类型为整数] 类方法:1 ...
- SSM(Spring5.x+Mybatis3)框架搭建【解决日志问题】(Github源码)
闲来无事,用SSM写个小东西,发现spring已经迭代到5.x了,遂出此文,希望对各位同学有些许帮助. IDE:idea OS:windows 源代码:https://github.com/JHeav ...
- BFC与浮动
一.BFC的含义 BFC(block formatting contexts) 块级元素格式化上下文,它决定了块级元素如何对它的内容进行布局,以及与其它元素的关系和相互作用. 块级元素:父级(是一个块 ...
- FPGA静态时序分析基础
FPGA静态时序分析基础 基本概念 Skew: 时钟偏移 Skew表示时钟到达不同触发器的延时差别,Tskew = 时钟到达2号触发器的时刻 - 时钟到达1号触发器的时刻. Jitter: 时钟抖动 ...
- 阻止Quartus优化掉信号
使用SignalTap II Logic Analyzer观察信号,有时要观察的信号会被Quartus优化掉,这种情况下可以给信号指定属性.以下例子均使用Verilog. 1. 如果是组合逻辑信号,可 ...
- Ubuntu配置android环境
jdk:http://www.oracle.com/technetwork/cn/java/javase/downloads/index.html 安装JDK的步骤:http://jingyan.ba ...
- 【LG3236】[HNOI2014]画框
[LG3236][HNOI2014]画框 题面 洛谷 题解 和这题一模一样. 将最小生成树换成\(KM\)即可. 关于复杂度,因为决策点肯定在凸包上,且\(n\)凸包的期望点数为\(\sqrt {\l ...
- Yii 2.0 使用验证码
Yii2.0 提供了验证码组件.调用起来比较方便.以登录页面添加验证码为例. 1. 模型中添加字段和验证规则. common\models\LoginForm 添加如下代码 public $captc ...