J - Infinite monkey theorem

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Appoint description: 
System Crawler  (2014-11-09)

Description

Could you imaging a monkey writing computer programs? Surely monkeys are smart among animals. But their limited intelligence is no match for our human beings. However, there is a theorem about monkeys, and it states that monkeys can write everything if given enough time. 
The theorem is called “Infinite monkey theorem”. It states that a monkey hitting keys at random on a typewriter keyboard for an infinite amount of time will almost surely type any given text, which of course includes the programs you are about to write (All computer programs can be represented as text, right?). 
It’s very easy to prove this theorem. A little calculation will show you that if the monkey types for an infinite length of time the probability that the output contains a given text will approach 100%. 
However, the time used is too long to be physically reasonable. The monkey will not be able to produce any useful programs even if it types until the death of the universe. To verify this and ensure that our human beings are not replaceable by monkeys, you are to calculate the probability that a monkey will get things right. 
 

Input

There will be several test cases. 
Each test case begins with a line containing two integers n and m separated by a whitespace (2<=n<=26, 1<=m<=1000). n is the number of keys on the typewriter and the monkey will hit these keys m times. Thus the typewriter will finally produce an output of m characters. 
The following n lines describe keys on the typewriter. Each line has a lower case letter and a real number separated by a whitespace. The letter indicates what the typewriter will produce if the monkey hits that key and the real number indicates the probability that the monkey will hit this key. Two hits of the monkey are independent of each other (Two different hits have the same probability for a same key), and sum of all the probabilities for each key is ensured to be 1. 
The last line of the test case contains a word composed of lower case letters. The length of the word will be less than or equal to 10. 
The input will end with a line of two zeros separated by a whitespace. This line should not be processed. 
 

Output

For each test case, output one line containing the probability that the given word will appear in the typewriter’s output. The output should be in percentage format and numbers should be rounded to two digits after the decimal point.
 

Sample Input

4 10
w 0.25
o 0.25
r 0.25
d 0.25
word
2 10
a 1.0
b 0.0
abc
2 100
a 0.312345
b 0.687655
abab
0 0
 

Sample Output

2.73%
0.00%
98.54%
 
感想:幸亏样例给的好,在这个地方不匹配.前面的还能匹配,知道这个就很容易了

思路:首先得到每个串最长能够匹配多长,然后按照转移次数每次都乘上相对的概率即可

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int n,m;
double p[26];
char buff[1001];
double dp[1200][30];
int c[30][30];
int main(){
while(scanf("%d%d",&n,&m)==2&&n&&m){
memset(p,0,sizeof(p));
for(int i=0;i<n;i++){
scanf("%s",buff);
scanf("%lf",&p[(buff[0]-'a')]);
}
scanf("%s",buff);
int len=strlen(buff);
char s[30];
for(int i=0;i<len;i++)//暴力处理出最长匹配长度
{
for(int j=0;j<26;j++)//在已匹配长度上,最后一位是什么
{
s[i]=j+'a';
int maxn=0;
for(int k=len-1;k>=0;k--)//暴力求得可以匹配的最长长度
{
int v=k,x=i;
while(v>=0&&i>=0&&s[x]==buff[v])
{
v--;
x--;
}
if(v==-1)
maxn=max(k+1,maxn);
}
c[i][j]=maxn;
}
s[i]=buff[i];//匹配的时候
}
for(int i=0;i<=m;i++)//memset
{
for(int j=0;j<=len;j++)
dp[i][j]=0;
}
dp[0][0]=1;
double sum=0;
for(int i=0;i<m;i++)//只能敲打m次
{
for(int j=0;j<len;j++)
{
for(int k=0;k<26;k++)
{
dp[i+1][c[j][k]]+=dp[i][j]*p[k];
}
}
}
for(int i=1;i<=m;i++)
{
sum+=dp[i][len];
}
printf("%.2f%%\n",sum*100);
}
return 0;
}

  

hdu 3689 杭州 10 现场 J - Infinite monkey theorem 概率dp kmp 难度:1的更多相关文章

  1. hdu-3689 Infinite monkey theorem 概率dp+kmp

    有一只猴子随机敲键盘,给出它可能敲的键以及敲各个键的概率. 输入:n,表示有多少个键,m,表示猴子会敲m次键 n个二元组(字母,数字) 表示键代表的字母及其被敲的概率. 最后一个目标字符串. 问这只猴 ...

  2. HDU 3689 Infinite monkey theorem(DP+trie+自动机)(2010 Asia Hangzhou Regional Contest)

    Description Could you imaging a monkey writing computer programs? Surely monkeys are smart among ani ...

  3. hdu 3689 Infinite monkey theorem

    Infinite monkey theorem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/ ...

  4. HDU 3689 Infinite monkey theorem [KMP DP]

    Infinite monkey theorem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...

  5. HUD3689 Infinite monkey theorem

    Infinite monkey theorem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/ ...

  6. ●HDU 3689 Infinite monkey theorem

    题链: http://acm.hdu.edu.cn/showproblem.php?pid=3689题解: KMP,概率dp (字符串都从1位置开始) 首先对模式串S建立next数组. 定义dp[i] ...

  7. HDU 3689 Infinite monkey theorem ——(自动机+DP)

    这题由于是一个单词,其实直接kmp+dp也无妨.建立自动机当然也是可以的.设dp[i][j]表示匹配到第i个字母的时候,在单词中处于第j个位置的概率,因此最终的答案是dp[0~m][len],m是输入 ...

  8. HDU3689 Infinite monkey theorem 无限猴子(字符串DP+KMP)

    题目描述: 大概的意思就是根据无限猴子定理,无限只猴子坐在打字机旁瞎敲,总有一个能敲出莎士比亚文集.现在给你一个打字机和一只猴子,打字机的每个按钮(共n个)上的字母及猴子按下这个按钮的概率已知,而且猴 ...

  9. [HDU 3689]Infinite monkey theorem (KMP+概率DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3689 黄老师说得对,题目只有做wa了才会有收获,才会有提高. 题意:一个猴子敲键盘,键盘上有n个键,猴 ...

随机推荐

  1. Linux下编译安装PHP扩展memcached

    [安装 libevent] $ tar zxvf libevent-2.0.20-stable.tar.gz $ cd libevent-2.0.20-stable/$ ./configure --p ...

  2. http-从域名到页面

    目录 1. 网络基础 TCP/IP HTTP DNS URI, URL, and URN URI的格式 2. HTTP简单概括 通过实例看HTTP HTTP报文组成 3. 使用Firefox修改请求首 ...

  3. VMware跨电脑移动Linux虚拟机

    环境:VMware-Workstation-12-Pro,Windows-10,CentOS-6.9-x86_64,Xshell5 概况 vmware自带的快照,克隆功能,都可以实现备份虚拟机的功能, ...

  4. 右值引用与转移语义(C++11)

    参考资料: http://www.cnblogs.com/lebronjames/p/3614773.html 左值和右值定义: C++( 包括 C) 中所有的表达式和变量要么是左值,要么是右值.通俗 ...

  5. cookie—基于js的coolie使用

    //设置cookie function setCookie(name,value) { var Days = 30; var exp = new Date(); exp.setTime(exp.get ...

  6. sql server 将时间中的时分秒改为00:00:00

    select convert(varchar(10),getdate(),120

  7. EditPlus 4.3.2473 中文版已经发布(10月21日更新)

    新的 EditPlus 修复了如下问题: * Ctrl+鼠标拖放文本功能异常 * 上传文件到 FTP 服务器失败后将弹出对话框,可重试上传 * 列选模式下粘贴到现存的选中内容时文本错乱的问题 本博客已 ...

  8. 《Java入门第二季》第一章 类和对象

    什么是类和对象 如何定义 Java 中的类 如何使用 Java 中的对象 Java中的成员变量和局部变量1.成员变量:在类中定义,描述构成对象的组件. 2.局部变量:在类的方法中,用于临时保存数据. ...

  9. Spring注解@Value

    本文参考自: https://blog.csdn.net/ryelqy/article/details/77453713 @Value能让我们在java代码中使用property文件的属性,使用@Va ...

  10. 一个好玩的CTF题

    一个CTF的题目,拿来学习学习 玩了好久,再加上学校一堆破事,最近又开始瞎弄了,找了几个CTF的题目,和别人写的一些内容,也当是学习,也当是看完之后的小结.顺便也说一下如果自己拿到这题目会从哪做起. ...